SPERRY=<=LNIVAC

COMPUTER SYSTEMS

COBOL PROGRAM

DEVELOPMENT SUBSYSTEM (CODE)
AND TEST FILE GENERATOR (TFG)

REFERENCE CARD

LOGGING ON
/LOGON userid,accntno [, password] [PRIORITY=n]
|:,MSG= {F} [H]][,BUFFER=integer] [TIME=sec-integer]
c

%C E223 LOGON ACCEPTED FROM LINE nn AT time
ON date, TSN=nnnn

Comments

User logs on

System replies

CREATING (OR ERASING) A CODE/TFG
PROJECT

/EXEC COBOL

% C P500 LOADING.
ENTERING INITIALIZATION MODE
ENTER PROGRAM-ID OR #HALT.

A given project is created
only once. It exists until
erased.

User enters Execute command
System replies

Initializing For Series 70 COBOL
*'program-id”

INITIALIZED FOR SERIES 70 COBOL; TO ACCESS
/DO program-id

User enters ‘program name’
in single quotes.

System replies

User enters

Initializing For ANS COBOL
*program-id

NON-NUMERIC LITERALS WILL BE IN * OR "'?
s

*4 op *

INITIALIZED FOR AMERICAN STANDARD COBOL;
TO ACCESS
/DO program-id

User enters program name
without quotes

System replies

User enters

System replies

User enters

Erasing An Existing CODE/TFG Program

*program-id
NAME EXISTS; O=OVERWRITE/R=RESTART/
E=ERASE/Q=QUITS
i
ERASED ALL REFERENCES
ENTER PROGRAM-ID OR #HALT
*HALT or another program name

User enters program name
System replies

User enters E
System replies
System replies
User enters

EDITING A PROGRAM IN CODE
/DO program-id Command:

/DO program-id

% C POO1 -DLL V-15.
ENTERING EDIT MODE
DEFINITION FILE ISN'T THERE
SELECT::S=SYSTEM/U=USER/N=NONE/
PROGRAM NAME

*S or *U or *N or *program-id

*P001.000 #SYNTAX

#AT #BACKUP #COMPILE #DEFINE
#DELETE #DUPLICATE #EXECUTE #FIND
#GET #HALT #LIST #LOAD
#LOCATE #MESSAGES #NOTE #PRINT
#QUESTION #REPLACE #SAVE #SET UP
#SHORTHAND #STEP #SUMMARY #SYNTAX
#TEXT #UNDEFINE #UNITS #VERIFY

User enters
System replies
System continues
System continues
System continues

User enters S, U, or N
System replies and

user enters command
System replies with list of
CODE commands. A com-
plete list of the CODE
commands, and the syntax
of each command is
appended to this card.

© 1974 — SPERRY RAND CORPORATION

EA-036-0-00 (6/74)

EDITING A PROGRAM IN CODE (Cont'd)

PROGRAM PROCESSING (Cont'd)

Source S and C i Comments Debugging the Compilation (Cont’d) Comments
* P001.000 System continues * P001.000 #AT D4.3 User starts to correct his
#AT | User writes the Identifica- program
tion Division of his program z
*1001.000 user program (IDENTIFICATION Corrections
DIVISION)
*1002.000 ¢ .
* 1003.000 * POONn.000 #COMPILE LIST RETURN TEST User recompiles program
§ and prepares it for use by
TFG
E 3 ENTERING FOREGOUND JOB
S 100n.000 #ATE User writes the Environ- %P500 LOADING
ment Division of his program 32A0 COMPILATION INITIATED (BGCOB
* E001.000 user program (ENVIRONMENT VERSION=nnn)
DIVISION) 32AA COMPILATION COMPLETED
* E002.000 " %EB001 SPOOLOUT INITIATED FOR TSN=nnnn ID=
* E003.000 nnnnnnnn
” % PRINT FILE=nnnn
%P500 LOADING
S EOOn.000 #AT D User writes the Data
Division of his program
* D001.000 user program (DATA DIVISION) *P001.000 #HALT User issues HALT to return
* D002.000 control to operating system
* D003.000
: TEST FILE GENERATOR (TFG)
s : /DO TFGprogram-id TFG invoked by user
s o e e %PO0T - DLL V-09 (COBOL 5) System replies
* P001.000 user program (PROCEDURE TEST FILE GENERATOR LOADED VERSION # 001
DIVISION) SPECFILE CREATION DATE nn/nn/nn VERSION # 002
* P002.000 > ENTER OUTPUT MODE OR ? System asks how spec lines
* P003.000 are desired

PROGRAM PROCESSING

Compiling the Program

*P0O0On.000 #COMPILE LIST RETURN

SAVE LATEST DEFINITIONS ?Y=YES/N=NO
*Y or *N

ENTERING FOREGROUND JOB
%P500 LOADING

32A0 COMPILATION INITIATED (BGCOB
VERSION=nnn)
32AA COMPILATION COMPLETED WITH SERIOUS
ERRORS
%EB001 SPOOLOUT INITIATED FOR TSN=nnnn ID=
nnnnnnnn
% PRINT FILE=nnnnn

User enters Compile com-
mand as last statement in
program

System replies
Definitions created with
#DEFINE in this session
are saved or not saved
System replies
Compilation loading as
foreground job

System replies

Listing (TSN=nnnn) pro-
duced on system printer
Print command

Debugging the Compilation

%P500 LOADING

CREATED DIAGNOSTIC FILE
%P001 — DLL V-09

ENTERING EDIT MODE

*P001.000 #SUMMARY

T=nnn E.=nnn M=nnnn
B1006+#001
B1006#002

B1006#003
. #Diagnostic Messages

B1006#00n

Compiler loads diagnostic
information into CODE
error file

System replies and

user enters command
System prints the diagnostic
message for specific errors

*B

ENTER OPEN COMMAND
*#OPEN SAMPLE-FILE

User enters B for both Data
names and Nos. displayed
System replies

User names file

Specifying Rules For Elementary Items

FILE ‘SAMPLE-FILE’ OPENED
$001 SAMPLE-RECORD-1

001.100 FIRST ITEM

*VALUE IS ‘ABC’
002.100 SECOND-ITEM

*VALUE IS RANDOM BETWEEN 100 AND 500 FOR
50 RECORDS

$002 SAMPLE-RECORD-2
002.100 ITEM-X
*VALUE IS 1, 2, 3, 4 REPEAT

System opens file

System prompts with record
names

System prompts with item
name

User gives value for item
System prompts with next
record

User gives rule for second
item

System prompts with next
record

System prompts with data
name

User gives series of values

General Format of Rules For Elementary Items
VALUE[IS] (constant 3N
RANDOM
v-1...v-n[REPEAT]
FIRST-NAME
LAST-NAME

NAME

SPACE

MONTH

WEEK-DAY

ZERO
HIGH-VALUE
LOW-VALUE
arithmetic expression
data-name

UNULL

constant may be a literal, a hexadecimal constant (X‘1F’),
ora (B‘01101011')
v-1 to v-n may be any of the parameters legal for VALUE

TEST FILE GENERATOR (TFG) (Cont'd)

General Format of Rules For Elementary Items (Cont’d)

Comments

CODE COMMANDS (Cont’d)

Operand Definitions

INCREMENT [IS] (numeric-literal

INC RANDOM
DECREMENT arithmetic expression
DEC data-name
MAXIMUM [IS] (numerical-literal

MAX data-name ,
MINIMUM arithmetic expression
MIN

data-name-1

BETWEEN (numerical-literal-1 }
[arithmetic-expression-1

data-name-2

AND (numeric-literal-2 }
arithmetic-expression

FOR integer RECORDS

Test File Generator Editing Commands

#AT #DELETE
#FIND #PRINT
#STEP

These commands can be
used while rules are being
specified. The full syntax or
the TFG commands is
appended to this card

Specifying the Records in the File
ENTERING RECORD CONTROL MODE

&001

*1 %1 3 $2
&002

*10 $2 100 &1
&003

#GENERATE LIST

System comes to record
control when rules have
been given for all items or
when the user types #AT
&1

System prompts with the
first record control number
User enters record group
System prompts with the
next record control number
User calls for nesting of
record groups

System prompts with the
next record control number
User decides to create the
file with these rules

LOGGING OFF

/LOGOFF
%C E420 LOGOFF AT nnn ON nn/nn/nn FOR TSNnnnn
%C E421 CPU TIME USE: nnnnnn.nnnn seconds

User logs off
System replies

CODE COMMANDS

Operand Definitions

#

{i} number[number]' [,STEPI step-numbej
S
unit number

AT}
A

number= 1 to 99 units to be
moved forward or backward
unit number= alphanumeric
division location

step number= decimal incre-
ment to separate continuous
unit nos.

{BACKUP}
B

‘COMPI LE} i IEXECUTE‘
c E

UHSRARY]

{LOAD
LO

ILIST ‘RETURN [TEST] NOFILE

LIS R N
‘filename’
“filename”’

filename= user designated
name of a cataloged COBOL
source library

‘DEFINE

abbreviation {AS} {’string’
DEF A g

‘string”’
L'letter’ I
‘letter"

Abbreviation= 1 to 5 char-
acters used to identify a
‘string’

letter= letter with which a
given abbreviation begins
string= group of letters
identified by a particular
abbreviation

IDELETEI [unit-number-1[TO unit-number-2]]
DEL

unit-number-1= first unit no.
of the range of units to be
deleted

unit-number-2= last unit no.
of the range of units to be
deleted

|DUPLICATE} unit-number-1[TO unit-number-2]
DU

unit-number-1= first unit no.
of the range of units to be
copied

unit-number-2= last unit no.
of the range of units to be
copied

#[EXECUTEI USETURN” [‘t:SRARY]

{FINDI {FIRST) l ‘string’ IN
F i “string”’ i
!lL_ASTl IO I
e

unit-number-1[TO unit-number-2]

string= alphanumeric char-
acter configuration to be
searched for

unit-number-1. . . unit-
number-2= first and last
unit in a range, the contents
of which are to be scanned
for the string

lGETI [record-number-1[TO record-number-2]]
G
‘FROM ‘filename’
F “filename”

TAPE
TA

record-number-1. . . record-
number-2= first and last unit
in a range of records to be
obtained from specified file
filename= name of a file con-
taining all or part of a
COBOL source program in
card-image format

[HALT}
H

‘LIST

"{CHANGES} 2
LIS c

’ERRORS}
E

SHORTHAND
SH

SOURCE
SO

{ SYNTAX!
sy

‘LOAD ‘LIBRARY
LOA LIB

{ LOCATE ‘string’
LOC “'string’’

string= alphanumeric char-
acter configuration identi-
fying the unit for which

the search is being conducted

‘MESSAGES} [unit-number]
M

unit-number= number of the
unit to be searched for mes-
sages

‘ NOTE] message-text
N

CODE COMMANDS (Cont'd)

Operand Definitions

{PRINT 1FIRST: ‘string’ IN
P F 4

string’’

{II:AST}) l

ALL!
A

unit-number-1[TO unit-number-2] :|

string= alphanumeric char-
acter configuration being
searched for
unit-number-1. . . unit-
number-2= first and last
unit in a range of units,
the contents of which are
to be printed

or

unit-number where scanning
should stop

[PRINT +1]

‘QU ESTION} message-text
Q

message text= set of char-
acters transmittable from a
conversational terminal

‘REPLACE} [FIHST] { ‘string-1" IN string-1= alphanumeric char-
R E “string-1"" acter configuration to be
ON, replaced within the source
ILASTI (6] text
L unit-number-1. . . unit-
3 number-2= first and last unit
‘ALL} number in a range of units
A being searched for string-1
string-2= alphanumeric char-
unit-number-1[TO unit»number-Z]jI acter configuration designated
to replace string-1
[BY} ‘r
B "o
‘ ‘string-2"
“string-2"|
SAVEl ‘CARDS} { ‘filename’) filename= name to be
SA C “filename” assigned to SAM or ISAM
file into which source pro-
TAPE gram is to be copied
TA
¢ Note: filename must be
’ISAM] different than the
| name of source pro-
gram
l LIBRARY
LIB

iSETUP [unit-number]
SE

unit-number= absolute
unit-number of REMARKS
unit in which the SETUP

list is specified
lSHORTHAND OFF
SH ON
{ERASE
B
ISORTI
S
‘STEP increment-value increment-value= decimal
ST number indicating the change

in numerical increment
between unit numbers

{SUMMARY] [[error-number OF]type]
SuU

error-number= number of
message type

type= type of message for
which Summary informa-
tion is being requested

CODE COMMANDS (Cont'd)

TFG COMMANDS (Cont'd)

Operand Definitions File Control Commands Comments
[SYNTAX # #= display a list of syntax #CLOSE [LIST] Causes TFG to terminate
‘SY #command-name of all CODE commands processing and return con-
#letter[letter] #command-name= display trol to VMOS.
syntax of named command
#letter= display syntax of all #GENERATE [PRINT] Generates a test file, and
commands which begins causes the file to be printed
with the specified letter and returns control to VMOS.
[TEXT [[error-number OF] type] error-number= number of #0OPEN file-name Causes TFG to open the
[T ‘ message type name of the file to be
type= type of message for worked on.
which the text is to be
printed
COMMAND CONVENTIONS
|[UNDEFINE abbreviation abbreviation= the abbrevia- 3 .
‘UND tion to be removed from Notation Conventions
Shorthand dictionary y 7oA i
The following notation is used in the formats of all CODE commands:
‘UNITS} [[error-number OF] type:l error-number= number of 1. Fixed names are shown in capital letters. The term, fixed names, pertains to command
UNI error type names and certain operands.
type= type of message for
which the source units are 2. Variable names are shown in lower case letters.
to be searched
3. Optional items are enclosed in brackets, [].
{VERIFYI NOFILE LIST filename= user-designated
\% N LIS } name of a cataloged 4. Alternate items are enclosed in braces, { }.
‘filename’ COBOL source library
“filename”’ {RETURN} 5. Ellipses (...) following an operand indicate that the user may specify more than one
R operand of that type.

Note: The syntax of all the CODE commands can also be obtained at the terminal by
issuing the #SY command with the # operand. It is also possible with this command,
to obtain the syntax of a specific command (using #SY # command name), or a syntax
list of all commands beginning with a particular letter or letters (using #SY #
letter[letter]). To ensure that these commands are entered properly, the programmer
should be thoroughly familiar with the Rules for Spacing, Command Verb
Abbreviations, and Operand Specifications paragraphs under the heading Command
Conventions in the CODE and TFG Reference Manual.

TFG COMMANDS

Rules for Spacing

The following spacing rules must be observed when typing commands:

1

2

. Any number of spaces may appear between the # symbol and the command verb.

. Any number of spaces may appear between command elements.

3. No spaces may appear within a command element unless the element is a string.

TFG Command Symbols

The following symbols are used in the command formats:

n integer portion of first specification number (1 to 3 digits)
m integer portion of second specification number (1 to 3 digits)
i decimal portion of first specification number (1 to 3 digits)
k decimal portion of second specification number (1 to 3 digits)
$n record number ($ followed by 1 to 3

digits)

&m record control number (& followed by 1 to 3

digits)

Editing Commands Comments
n [STEP k] Allows programmer to set
HAT n.J [STEP .k] the specifications number
$n[STEP .k] to any number he desires.
&n
n [TOm] Allows programmer to
n.J [TO n.k] delete rule, record, or
ALL record control specifica-
#DELETE ALL S tions.
ALL $n
ALL &
&n to END
data-name-1,..... ,data-name-n Allows programmer to
#FIND record-name display elementary items
ALL corresponding to any or
all specification numbers.
[ALL] n [TO m] Allows programmer to
nj [TO nk] display pertinent informa-
#PRINT [ALL] $n tion concerning attributes,
&n [TO & m] specification numbers, and
ALL record controls.
Kk Allows programmer to
A { [11 } enter more than one rule
specification for a given
item.

TFG Command Conventions

The following conventions apply to the TFG commands:

1

2

3.

. The attributes of an elementary item are size, picture, and usage.

. All data names must be fully qualified.

TFG follows the convention of the CODE subsystem of allowing the programmer to enter
the minimum number of characters to distinguish a command. For example, the
following are equivalent:

#P

#PR
#PRI
#PRIN
#PRINT

