i

o

T

v
“

UNIVAC°i

GENERAL
REFERENCE
M A N U A L

UP-2558



This manual is published by the UNIVAC®Division in loose leaf format asa
rapid and complete means of keeping recipients apprised of UNIVAC
Systems developments. The UNIVAC Division will issue updating packages,
utilizing primarily a page-for-page or unit replacement technique. Such
issuance will provide notification of hardware and/or software changes
and refinements. The UNIVAC Division reserves the right to make such
additions, corrections, and/or deletions as, in the judgment of the UNIVAC
Division,are required by the development of its respective Systems.

® REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION © 1962 . SPERRY RAND CORPORATION

PRINTED IN U.S.A.



PREFACE

. INTRODUCTION

[

A. Relationship of the SALT System to the

INIVAC il

B. Programming

. SALT SYSTEM CODING

A. Coding Form
Data Designations
Program Instructions

Control Words

m o O

Macro-Instructions

. OBJECT PROGRAM LAYOUT

A. Data Storage
B. Sequential Assignment

C. Segmentation

. PROGRAM CONTROL STATEMENTS

. Start
. Overlay

. Overflow

. Typewriter Control

A

B

C

D. Invalid Operation Codes
E

F. Logging

G. Program Labels

H. Concurrent Processing

I. Informational Memory Dump
J. Termination

K. Jettison

L. Rerun Memory Dump

CONTENTS

1-A-1to 1-B-2

l-A—1

1-B-1to 1-B-2

2-A-1to 2-E-4
2-A-1t0o 2-A-5
2-B-1to 2-B-5
2-C-1to 2-C-16
2-D-1to 2-D-4
2-E-1to 2-E-4

3-A-1to 3-C-6
3-A-1to 3-A-4
3-B-1to 3-8-3
3—C-11to 3-C-6

4-A-1to 4-L-3
4-A-1
4-B-1to 4-B-2
4-C-1to 4-C-3
4-D-1
4-E-1to 4-E-13
4-F-1to 4-F-2
4-G-1
4-H-1
4~1 -1 to 4-1 -2
4-)-1to4-J-2
4-K-1
4-L-1to 4-L-3

i



v

CONTENTS (continued)

5.

INPUT-OUTPUT ROUTINES

A.

r o m o m O O 9w

General Information

80-Column Card Reader Control Subroutine
90-Column Card Reader Control Subroutine
80-Column Card Punch Control Subroutine
90-Column Card Punch Control Subroutine
Paper Tape Reader Control Subroutine
Paper Tape Punch Control Subroutine

Printer Control Subroutine

MAGNETIC TAPE ROUTINES

A.
B.

UNISERVO HA Subroutine
UNISERVO HIA Subroutine

SORTING AND MERGING

MISCELLANEOUS ROUTINES

A.

Diagnostic Routines

SYSTEM PROCEDURES

A.

m O O w

Source Code Service
Assembly

Object Code Service
Diagnostic Routines

Data Tape Service

5-A-1to 5-H-10
5-A-1to 5-A-8
5-B-1 to 5-B-7
5-C-1to 5-C-7
5-D-1to 5-D-9
5-E-1to 5-E-9
5-F-1to 5-F-9
5-G-1 to 5-G-7
5-H-1to 5-H-10

6-A-1to 6-B-39
6-A-1to 6-A-20
6-B-1to 6-B-39

7-1

8—A-1to 8-A-8
8—A-1to 8-A-8

9-A-1to 9-E-12
9-A-1to 9-A-17
9-B-1

9-C-11t09-C-8
9-D-1to 9-D-6
9-E-1to 9-E-12



APPENDICES

T o m m o O W >

- J—
. .

(] = = — =

INDEX

Sample Program

Form Field Summary
Instruction Summ ary
Executive and Basic Areas
Typewriter Conventions
Data File Conventions
Log Tape Formats
Character Code Chart
Codedit Listing
Diagnostics Qutput

SALT System Message Tabulation

Source-Coded Routines Supplementing —SER3ZZ
Source-Coded Routines Supplementing PRNT01Z2Z
Data Fabrication for Executive Routine

Keypunching and Sequencing Assembly Card Input

CONTENTS (continued)

A-1to A-9
B-1to B-4
C-1to C-9
D-1to D-4
E-1to E-3
F-1to F-3
G-1to F-5
H-1
I -1tol-15
J-1toJ-4
K-1to K-12
L-1toL-3
M-1 1o M-3
N-1
0-1to0-2






FIGURE

TABLE

TABLES AND ILLUSTRATIONS

SALT System Coding Form

Data Designations

Multiword Data Designations

Local Reference Point Addressing
Multiword Addressing

Examples of Field-Selected Operands
Item Number Interpretation

Segment Designations (d)
Segments in Memory (after overlays)
Typewriter Control Schematic

SALT System Procedure Chart

Library File — General Format

SCSI Diagram for Creating a New Library File
SCSI Diagram for adding to or Correcting an

Existing Library File
Object Code Service Run

Format of OCS Cards for Activating
Diagnostics

Two-Way Merge Process Chart
Two-Way Merge Flow Chart
Two-Way Merge Sample Program

Tag Edit, Mapping List, and Marker List

Exhibit

2-A-2
2-B-3
2-B-5
2-C-5
2-C-10
2-D-3
3-B-2
3-C-3
3-C-5
4-E-4
9-A-2
9-A-4
9-A-7

9-A-9
9-C-1

9-D-2

A-2
A-3
A-4to A-7

A-8

vii



TABLES AND ILLUSTRATIONS (continued)

FIGURE TABLE
A-5 Typewriter Message Log A-9
B-1 Form Field Summary B-1to B-4
Cc-1 Instruction Summ ary C-2to C-5
C-2 CC/MAC Input-Output Channels C-6
C-3 Sense Indicators C-6
C-4 Input-Output Indicators C-7
C-5 Contingency Indicators Cc-7
C-6 Processor Error Indicators C-8
C-7 Character to be Typed Cc-9
C-8 Tape Control Word Registers C-9
D-1 Executive Area D-1to D-2
D-2 Tape Packet D-2
D-3 Basic Area D-3
E-1 Flags, Symbols, and Classification Codes E-2
E-2 Unsolicited Type-Ins E-3
F-1 Data Tape Formats F-2to F-3
G-1 TPAK and TCON: Source Code and Machine
Code Formats G-2
G-2 Log Tape: Label Block G-3
G-3 Log Tape: Intermediate Data Blocks G-4
G-4 Log Tape: Last Data Block G-5
H-1 Character Code Chart H-1
| -1 SALT Assembly Error Notes [ -4tol -5
| -2 Codedit Machine Code | -8
| -3 Facility Declaration Chart 1 -9

viil



FIGURE

-1

TABLES AND

TABLE

K-9

K-10
K-11
K-12

0-1

Example of Codedit Listing Showing:
Heading Lines, Directory Information,
Load Identifiers, and Facility Declarations

Example of Codedit Listing Showing:
Parallel Source Code and Object Code

Example of Codedit Listing Showing:
SALT Error Glossary

Example of Codedit Listing Showing:
Tag Edit List

Example of Codedit Listing Showing:
Mapping List

Example of Codedit Listing Showing:
Marker List

Trace and Memory Print
Executive Routine — Unsolicited Type-Ins
Executive Routine — Type-Outs

Executive Routine — Type-Outs and
Replies

Assembly Type-outs and Replies
I-0 Routines-Type-outs and Replies

-SER3ZZ and PRNTO1ZZ Type-Outs
and Replies

Sort/Merge Type-Outs and Replies

Object Code Service (OCS) Type-Outs
and Replies

DICON3ZZ Type-Outs and Replies
Diagnostic Edit Type-Outs and Replies
Card-To-Tape Run Type-Outs and Replies
TPOPROL Type-Outs and Replies
Relationship of Command Cards

instrtctions for Punciing SALT Code Cards

ILLUSTRATIONS (continued)

1 -10

| -11

| -12

| -13

| -14

I -15
J-4
K-2
K-3

K-8 to K-9
K-10
K-10
K-11
K-11
0-1
0-2

1x






This edition of the SALT General Reference Manual
presupposes its use in combination with UNIVAC Data
Processing System Manual (UT2488). Familiarity with

the material covered in this manual is a prerequisite to
programming the UNIVAC ill computer. Manual UT2488
describes the functions of the various components which
may be used in the System. It also furnishes a detailed
explanation of the operation of all UNIVAC Ill instructions.






Preface

This manual provides the user of the UNIVAC® III Data-Processing System with the information
necessary to produce programs by means of the SALT (Symbolic Assembly Language Translator)
computer control system. Since it deals primarily with the production of SALT system programs and
the procedures required to prepare them for execution, the manual minimizes discussion of the
functional aspects of the system. Instead, the UNIVAC III system and its associated control
programs are treated as an integrated unit and emphasis is placed on the interface between the
programmer and the total system.

In general, the information is given in the order required by the programmer. The introduction
briefly describes the overall organization of the system and the basic components of the SALT
system language. Sections 2, 3, and 4, describe the manner in which a program is written and
organized, and the statements that control its overall execution, Sections 5, and 6, describe the
integration of the standard input-output routines with the program, and the means by which they
are controlled. Section 9 covers the assembly process, and the service routines which can be used
fot maintaining programs before and after assembly. In addition, this section covers the use of the
program diagnostic and data-tape maintenance routines.

Following the final section are several appendices, one of which contains a sample SALT

program. The appendices are primarily charts of reference material to facilitate coding SALT

programs.

® Registered trademark of the Sperry Rand Corporation






' SECTION:

UNIVAC III SALT | 1A

"uP- | PAGE:
2558 1

. INTRODUCTION

The SALT Assembly System is a symbolic assembler system having many features in common
with automatic programming. The system is the core of a comprehensive software package
provided for the users of the UNIVAC III Data-Processing System. Information contained in
this manual includes SALT assembly codes, program instructions, control statements, input-
output routines, sort-merge routines, and other associated service programs.

THE RELATIONSHIP OF THE SALT SYSTEM TO UNIVAC III

The SALT system may be thought of as the UNIVAC III computer in combination with a library
of input-output routines and an executive control program. The executive routine coordinates
programs for concurrent processing and, in combination with the input-output routines, provides
the SALT programmer with a virtually automatic control system.

The executive control program coordinates the overall operation of the system, allocating memory
and input-output facilities to individual programs and providing for the concurrent operation of
independently prepared programs. The assembly process will automatically insert into each program
the necessary mechanisms for communication with the executive program. Thus, each SALT system
program can be produced as an independent unit, without concern for conditions in the other programs
with which it may be run,

A SALT program may call on any desired configuration of input-output routines during the assembly
process. The assembly system will integrate each routine into the program on the basis of parameters
supplied by the programmer. Macro-instructions can then be used by the SALT program to communicate
with the input-output routine, directing it to perform such functions as initializing a file, reading or
writing the next item of a file, and terminating the file. The control and housekeeping operations
implicit in these functions, such as the actual initiation of each input-output operation, and

label checking, will be performed automatically by the input-output routine and therefore need

not concern the programmer,



SECTION:
i I_B

UNIVAC III SALT

UP- | PAGE:
2558 |
|

B. PROGRAMMING

Programs prepared with the SALT system are written in a symbolic language, source code,
which is translated by the system to a machine coded program. The translation process is
performed in two phases. The first phase is an assembly or compilation process which trans-
forms source code into a machine-oriented relative code called object code. The object code
bears a word-for-word relationship to machine code. The second phase is an operational phase
which transforms the object code to machine code, and is concerned with the execution of the
machine-coded program. In general, the SALT system programmer is not concerned with machine
code.

The SALT language consists of a vocabulary of statements which can be classified into four
categories:

(1) Program instruction statements which describe the events that are to occur in the execution
of the program.

(2) Data designation statements which are source code representations of data to be included in
the program.

(3) Compiler directive statements which control the SALT system in the translation of the source
code to object code.

(4) Parameter statements which provide environmental information to the system for use in its
interpretation of program instruction and compiler directive statements,

Each of these categories is represented in the SALT language by a large range of functional
statements. For example, one statement can instruct the system to include a complete input-
output routine in the assembled object program. Various other program instruction statements
are available to activate that routine. Still other statements describe the data file conditions
that the routine is to produce.

All of the coding statements are written on a standard SALT coding form. Cards are keypunched
directly from this form, and converted to magnetic tape for compilation. The SALT system
produces a complete listing of the input to the assembly process and the resulting object
program. A copy of the object program is recorded on UNISERVO* IIIA tape.

The statements of a SALT soutce program are combined by the programmer into one of two
classes of segments. One class, called coding segments, are of a general nature and can
contain most types of source code statements. Work areas and the storage of certain data such as
program constants are usually assigned to the second type which are known as pool segments,
Each segment is a portion of object code which can be accomodated in 1024 or less contiguous
words of computer memory., This divisional structure of a SALT program is directed by the
addressing characteristits of the UNIVAC III computer. The SALT segment represents an

area of computer memory which may be referenced under the control of a single setiing of

an index register.

* Trademark of the Sperry Rand Corporation



SECTION:

1-B

PAGE;

UNIVAC III SALT

The segments of a SALT program are combined by the programmer into one or more program loads.
A load is a group of one or more segments which are to be accommodatedin a contiguous memory
area at the same time. A complete program is generally composed of a group of loads.

The planning of these segment and load divisions is an important consideration in producing

a SALT program. A simple numbering system has been provided for the programmer’s use to
indicate the program segmentation. In addition, the SALT instruction repertoire has been chosen
to reflect this structural organization.

The segment structure allows a program to be written without regard for its ultimate location

in computer memory. Each time a program is to be executed, an area of memory will be
automatically assigned to accommodate it. The program will then be adjusted for execution

in this particular memory area when it is loaded. Thus, the program may occupy different areas
in computer memory each time it is executed. Since all SALT programs share this characteristic
of automatic relocatability, they can be grouped together in a variety of combinations for parallel
execution.



SECTION:
2-A

UNIVAC III SALT

UP- PAGE:
2558 1
i

2. SALT SYSTEM CODING

A computer programmer must be able to translate system requirements into a medium which can
ultimately be read into the computer and which will control it through all of the required process-
ing. The SALT system provides a computer-oriented language to be used in the communication of
such information to the UNIVAC III computer. This section of the manual explains the SALT
language and the means by which it communicates to the computer.

A. CODING FORM

A standard coding form is provided for writing SALT system programs. This form is illustrated
in Figure 2—1 and in the sample program given in Appendix A. SALT source programs are key-
punched directly from the coding form, and each line on the form results in one card in the

wice

and is divided into six informational fields. A general description of each of these fields is given
in the following paragraphs.



. PG
SALT| coping Form UNIVAC It - Tlemimen Toant M, oF L%
PROGRAMMER DATE icenmiFication L i .
CARD NO. ITEM NO. TAG FORM CONTENT
N 1 1 I I | Lt i A T S T Oy I A AN O Y I Y I I | 11 Y A I |
L 11 I 1 S T T 1 1 1 Y T I ) | I N T S S T O A | [ I I |
Lt 11 L | I T T L1 1 N T N U T S I Ny o | 1 Y S Y N 1 I N T |
O T - S T {1 1 A T T () N T o | T S T N T T T L1 I T T
I L | I T 1L S A S S T I T N Y By S Y R S T I [ S I
[ 1 1 I I [ [ Y Y Y Y I Y I T | L1 I I |
S | I | L1 1 1 1 [ [N ) (Y O S Y A T R I T | 1 I S
S B | | L1l 1 1 | [ [ N U N T T Y e I Y T B | L1 |
L1 11 | | O S | | . S N O O Y N Oy B | A I I S I O I | L1 N
| | | S I [ N Y Y Y N T T S | N S T N I O S | O
I | I § N T T L1 AN I N N O T T Sy v | I T T T | L ! I
I - | | I T T L1 1 U Y I U O Wy O Y S N N Y S A | [ I I |
| 11 | | | N I 1] S N I Y T B S T O ) .| |
T | | I L1 [N T IR Y U N Y W v [ S O Y O O T | 11 N
I L 1 N L1 I N T Y S Y Y Y T ) Y Y | I N T
Ll 11 | | I I - L1 | S N S S O s o e | I Y O B [ N T |
L1 | | | I O | I Y Y Y Y A A I T O B | I
T 1 1 I W S L1 N Y Y Y U O A | I O SO W N N S T Ll I I |
I - 1 | O S | 11 AN T Y A o S I S O N T O Y | 1 I B |
I | ] | 1] N S Yy | I O B [ S I

Ry w
> m
@ O
m 3
. o
z
v
>
c
b

8SST

Figure 2-1. SALT HQ Form

4VYS IIT OVAINN



| SECTION:
2-A

UNIVAC III SALT

UP- PAGE:
2558 } 3

1.

Card Number Field

Each card which is a part of a SALT-coded source program bears a five-character
number to facilitate card handling. This number can be supplied during the keypunching
process and need not be specified during the writing of the program.

Item Number Field

The SALT item number is an object program ordering designator. The value assigned to

the item number of a SALT coding line determines the position of the object code result-

ing from this line in the object program. The segments into which each SALT program is
divided are defined by item numbers. (Refer to section 3—B and C, Item Number and Segmenta-
tion.) The item number for a particular line indicates both the segment to which the content

of the line is to belong as well as its relative position within the segment (Refer to
section 3—B-1).

The SALT Assembler will treat as an error a line whose item number and class field entries are
identical to those of a previously encountered line.

Tag Field

Any line in a SALT-coded source program may be given a name by assigning a tag to the
line, The SALT Assembly will equate this name to the computer word in the object pro-
gram resulting from this line. This word may then be referenced by its tag elsewhere in
the program. Two types of entries in the tag field are permissible in the SALT Assembly,
permanent tags and local reference points.

a. Permanent Tag

A permanent tag is an entry in the tag field of eight or less characters, the first char-
acter of which is an alphabetic character chosen from the letters A through Z and the next
characters may be any combination of the letters A through Z and the numbers 0

through 9. Each permanent tag appearing in a program must be unique. Spaces within

the tag field are ignored by the compiler. Hence, ASAALATA appearing as a tag is identi-
cal to SALTAAAA.

b. Local Reference Point

A local reference point is a number from 0 through 9 which may be entered in the tag
field of any line. This number will serve to identify the computer word tesulting from
this line until the same number is reassigned to the tag field of another line. Thus, the
local reference point establishes a temporary name for a line which can be referenced
over a limited portion of the program. The range of a local reference point is determined
by the SALT Assembly System after the program has been ordered by item number.

Further information on the use of tags in instruction addressing will be found in this
section under heading C, Program Instructions.



SECTION:

PAGE:

UNIVAC III SALT

Class Field (C)

The class field furnishes information regarding the placement of a line in the object
program in addition to that supplied by the item number. This field may contain one of
three characters: * (asterisk), E, (hyphen), or be left blank.

The valid entries for this field are discussed in detail in section 3-B-2.

Form Field

The form field specifies the type of entry used in the content field of the coding line.
The SALT System provides a wide variety of entries that may appear in this field. In
general, the form field is left blank for program instruction statements but must contain
an entry for all other types of statements, Each form is described in the appropriate
context throughout this manual. Appendix B summarizes the entries which may appear
in the form field.

A period in any position of a form field is the SALT language equivalent to a ditto mark;
that is, it specifies that this line is of the same form as the preceding line in the

source program. Thus, if several lines requiring the same form field entry appear con-
secutively, only the form field of the first line need have the entire entry, and the remain-
ing lines require only a period in this field.

Content Field

The content field contains a SALT coding statement which may be a program instruc-
tion, a compiler directive, specify a parameter,or designate data. A statement is written
in the content field as a series of symbolic designators. The choice of designators is
dependent on the particular type of statement being expressed. The general format of a
statement is a string arrangement where each element in the string is a designation
terminated by a comma. The inclusion or omission of spaces in content field entries is
irrelevant.

The designation in the form field specifies to the assembly the type of entry contained by
the content field. The remainder of this section describes in detail statement entries and
their associated form fields.

In addition to a statement, the content field of any line may contain descriptive comments
written by the programmer., The comments in no way affect the resulting object program,
but they do appear on the printed output after the program has been assembled. The follow-
ing rules govern the inclusion of comments in the content field:

a. A colon specifies that all succeeding characters on the line are descriptive comments
and are to be disregarded except for output listing purposes.



SECTION:
2-A

UNIVAC IIT SALT

UP- PAGE:
2558 5

b.

A comment extending into a line whose class field contains a hyphen must be preceded
by a colon on the hyphenated line. In other words, the meaning of line continuation af-
forded by a hyphen in the class field does not encompass comments.

A line with a blank class field having only a comment in its content field is treated as
a void line: one which does not direct or inform the compiler and which does not pro-
duce an output in the object program. Both the item nuniber and tag of a void line are
relevant. When a void line contains a tag, it will name the first following non-void line
after the source program has been reordered by item number.



. SECTION:
| 2-B

UNIVAC III SALT |

UP- PAGE:
2558

B. DATA DESIGNATIONS

Data to be included in an object program is represented in one of three formats: decimal, binary,
or alphanumeric. The format to be used is specified in the form field of the codingline, as des-
ctibed below.

1. Decimal Format

a. DCML. This entry in the form field specifies a decimal number which will occupy one com-
puter word. The content field of the word is written sdddddd, where s is the sign (+ or —)
and d is a decimal digit. If the sign is omitted, the resulting word will be positive. If less
than six digits are specified in the content field, the compiler will justify the number to the

right within a computer word, filling the remaining digit positions with decimal 0’s.

b. DDML. This entry in the form field specifies a decimal number which will occupy two con-
tiguous computer words. The content field of the line is written sdddddddddddd, where s is
the sign (+ or —) of the least significant word and d is a decimal digit. If the sign is omit-
ted, the least significant word will be positive. If less than 12 digits are specified in the
content field, the compiler will justify the number to the right within two computer words,
filling the remaining digit positions with decimal 0’s.

The tag of a DDML line applies to the most significant word. Methods of addressing DDML
lines are described in this section under the heading C-5-i, Multiword Addressing.

2. Binary Format
a. BINY. This entry in the form field specifies a binary value which will occupy one com-
puter word. The content field of the line is written sbbbbbbbbbbbbbbbbbbbbbbbb, where
s is the sign (+ or —) and b is a binary digit (0 or 1), If the sign is omitted, the word will
be positive. If less than 24 bits are specified in the content field, the compiler will justify
the value to theright within a computer word, filling the remaining bit positions with
binary 0’s.

b. DTOB. This entry inthe form field specifies a decimal number which is converted by the
compiler to a one-word binary number. The content field is written sdddddddd, where s is
the sign (+ or —)and d...d is a decimal number less than or equal to 16,777,215. If the
sign is omitted, the word will be positive. The compiler justifies the converted number to
the right within a computer word, filling the remaining bit positions with binary 0’s.

c. OTOB. This entry in the form field specifies an octal number which is converted by the
compiler to a one-word binary number. The content field of the line is written soooooceoo,
where s is the sign (+or —) and o is an octal digit (0 through 7). If the sign is omitted,
the word will be positive. The compiler justifies the converted number to the right within
a computer word, filling the remaining bit positions with binary 0’s.



SECTION:
2—-B

PAGE: 'UP-
2

|
: UNIVAC III SALT
|

3. Alphanumeric Format

4.

a. ALPH. This entry in the form field specifies an alphanumeric value which will occupy
one computer word. The content field of the line is written saaaa, where s is the sign
(+ or —) and a is any UNIVAC III character. If the sign is omitted, the word will be
positive. If less than four characters are specified, the compiler will justify the value
to the left within a computer word, filling the remaining character positions with spaces,

If any of the characters listed below are specified, the content field of the line is writ-
ten s (aaaa), where all four characters are specified and enclosed in parentheses. This

method of specification permits the compiler to differentiate between their use as symbols
or as characters of data.

SYMBOL DEFINITION

A space

, comma

( left parenthesis

) right parenthesis
colon

+ plus sign

- minus sign

b. DATE. This entry in the form field specifies an alphanumeric symbol which will occupy
one computer word. The content field of the line is written in the same manner as that of
an ALPH line. A DATE line differs from an ALPH line in that the value specified by the
DATE line can be replaced in the program by another value after assembly. This is ac-
complished during the Object Code Service (OCS) run when the object program is pre-
pared for execution (that is, when the object program is placed on a master instruction
tape). The manner in which the replacement is effected is described in detail in section
8-C, under the heading Object Code Service.

Figure 2-2 illustrates the use of data designation statements as they will appear both on a
SALTsystem coding form and in object code.

Multiword Data

Multiword data is data that will occupy two or more consecutive memory locations in the as-
sembled object program. Any of the data designation forms may be used for specification of
multiword data,



UNIVAC 111 SALT

SECTION:

2-B

2558

PAGE:

SOURCE CODE

RESULTING OBJECT CODE WORD

FORM CONTENT \ s l24 1
0 0 0 0
DCMLI2Z3,, | | 1 XL(
< o—t 1
(Two Words)
ET Form CONTENT \ [s]e4 ]
] 0 0
DD ML[~1,2,34,56/78, |{
L 1 3 5 6
£l FORM CONTENT \ S124 1
olooo000000000000000C010 111
))—letNlY VO,V g
[c] Form CONTENT \ s124 1
0j0o00000000000000000010 111
DTOBI23),, | \ | i 1
[
£|l FORM CONTENT \ s |24 1
)0171015 23, 1. Uf 0j000000000C0000000000 10111
X i B
£] FORM CONTENT S 124 1
0 B
)AILIPLH ABS, | |
FORM CONTENT \ s |24 1
XALLlpiH (AA+B) 4 | | 1) 0 A
e ——

Figure 2-2. Data Designations



SECTION:

2-B

UNIVAC III SALT

PAGE:

|
|
|
i
i
H
|

UP.

2558

A separate data designation coding line is to be used for each computer word that the data
will occupy in the object program. A hyphen is written in the class (C) field of the second
and succeeding lines, specifying that the data words are to be assigned to consecutive
memory locations.

The form of the first word must be specified in the first line; the form fields of the hyphen-
ated lines may be the same as thatof the first line, different from that of the first line, or
may be left blank. The form field of a hyphenated line may be left blank. This will be inter-
preted to mean that the data word designated by the line is to have the same form as the
word designated by the preceding line.

Any line within a series may be tagged, but the tag names only the word specified by that
line. (The addressing of multiword data is described in this section under the heading C-
5-i, Multiword Addressing.) An item number also may be assigned to each line, but the item
numbers of the hyphenated lines are ignored by the compiler.

Although the DDML form always specifies multiword data, when used alone it is limited to
the representation of only two computer words. Like the other forms, however, the DDML
form may be followed by hyphenated data designation lines, or may be included freely with-
in a series of such lines. When so used, its double word property remains unchanged; that
is, each DDML coding line specifies two data words. If the line has a tag, the tag names
only the computer word containing the most significant part of the data. Figure 2-3 illus-
trates the use of data designation statements to specify multiword data.



SECTION:
UNIVAC III SALT i
UP- PAGE:
2558 5
RELATIVE
SOURCE CODE RESULTING OBJECT CODE WORD MEMORY
POSITION
\ TAG C| FORM CONTENT | s 124
TIAIG! 1 [ D\clMlL 91'\ I W I S A( 0 0 0 0 TAG
0 0 0 7
[5114\1\‘I'J18l7l6l:iilll|4j TAG +1
.} I = 5.4‘3.2&.,....) 0] 0 3 2 TAG +2
———
TAG C| ForRM CONTENT ) S |24
TAG | i | DCMLIN23 456, \{ 0] 1 2 5 TAG
0 0 TAG + 1
bV 141 J-|PiDMLY142,3,4,5,6,7,8,, J) 0 ]
L — 0 3 4 7 TAG + 2
\ TAG C| FORM CONTENT | s {24
0 A B C A TAG
l TAG v i | [ALPHIABC | | | | | | ?
0l000000C00000O0O00OO0OO0OGOO0O0T10D TAG + 1
{ Lt 11 1 |=IDTOoBIS5, | | | | | | |
L‘\—’\—\ —
\ TAG C| FORM CONTENT _ \ S 124
)T]A‘Gl1,‘ BlllN‘Y[‘J“‘ii ll‘»/ 0l0000000000000000O0CO0 00000 TAG
; Iili\l)'JiioJ:LiilLlll\ 0{0000000000000000 0000000 O] TAG « 1
\ L ‘_MLOL,HHHU\ 0[000000000000000000 00000 0| TAG+2
j L ‘xx\0|11\111111/ 0l1000000000000000000O00O0CO0O TAG :+ 3
 B— =

Note: Hyphenated lines do not require periods for identical form fields-

Figure 2-3. Multiword Data Designations



SECTION:

2-C

UNIVAC III SALT o PAGE:

C. PROGRAM INSTRUCTIONS

The program instructions used in the SALT system source program statements describe the
events to occur in the execution of the object program. Each program instruction specifies an
instruction word in the object program.

1. Program Instruction Format

The complete format of the standard SALT instruction statement is i/a, x, op, ar/xo, m,
where the following notation is used

i/a, = control word indicator

X, = index register address modifier

op, = mnemonic opetation code (operator)

ar/xo, = working register or indicator designation
m, = address or shift-count designation
In general, a designation which does not apply to a particular operator or instruction state-
ment may be omitted. The general rules for omitting designations are given below; the spe-
cific rules governing each operator, or class of operators, are given in Appendix C.

2. Conventions for Writing Designations
a. If four designations are used, it is assumed that i/a, has been omitted; therefore, the

line is interpreted as x, op, ar/xo, m, .

b. If three designations are used, it is assumed that i/a, and x, have been omitted. Therefore,

the line is interpreted as op, ar/xo, m, .

c. If two designations are used, the interpretation of the line depends on the instruction
operator,

(1) If the instruction operator is §SI, LT, or RSI, the line is interpreted as op, ar/xo,

(2) If the instruction operator is TUN, TUNS, TR, TEQ, TLO, or THI, the line is in-
terpreted as op, m,.

d. If one designation is used and the operator is NOP, the line is interpreted as op, .

e. Where the above rules do not apply, it is still possible to omit a designation by in-
cluding its terminating comma. For example, a programmer may wish to write an in-
struction that would transfer control to a word in memory tagged ENTRY and then to
another Tocation through the useof indirect addressing. In this case, he would use the
instruction: [A, , TUN, , ENTRY, which omits the x, and ar/xo, designations by including the



SECTION:

2-C

PAGE:

UNIVAC III SALT

2558

commas which would normally terminate the designations. If the commas were not pre-
sent, according to rule (b), the line would be interpreted incorrectly as op, ar/xo, m.

3. Operator

The operator designates the action in a SALT instruction. Each operator is a mnemonic
symbol, one to five characters in length, which will become a binary operation code

in the object program. Every program instruction statement must contain an operator. The
operator determines which of the other designations the program instruction statement may
contain, and the form in which they may appear.

Some examples of operators are:

OPERATOR ACTION

L, load one or more arithmetic
tegisters from computer memory

ST, store the contents of one or
more of the arithmetic registers
in computer memory

LX, load an index register from
computer memory

STX, store the contents of an index
register in computer memory

SR, shift the contents of one or two
arithmetic registers a specified
number of decimal places to the
right

Note: Appendix C contains a complete listing of operator codes.

4. Working Register

The working register is the one used in the action directed by the operator. Working
registers may be either arithmetic or index registers, depending on the operator. The
four UNIVAC III arithmetic registers AR1 through AR4, are designated by numbers 1, 2,
3, and 4, respectively.

The fifteen UNIVAC III Index Registers are designated by the numbers 1 through 15 .



UNIVAC III SALT

SECTION:

2-C

UP- PAGE:
2558

i
i

Examples of operators and working register symbols follow:

OPERATOR, AR/XO ACTION

L, 2, load Arithmetic Register 2
from memory

ST, 12, store the contents of Arithmetic
Registers 1 and 2 in computer
memory

LX, 5, load Index Register 5 from
memory

STX, 12, store the contents of Index
Register 12 in memory

5. Address

Any line in a SALT-coded source program which will result in a word in the object pro-
gram, may be referenced by an instruction. The address designation of the instruction
statement is replaced in the object program by a value in the range O through 1023, which
is the relative position of the referenced word in its segment. The location of the first
word of that segment within computer memory is supplied by an index register. The com-
bination of these two values to obtain the program relative address of the referenced
word is fully discussed in this section under the heading, C-6, Index Register Address

Modifier.

The following methods are available for designating addresses in instruction statements:

a. Permanent Tag Address. As described previously, a permanent tag is interpreted by
the SALT Assembly System to be the address of the content of the tagged line as it
appeats in the object program. Thus, any instruction statement may use a permanent

tag as an address designation. For example, the instruction

\FORM

CONTENT \

[

L2, TAG V,\\, | | | ¢y |

IILJJ<

(P

causes Arithmetic Register 2 to be loaded with the contents of the word in the object
program corresponding to a line in the SALT-coded program bearing the tag, TAG 1.

Similarly,

\ FORM

CONTENT)

(l ! thl’ISL'ITi

12I'1|1(1|ll|lIJ(

L—\N/\/N-\’\—)



SECTION:

2-C

PAGE:

uP-

UNIVAC III SALT

2558

causes Index Register 5 to be loaded with bits 1 through 15 of the word in the object pro-
gram corresponding to a line in the SALT-coded program bearing the tag, TAG 2.

b. Local Reference Point (LRP) Address. The tag field of a line may contain a number, 0

through 9, which will be interpreted by the SALT compiler as a local reference point
{LRP). The LRP, in combination with one of the letters F, B, or H, can be used to desig-
nate an address in an instruction statement. This form of addressing depends on the
sequence in which the lines of coding appear when ordered by the SALT Assembly System
on the basis of item number and class.

nF refers to the first line forward from this line having n in its tag field.
nB refers to the first line backwatrd from this line having n in its tag field.

nH is a self-referencing address, that is, the line referring to the address n has n in its
tag field. (H stands for here.)

It should be noted from the description of this addressing scheme that, at any point in
the program, two different lines can have n in their tag fields and that both lines may be
accessed freely by the instructions falling between them. The assignment of the same
value n to a third line has the effect of cancelling out the first line so tagged; that is,
all instructions between the second and third lines may reference either line but may not
reference the first line. Thus, although n may assume only ten different values, a given
line of coding can reference up to twenty one lines by LRP addressing,

The diagram in Figure 2-4 illustrates the use of LRP addressing; an example of coding
using this address form is shown in the sample problem in Appendix A,

c. Reflexive Address. The symbolic designation $HERE, in the address designation of an

instruction statement causes the SALT Assembly to assign the segment relative address
associated with the instruction itself. This form will usually be used in conjunction with
address modifiers (refer to paragraph 5-h below) to achieve self-relative addressing.
When used alone, this form is limited to a self-referencing effect. For example, the in-
struction

[ FORM CONTENT\

Lx IS T3 G SHERE |§
LV\ ‘/\-’—\J

i

would have the effect of storing the contents of Arithmetic Register 3 in the computer
word containing this instruction.



SECTION:
2-C

UNIVAC III SALT

UP- PAGE:
2558

The arrows indicate the lines referenced by the instructions
using local reference point addressing,

\ TAG C| FORM CONTENT \
NIRRT, N U O N Y N O 0 B B B BN A
b1 RN Y EN AL IR N BN R B B B A A A R R
L Lo e 3By ey 0 ]
Ll NI R XL S S S N S R S B B R

\lllilll7 I U T T N N O U O A A

/lLIll' NN T U U N O S 0 A N

&4111111 AT U Y U I O O B B B BN R

}1111113 I DRt AL N N N R A A AN R BN SN A

[

|

S S R T R [ I A ST W P T T I N N I N A S O O

Figure 2.4 . Local Reference Point Addressing

d. Temporary Storage Tag Address. The SALT Assembly System provides a means of both

allocating and addressing temporary storage locations throughout the program. This is
accomplished through the use of the designation $Tn, where n is a decimal number in
the range 1 through 1024. This designation may only appear in the address portion of an
instruction statement; it may never be specified in the tag field of a line. The content

of a temporary storage location is established as information is placed in it during the
execution of the program; temporary storage locations are assumed to have no initial set-
ting., The highest value of n referenced in each segment of the program determines the
number of computer words that will be allocated for temporary storage in the associated
pool segment in the objectprogram. For example, if the source program contains instruc-
tions that refer to addresses $T1, $T2, and $T5, the SALT Assembly System will allocate
five words in the object program for temporary storage. Each pool segment will be con-
sidered sepatately, with the temporary storage area established according to the associ-
ated coding segments. (Another method for assigninglocations which may be used for
temporary storage is covered in section 3-A-1, Area Form.)



SECTION:

2-C

UNIVAC III SALT

PAGE:

up-

2558

The temporary storage locations allocated by the use of $Tn addresses are placed by the
compiler in a pool segment of the program. Since the programmer defines the segment
structure of a program to the compiler by item numbers, the item number of the line con-
taining the $Tn address determines what pool segment in the program will contain the
temporary storage location being referenced. (Refer to section 3-C, Segmentation.)

The sample program in Appendix A illustrates the use of this addressing form.

Implied Address. In this method of address designation, another statement is referenced
by its form and content, rather than by its address. Any line which will produce a location
in the object program, can be used as an implied address designation. The address portion
of an instruction statement is written (form: content), where form and content are valid
entries for these fields. For example, the instruction:

| FORM CONTENT |

5| Ly CDCEMLE 88 1)

uses an implied address designation for a data designation statement. When this instruc-
tion is executed, the decimal number 88 will be loaded into Arithmetic Register 1. Note
that the terminal comma of the content field within the parentheses may be omitted.

Because the form field of an instruction line normally is left blank, a special form field
entry, INST, is used in the implied address designation of an instruction. For example,
the instruction:

\RM CONTENT \

A | Llﬂzl'l(llINISIR:ILI'[“’I1]AIG111)UJi<
—

uses an implied address designation for an instruction statement. When this instruction
is executed, the instruction L, 1, TAG 1, will be loaded into Arithmetic Register 2.

During compilation, the SALT Assembly generates a line and a symbolic address for the
implied address statement. The generated address is used in translating the instruction

statement line,and the generated line is sent to a pool segment. The choice of pool seg-
ment is determined by the item number of the instruction statement line. Any duplicate

lines generated by the use of implied address designations are automatically eliminated
from the pool segment.



SECTION:
UNIVAC II1I SALT =
UP- PAGE:
2558
Two levels of implied address designation may be used in a single line.
For example, the instruction statement in line 1 will be interpreted by the SALT Assembly
as if lines 2, 3, and 4 had been written as:
YITEM NO. TAG C| FORM CONTENT \
I 1 |] S S N I N [ LL”]'1(1I4N|SITI:1L’L‘IL’i(DICLMiL!:\slSJ)"I)l}
(T Y] B ! Lo e Y TIAG Y b ]
x Blrtaey o b I Yy TAGI2 g 17
| 4]TAG2 , {*IDICMLI88 , | | | |y ¢ oy g 11}
e ————— \f—\/—_\’—-

It is assumed in this example that a single pool segment has been defined to include the
item numbers of the lines shown. For more information on pool segments, refer to section 3-C,
Segmentation.

f. Abbreviated Implied Address. Implied address designations may be abbreviated for certain
data designation statements instead of using the full entry. The abbreviations are illustrated
in the chart below:

Standard Form Abbreviated Form

(DCML: Sdddddd), D/Sdddddd,

(DDML: Sdddddddddddd), DD/Sdddddddddddd,

(BINY: Sbbbbbbbbbbbbbbbbbbbbbbbb), B/Sbbbbbbbbbbbbbbbbbbbbbbbb,
(DTOB: Sdddddddd), DB/Sdddddddd,

(OTOB: So00000000), OB /Sooo00000,

(ALPH: Saada), A/Saaaaq,

Note: DATE and INST forms cannot be abbreviated.

The two examples on the opposite page can be written using the abbreviated format.

\ FORM CONTENT \
1 LL'ill'xDJ/islsl'i A I T S U T O I(

|
Bl p e G NSyT L, 1, 0,/18,8,,0) 0, }




SECTION:

UNIVAC III SALT

PAGE: SUP-

g. Decimal Address. A decimal number in the range 0 through 1023 may be written as an
address designation in an instruction statement. The use of this type of address designa-
tion is described in section 5-A-4, under the heading Addressing Items.

h. Address Modifiers. Permanent tag, reflexive, decimal, and implied addresses written in
the standard form, may be suffixed by either one or two address modifiers. Address modifiers
allow certain lines to be referenced in terms of the relationship of their position in the object
program to another line. An address designation using address modifiers in written a + m,
where a is one of the address forms mentioned above, and m is the address modifier: either
a decimal number or the symbol $SEGi.

The address in an instruction statement is replaced by a value representing the segment
relative address of the referenced line. This is a value in the range of (decimal) 0 through
1023. Certain address forms, which are described in this section (C-6-b,c,) headed SGAD,
and LOCA, are used to express program relative addresses in the range 0 through 32, 767.
These addresses may be modified in the same manner as segment relative addresses. When
the address is to be modified, the modifier is added to or subtracted from this relative
address. For example, if the tag, TAG 1 in line 8 of the example, is computed by the SALT
Assembly System to have the address 1005, the modified address tesulting from the first
instruction in the example below will be 1007, and the modified relative address in the
resulting from the second instruction will be 1004.

ko. TAG C| FORM CONTENT _ |
( 1 L,1,TAGI1 +2 :LoadAR]thOOOOZS \
I I R NN U N U T O T O O S O MO O
\_\ 2 L, 1, TAG1 -1 :LoadAlenhOOOOIS &
| R T A (11 N S SR T O A S T O I O
{ 3 . L, 1, START+SEGS8 -1, /
[ N N U O A [N S A A Ty o e R St I IR T
‘ 4 ST.,3, TALLY,
| 1 ) S N T I | | I S T S S (N O N T (N TN N Y O N o S S N N |
ll ISTAILILYJ' EB'NYOJ'1|1|;1||||||||l|11|x|
* 10
(1161114LL DCML11’1HH|||\41|11||11||A
) 7 — . 1 5, : Address 1004 ‘{
L | Lol [l [N N T O S Y N O O O O O
— . 1 6, : Address 1005 (
)1 18T1AGi] : Pl lliIITesJIIlJIJilillllil
\ 9 - ° 201 X
| | Ll S T S T O A O
( 10 - 2 5, : Address 1007 \
| | N 1*1 I R B B A A A




SECTION:
| 2-C

UNIVAC II1I SALT |

uP- ' PAGE:
2558 1 9

The symbol $SEGi designates a number which is equal to the number of lines in segment

i (refer to section 3-C, Segmentation), and which is added to or subtracted from the relative
address in the same manner as a decimal modifier. For example, if the first line of segment 8
is tagged START, then the modified relative address, accessed by the third instruction in the
example, will actually be the relative address of the last line in segment 8. Note that this
example also illustrates the application of two modifiers,

Modifiers are commonly applied to refiexive addresses. The fourth instruction in the fore-
going example stores the contents of Arithmetic Register 3 in the memory location follow-
ing this instruction.

The programmer must ensure that the modification of an address does not attempt to pro-
duce a relative address greater than 1023 (or, in certain address forms, 32, 767). If a
modification attempts to exceed these limits, the SALT System will produce an error
warning in the output listing and the result will be a truncated value.

Multiword Addressing. As shown in the summary chart in Appendix C, more than one
arithmetic register may be referenced in a single instruction. Such an instruction requires
the referencing of an operand containing an equal number of contiguous computer words.
A SALT Assembly instruction containing a multiword address, with one exception, al-
ways references the least significant word of the operand. (The exception is an instruc-
tion using the zero-suppression operator, ZUP, where the most significant word of the
operand is the one addressed.)

Figure 2-5 on the following page illustrdtes the use of multiword addressing.

Standard Location Addressing. The SALT Assembly System reserves a set of specific
program memory locations in the computer to handle special program control functions.
The addresses of these locations are of the form $LOCn, where n is a decimal number
assigned to a specific location. The values of n and their uses in this address form are
discussed in section 4, on Program Control Statements.

General references to address forms throughout this text exclude the $LOCn form unless
otherwise stated.



SECTION:
2-C
- - UNIVAC III SALT
10 2558
CONTENT OF ARITHMETIC
REGISTERS 1,2, AND 3 AFTER
SALT CODING ENTRIES EXECUTION OF THE INSTRUCTIONS
\ TAG C| FORM CONTENT] AR1 | AR2 | AR3 |
) TAGT, E[ALPHI0O0AA,, |, | | | 13
Lol -, , BBBB,| | | | | |
Lo -l G CCC gy (
TAG 2 | -|DDML|1,23,456,7,8, | | |
L e —
T —
T [ N s s AR
! ‘ Lol Lol ki 1230, TIAG T 412, 0 AABBBB|CCCC
S W IR S — ]
e —
T T
2
Ll L L V2, TAGT + 1, 0 AABBBB
‘\r ———— \)
il e e————
\\ Lol | Dl
3
\ Lbl1g Ll eV TIAGY 0 AA
g I
[ —— P ——— /\__'
1 I I N
4
[ Ll L |2 YP 12, TAG T, AAABBBB
| p—
-
[ N
s | i
IR L xjml121311171A1512|+111, cCClo00012]345678
\ D N —/

Figure 2-5. Multiword Addressing

NOTE: The Tag of a DDML Line names the most significant word (condition 5).




SECTION:

UNIVAC III SALT ¢

UP- PAGE:
2558 11

bt
[a N

ndex Register Address Modifier

The instruction address designation produces a 10-bit segment relative address which can
be a value in the range 0 through 1023. The index register address modifier designation
specifies an index register, the contents of which will be added to the segment relative
address, giving a 15-bit absolute address. This section describes the means by which the
programmer specifies index registers and the values with which they are to be loaded.

a. Address Components. The address referenced by a SALT coding line is made up of two
components:

1) segment relative address: the position of the line within its segment, relative to the
first line of the segment.

2) program relative address: the position of the line within the program, relative to the
first line of the program.

As a matter of interest, a third address component is involved when the object program
is loaded into computer memory. This is the computer relative, or absolute address; that
is, the position of the line within computer memory, relative to location 0. This address
is automatically supplied by the SALT Executive Routine and therefore does not directly
concern the programmer.

In an instruction coding line, the segment relative address of the operand is expressed
symbolically by one of the addressing methods described in the preceding section. The
index register modifying the instruction address is loaded with a constant representing
the program relative address of the first line of the segment containing the referenced
operand. The sum of these two addresses represents the program relative address of the
operand itself, Therefore, in addition to specifying a segment relative address (as the m
part of an instruction), the programmer must indicate which index register is to modify
that address. Instructions to load the index registers with the proper program relative
addresses must also be included.

The SALT system contains two forms which make program relative addresses available.
The SGAD form directs the assembly to produce the program relative address of the first
line of a segment, and the LOCA form directs the assembly to produce the program relative
address of a specified line. The programmer includes SGAD and LOCA lines in the program
to supply the constants needed to load the index registers. In general, each segment is
assigned one index register which will be used to modify all references to that segment. A
SGAD line provides the program relative address of the segment. This address must be
loaded into the specified index register by the source program. Instructions in the program
referencing the segment are written specifying this index register. If a single index register
is to be assigned to more than one segment, it must contain the appropriate value at the
time each particular segment is referenced.



SECTION:

2-C

UNIVAC III SALT

PAGE:

12

‘UP-

2558

. SGAD. The entry SGAD in the form field of a line, together with a permanent tag in the

content field, specifies the program relative address of the first line in the segment
which contains the tag. For example, if TAG 1 is a tag in segment 8, the line:

el Form CONTENT)
) SGADITIAGT, ) 4y 41l l<

will produce a word in the object program which contains the 15-bit program relative ad-
dress of the first line in segment 8. The 15-bit value contained in this word can be
added to the segment relative address of TAG 1 to produce its program relative address.
(Note that a SGAD line specifying any tag in a given segment will produce the same 15-
bit address in the object program.)

The SGAD form can be used as an implied address. It may be written in the standard
form as (SGAD: t), where t is a permanent tag. It may also be written in abbreviated
form as $/t, where, again, t is a permanent tag.

LOCA. The entry LOCA in the form fieldof a line, together with a permanent tag in the
content field, specifies the program relative address of the line named by the tag. For
example, the line:

FORM CONTENT\

LOCAITAG Y, |y p p g0 g 15

— - T ———— 3

ydiun

will produce a word in the object program which contains the 15-bit program relative
address of the line TAG1. (Note that each tag in a given segment will produce a dif-
ferent 15-bit address in the object program when specified by a LOCA line.)

The LOCA form can be used as an implied address. It may be written in the standard
form as (LOCA: t), where t is a permanent tag. It may also be written in abbreviated
form as L/t, where, again, t is a permanent tag.

Index Register Designation and Mapping. The index register address modifier is
designated in an instruction statement by a decimal number, 1 through 15, immediately
preceding the instruction operator. A zero in this designation indicates that no index
register address modification is desired.



SECTION:
2-C

UNIVAC III SALT

UP- PAGE:
2558 13

G

establishes the correspondence between the lines of a segment and a particular set of
memoty locations. For example, if the tag, TAG 1 appears in segment 5, and Index Reg-
ister 2 has been assigned to segment 5, Index Register 2 must be loaded with the pro-
gram relative address of segment 5 before TAG 1 can be referenced. The first line,

in the example that follows, accomplishes this using the implied address designation

of the program relative segment address (SGAD). TAG 1, and all other tags in segment 5,
may now be accessed by an instruction in which the Index Register 2 has been designated
as the address modifier. For example, the last two lines in the example below may appear

The index register address modifier locates a segment in computer memory; thatis, it

in segment 5,

FORM CONTENT \

lg
l(
(X

LXx,2,,(,$G6GAD: TAGV), | |

i

T

o2y sy 2 TAGL Y,

L 11
J erlSlTJri]|2I'|T1AJGLL+13111 N R

\ —

Although the allocation of index registers must be specified at some point by the pto-
grammer, a modifier need not be written for each instruction. The SALT Assembly Sys-
tem provides a compiler directive which allows the programmer to state the index reg-
ister assignment which will operate over any portion of the program. This compiler
directive is a MAPS line and has the following format:

E] FORM CONTENT \

\iAIP,S S EGyi;,=)j ;S EGi l%h):l.ijjlw“l;li__l{

where: i is a segment number, 1 through 126 (refer to Section 3-C, Segmentation),
and j is the Index Register, 1 through 15, which maps segment i. Any number of these
equational statements can be made with a single MAPS line. In a MAPS line, all fields
to the left of the form field are left blank.

The effect of a MAPS line is to equate a segment with a particular index register. The
equational statement applies to all the lines following it in the source program until a

new MAPS line is reached. The appearance of a new MAPS line can equate the remaining lines of a
with a different index register. MAPS lines may appear anywhere in the source program
and are interpreted while in their original input sequence. Within the portion of the source
program affected by a MAPS line, the SALT Assembly will insert the designation of the
specified index register {j) into any instruction or field-select control word statement
(refer to heading D-2, in this section) which references the mapped segment (i) and does
not already contain an index register designation. Thus, the programmer need not desig-
nate the index register address modifier in any instruction statement which references a



SECTION:

|

i UNI I
14 2558
mapped segment. If a statement referencing a mapped segment contains an index register
designation (1 through 15, or 0, when no indexing is desired), the designated register
will apply, instead of the register specified by the MAPS line.
In the preceding, example if the lines addressing TAG 1 had appear in the source program under
control of the MAPS statement as illustrated below, the index register address modifiers
need not have appeared in the instruction statements. The line loading Index Register 2
is still required since MAPS statements do not provide for the loading of index registers.
Therefore, the instructions might be coded as:
FORM CONTENT\
MAPSISEGS5,1=12, | | | | ) v 141 L)
Cn eiXy 020,008 G AD:,  TIAGT) hy A
[ L Ly W2 TAGI e Yy L/
o ST 2 TAGIL 3 )
"V—\a
e. Decimal Addresses. The foregoing discussion has been limited to index register modi-

fication with symbolic addressing. The decimal address, briefly mentioned above as an
acceptable address form, requires further discussion as it relates to index register modi-
fication. A decimal address is limited to the range O through 1023 and, like a symbolic
address, requires index register modification to produce a program relative address. The
decimal address usually represents a segment relative address. The program relative ad-
dress may be obtained by use of an index register and a SGAD line, as described above.

In some cases the decimal address may be a number that does not itself represent a seg-
ment relative address. For example, a table of values might be included somewhere in a
segment and decimal addressing employed to reference elements in the table. If the table
does not begin the segment, decimal addresses may be used that are relative only to the
beginning of the table. In this case, the LOCA form can be used to provide the 15-bit pro-
gram relative address of the beginning of the table. This value can then be loaded into a
specified index register. This register can then be used as a modifier in all lines refer-
encing the table. The resulting addresses will be the proper program relative address of
the table elements.

When a statement is encountered which refers to a decimal address and which does not
contain an index register designation, the designation of the index register which has
been assigned by a MAPS line to the segment containing that statement will be inserted.



SECTION:

UNIVAC IIIl SALT | e

UP- PAGE:
2558 15

®

wn

hift-Count Designation

There are five instruction operators that are shift operators: SR, SL, SAR, SAL, and SBC.
(Refer to Appendix C.) A shift instruction statement requires a shift count designation instead
of an address designation. This designation is a decimal number which will be converted

to a 10-bit binary number in the object program. It specifies the number of bit, digit, or
character positions, depending on the type of shift operator, that the operand in the designated
arithmetic register(s) will be shifted. For example, the line:

\ FORM CONTENT\

(1 CISIAR N2 020 I(

specifies that the contents of Arithmetic Register 1 and 2 will be shifted right two character
positions.

A shift instruction statement may use indexing and indirect addressing. (Refer to headings
C-6, Index Register Address Modifier, and C-8, Control Word Indicator in this section.)
MAPS lines are applied only to those shift instruction statements which specify indirect
addressing and do not contain an index register designation.

Control Word Indication

Indirect addressing and field selection are specified in an instruction statement by the control
word indicator designation. This designation, when used, is the first designation in the in-
struction statement and has the format |A, for indirect addressing, or FS, for field selection.
The use of either designation in an instruction statement requires that the appropriate con-
trol word be included in the program to complete the specification of the instruction. The ad-
dress designation of the instruction statement refers to the control word, and may be in any
acceptable address form. The formats of the indirect address and field select control words are
described in this section under the heading D, Control Words. A summary of the SALT system
instruction operators which may use these control words is contained in Appendix C.

An example of an instruction statement designating a control word indication is the line:

\ FORM CONTENT)

(l L] IlAi'lzi’iLJ'llJLlTJAIGJ_]l'I S T S S B I(
/\/—V—\ ﬁ—‘

where TAG 1 is the tag assigned to a control word line, and 2 is the index register map-
ping the segment containing TAG 1.



SECTION:

2-C

PAGE:

16

uP-

2558

UNIVAC III SALT

9. Computer Indicator Designation

This designation applies only to those operators, such as the sense indicator operators,
which reference computer indicators. In general, the indicator designation used in coding
an instruction is a decimal number, in the range of 1 through 8. The format of the instruc-
tion statements and the designation of the indicators vary. (See Appendix C for detailed
description of indicator instructions.)



| | SECTION:
4 | 2-D

UNIVAC III SALT | |

UP-  PAGE:

N
w
ul
0o
[oery

D. CONTROL WORDS

A control word is used to expand the capabilities of an instruction. It furnishes additional
information that further defines the action to be accomplished by certain operators. It is
referenced by the instruction it modifies through any valid type of address designation. The item

number and class fields of a control word line may contain any valid entries. The SALT system
includes control words as described below:

NA indirect Address

D
FSEL Field-Select
XMOD Index Register Modification

1. Indirect-Address (INAD) Control Word

An indirect-address control word is specified by a line of the form:

Ic] Form CONTENT)
7 i/a, x, tag, g
ENADY 0 e L

i/a, is a control word indicator designation and may be FS, |A, or left blank. If FS, the control
word addresses a field-select control word. If 1A, the control word addresses another INAD
line, thereby creating a cascading effect of indirect addresses. If blank, the control word
addresses the operand of the instruction originally calling for indirect addressing. In all
cases, the address designation of the control word in the object program will be the 15-bit
address of the permanent tag referenced by the INAD line.

X is the index register address modifier. It may be specified if the address is to be incremented.
If modification is not desired, a zero may be specified or this designation may be left blank,
since MAPS statements have no effect on this designation in INAD lines.

If the i/a or x designations are left blank, their terminating commas must still appear.

tag may be any valid form of permanent tag.



SECTION:

LB ! UNIVAC III SALT
|

An example of an instruction using indirect addressing is shown below where TAG 1 is the
address of the indirect address control word:

\ TAG c|[ Form CONTENT\

L Co Ay e YV TAGT J

TIA1G1]1 |1 IINJ’AID '&'1T1AiG|2|'1 L A I S N S B N )
]

TAG 2 is the name of the line containing the operand that will actually be loaded into ARI.

2. Field-Select (FSEL) Control Word

A field-select control word is specified by a line of the form:

FORM CONTENT\
X FSEL|x;, I /bjb, e bbb, m,| | | | | | || (
N

The address designation (m) refers to the field being selected, and may be any instruction
address form. The address designation of the control word in the object program will be the
segment relative address of the referenced field. Therefore, the index register address modi-
fier (x) has the same function as in an instruction, and may be left blank if the FSEL line

is under the control of a MAPS statement, If this designation is left blank, the comma which
normally terminates it must be present.

The designations Ibb and rbb are decimal numbers specifying the left and right boundary
bits of the field being selected. The number 1 designates the least significant bit of a com-
puter word; 24 designates the most significant bit; the sign bit, bit 25, may not be design-

ated.

An example of an instruction using field selection is shown below.

\ TAG C| FORM CONTENT\
( L L BS b YW TAGT L(
) TAGY , | [FSELL6 VT AG2, ) | {
I TAG2 , , | |A\LPHIABCD,, | | | | | | | 1 11 L1 1\
\\ ]

Tag 1 in the first line references the field-select control word whown below it.

The operand, TAG 2 is an alphabetic constant therefore, the result of the execution of the
instruction is to place AAAD, in AR1. Figure 2-6 illustrates the arithmetic register content
under various field selection configurations,



SECTION:
2-D

UNIVAC III SALT
UP- PAGE:

2558 3

PART OF ONE OCTAL wORD
RIGHT BOUNDARY BIT: 4
LEFT BOUNDARY BIT: 15
ARITHMET!C REGISTER DESIGNATED: 4

AR1 AR2 AR3 AR4
ol Ty ey ey !
PART OF TwO DECIMAL wWORDS
RIGHT BOUNDARY BIT: 5
LEFT BOUNDARY BIT: 4
ARITHMETIC REGISTERS DESIGNATED: 3, 4
AR1 AR2 AR3 AR4
I I I A N I A O I A O O A I
PART OF THREE ALPHANUMERIC wORDS
RIGHT BOUNDARY BIT: 6
LEFT BOUNDARY BIT: 18
ARITHMETIC REGISTERS DESIGNATED: 2, 3, 4
AR1 AR2 AR3 AR4
1 1 | J 1

PART OF THREE ALPHANUMERIC wORDS
RIGHT BOUNDARY BIT: 13
LEFT BOUNDARY BIT: 6
ARITHMETIC REGISTERS DESIGNATED: 1, 3, 4

AR1 AR2 AR3 AR4

PART OF ONE BINARY WORD
RIGHT BOUNDARY BIT: 16
LEFT BOUNDARY BIT: 16
ARITHMETIC REGISTER DESIGNATED: 2

AR1 AR2 AR3 AR4

LT T 111HHl,‘LHHIIEMIIIIHH EHIIHIHHHI!IH!HIJJ N ul

Figure 2-6. Examples of Field-Selected Operands




SECTION:

0 UNIVAC III SALT

PAGE: FUP-
4 * 2558

3. Index Register Modification (XMOD) Control Word

The instruction operator ICX, increment and compare index register, always requires a control
word modifying it. Since this operator cannot be used without a control word, no control word
indicator designation appears in the instruction. The instruction address, however, must
always reference a control word. An index register modification (XMOD) control word is
specified by a line of the form:

] FORM CONTENT)

? X MO D comparison amount, + increment amount, w
ki Tl S I N T N U N N N O O N (O

(&—\/——'\/“'\ ——

The comparison amount represents the value with which the contents of the index reg-
ister are to be compared after modification and may be either a decimal number O through
32, 767, or a permanent tag. If a permanent tag is specified, SALT assembler will use the
value of the program relative address of the tag as the comparison amount.

The increment amount represents the amount by which the index register being modified
is to be incremented (when used with + ) or decremented (when used with —), and is a
decimal number, 0 through 511,

An example of the use of an XMOD line is given below, where the instruction on the first
line references the XMOD control word.

TAG c| Form CONTENT\
Z L1 1 L X T G TAGTY Ly lz
TAGT, | |, XMOD10,24,,,+ 1,6, | | \ |

\ —_—

The result of the execution of this instruction is to increment the contents of IR 7 by 16,
then compare the resultant value with 1024. The appropriate High, Low, or Equal indicator
is then set.



| SECTION:

UNIVAC III SALT | 2-E

UP- | PAGE:
2558 } 1

E. MACRO-INSTRUCTIONS

A group of coding lines that performs a frequently used function may be defined for use as a
macro-instruction by the programmer. Each group of lines so defined is assigned a name. Using
this name, the programmer may include the entire group of lines anywhere in the program by
means of a single source program line. The address, working register, shift-count, index register
address modifier, and control word indicator designations of any instruction statement in mactro-
instruction coding may be variable. That is, the macro-instruction may be defined to allow any of
these designations to be specified each time the macro-instruction is usedin the program. The
coding configuration produced by a macro-instruction is not variable; that is, the operators of

the instruction statements and the number of lines remain fixed, and may not be specified when
the macro-instruction calls the coding into the program.

1. Defining a Macro-Instruction

Macro-instructions are written in source code language but the coding upon which they call
is subject to the following conventions.

a. The coding is limited to seventy-five source code lines,

b. The item number fields may contain no entries. The item number of the calling line will
apply to the coding called into the program.

c. Only one type of entry may appear in the tag field. This entry is called a variable name
tag and appears as $NAMN where n is a decimal number, This entry simulates the per-
manent tag mechanism. For each such designation the SALT Assembly will generate a
unique tag and substitute it in the macro-code in place of $NAMn. New tags are generated
each time the macro-instruction is used.

d. Any designation except an operator may be left unspecified. The specification is deferred
until the coding is called by use of the variable designation $VARn where n is a decimal
number, This designation indicates to the compiler that a variable must be specified when
the MCRO coding line is written, $YARn is automatically replaced with a designation as
specified by the calling line,

e. The address designations are limited to the following:

1) Variable Name Tag ($NAMn)

2) Standard Location Address ($LOCn)

3) Reflexive Address ($HERE)

4) Implied Address

5) Decimal Number, denoting an increment

6) Variable Designations ($YARN)



SECTION:
2-E

PAGE:

o

UNIVAC IIT SALT

2558

f. The macro-code may neither call on nor define another set of such coding.

g. The first line of a macro-instruction definition is a compiler-directive statement as
illustrated in the first line of the following example:

\ TAG c| Form CONTENT \
) permanent tag (
Ll MCDF] | v
—N\-—NWA

h. The class and content fields of this line are normally disregarded. the form field contains
MCDF which indicates the beginning of a macro-instruction definition. The item
number field is blank. The tag field contains the permanent tag that names the
macro-instruction. The macro-code immediately follows this line.

i. The last line of macro-code is followed by the compiler directive statement in the
MCND form.

TAG c[ FoORrM CONTENT |
kl\iltll MlclNDJlllllf!lltlllfllllllt

where:

1) The item number, tag, class, and content fields are blank.

2) The form field always contains MCND which indicates the end of a macro-instruc-
tion definition.

Using a Macro-Insturction

In order to use a macro-instruction, the programmer must know the entrance and exit con-
ditions imposed by the macro-code so that this coding may logically be inserted in the pro-
gram. Further, he must know exactly what variables ($VARR) occur in the macro-code, since
he must specify their values in the calling statement. Assuming that this information is
known, the macro-instruction is used by a line of the following format:



SECTION:
2-E
UNIVAC III SALT
UP- PAGE:
2558 3
\ TAG |C] FORM CONTENT\
\l°1“1°1°|°z°1°1° MCRO™ mame /Py ePoy el gel 11 111 ] 1(

a. The item number of this line will be the item number effective over the resulting
object code brought into the program during assembly.

b. The tag field may contain a permanent tag which will name the first line of the
coding called into the program by the macro-instruction.

c. The class field is always blank.

d. The form field is always MCRO which indicates that a macro-instruction is being
called.

e. The first designation in the content field is the name of the macro-instruction. This
is the tag that has been assigned to the MCDF line. It is always to be preceded by
an asterisk.

The designations Pys P9 . .. are the values, or parameters, required by the macro-
instruction to replace the variables used in the macro-code. These parameters may
be any valid designations that might have been used, had the lines of macro-code
appeared as part of the source program, There must be as many parameters as there
are different $YARn symbols in the macro-code. The parameter P1 will replace $VAR]1
wherever it appears in the macro-instruction; P9 ,will replace $VAR2 and so forth.

3. Integration of Macro-Instruction Coding into the Program

Although a macro-instruction is usually defined as a part of the source program, no copy

of it will appear in the assembled program simply as a result of its definition. It will appear
as assembled object code only where it has been called by the source program. The number
of lines resulting from a given macro-instruction is always the same, regardless of the
variables specified. All lines of macro-code created by implied address in the macro-code
will be sent to the pool segment defined to include the item number of the calling line.

All other macro-code lines become part of the coding segment defined by this item number
(see section 3-B-2 and 3).

The foregoing discussion has been limited to macro-instructions and associated lines of code
which are defined and called in the same source program. A mechanism is available for stor-
ing macro-instruction definitions in the magnetic tape library file. Any source program may then
call this coding into the assembled program without first including the definition. A macro-
instruction definition in a library has the format described above except that the word LABEL
‘appears in the item number field of the MCDF line, and that the MCND line is not required.



SECTION:
2-E

— UNIVAC IIT SALT

4 § 2558

The format of the calling line is as described on page 33, except that the asterisk preceding
the name of the macro-instruction is omitted.

An example of the use of a macro-instruction is given below. The macro-instruction
definition (not in the library file) might appear as:

\ TAG c] FORM CONTENT)\
}leJTaEusnTu MCOFl ] |/
Lo b b Y SINAMIY g
Ll L G LS VAR
\$1EA1M|1;4 L PPJALPHIZZ L, |¢j
Lt L ITE QL S YIAR2 L g 1&
Ll MICINID1|Illllllllllllllllll(
/\/—Js/’a—\/—\* —1

The calling statement for this macro-instruction requites that two parameters be furnished
to be substituted for the two variables in the definition. If the calling statement is specified
as:

ET Form CONTENT \

) MCROI*ZZTES T, TAGIT, TAG2,6 , 1(

Lv_\/

———e]

the object code in the assembled program will be as though the following lines had been in-
cluded in the source program:

\ FORM CONTENT \
A SR T YAy 1% S N A A B R 1]
\JJ! CoVaMAS Y
)ILI TEQ, TWAG 12, | | | | | | 111 1

The object code will appear on the codedit output of the SALT Assembly.



SECTION:
3-A

UNIVAC III SALT

UP- PAGE:
2558 1

3. OBJECT PROGRAM LAYOUT

One of the considerations requiring the attention of a programmer is the manner in which a program
will appear in memory. This section of the mannal deals with the means provided by the SALT

Wiii appear in memory.

system for control of the physical arrangement of the various program components.

DATA STORAGE

The programmer may use the compiler directive AREA to allocate areas of memory for data
storage. These areas may be addressed by temporary storage tags, modified tags, or, if the
EQUL form described below is used, by unmodified tags. This portion of the manual describes
in detail the AREA and EQUL forms. A unique 44-word data storage area, which is required
by all programs for use in connection with the Executive Routine, is described briefly,

(A detailed diagram of this area is contained in Appendix D.)

1. AREA Form

In addition to specifying instructions, constants, and control words, as described in Section
2, most programs must allocate memory for the storage of data which will be read into the
system or generated by the program. The compiler directive AREA is a means by which such
data storage areas may be allocated. This line has the general form:

FORM CONTENT\

\AJRlELA“L'ILI T SO O N I O I O R A B l/

a. The item number and class fields may contain any valid entry.

b. The form field of an AREA line contains the symbol AREA, The content field contains a
decimal number, n, which specifies the number of memory words to be allocated to this

storage area,

c. The area may be either in a coding segment (if the class field contains an E or is blank)
or in a pool segment (if the class field contains an asterisk). If a coding segment is speci-
fied, the tag field of the AREA line contains a permanent tag which names the first or most
significant word of the area. Any word of the area may be addressed by using this tag with
the appropriate address modifier. Thus, the area resulting from the line in the following
example will be 10 words in the coding segment. (Subsections B and C of this section explain
segmentation.)



SECTION:
3-A
— - UNIVAC III SALT
2 2558
\ ITEM NO. TAG c] FORM CONTENT\
{ 30(0,0/00/00)S TORAGE, [ [AREAIO,, | | | | | | | | | 1 101 141 1] JI(
L/ T~ ~——— B —
a. The first (most significant) word of the area can be referenced by the tag STORAGE.
b. The second word of the area may be referenced by the modified tag STORAGE + 1,
c. The last (least significant) word of the area may be referenced by the modified tag
STORAGE + 9,
If a pool segment is specified, words within the area are addressed by temporary
storage tags of the form $Tn. (Refer to Temporary Storage Tag Address, Section
2-C-5.) Thus, the area resulting from the line
§ ITEM NO. TAG c| FORM CONTENT \
30000p0/00f , , , | |*"IAREAINVO,,\ | | 0oyl b
L o V——\/—_\f
will be 10 words in a pool segment.
a. The first (most significant) word of the area is addressed by the tag $T1,
b. The second word of the area is addressed by the tag $T2,
c. The last (least significant) word of the area is addressed by the tag $T10.

Specifying an area in a pool segment overlaps the use of $Tn to some extent. It does not
preclude the use of higher numbered temporary storage designations pertaining to the
same segment although in such a case the AREA statement will be redundant. When such
designations are encountered, the SALT Assembly will inctease the data storage area

to be allocated accordingly. For example, if a line of coding referred to $T12 of the area
illustrated above, the data storage area allocated in the pool would be 12 words instead
of 10.



' SECTION:

UNIVAC IIT SALT —

2558 j PAGE:
| 3

.

Although each value of $Tn represents a unique word in a given pool segment, a pro-
gram may contain more than one pool segment. Thus, for example, if a program contains
two pool segments, the tag $T1 applies to two different words. Therefore, when $T1 is
used as a designation,the pool segment associated with the referencing instruction will
be accessed. The means by which a pool segment is associated with a given line, or

group of lines, is discussed in subsection 3-C,

EQUL Form

As described above, words in the data storage area of a coding segment may be addressed
implicitly. That is, the second and following words of the areamay be addressed in terms

of their relation to the first word. The compiler directive EQUL may be used to provide
mnemonic addressing for these words. A permanent tag address may be equated with another
permanent tag or with a decimal address by the use of the EQUL form. The general for-

mat of an EQUL line is illustrated in the first line in the example below. Entries in the

item number, class, and tag fields are unnecessary. The address (add) designation is

either a decimal address or a permanent tag, If it is a permanent tag, it may have numeric
modifiers. The tags (tag 1, tag 2, . . .) are permanent tags, without modifiers, which are
equated with the address. That is, each tag represents an explicit name which is assigned
to the address. Thus, in the following example, the eleventh word of the coding segment area
created in line 00.03 is equated with the permanent tag TOM.

ITEM NO. TAG c| FORM CONTENT\

_\/’rp‘

add, = tag 1, tag 2, . .. ?
E|Q!U!L A I S I S I N U N I Y S S N

0,3/0,000}sPACE | . AREAI2\ 4, | | | | oy

N T A EQULISPACE + 10, =TOM,| | | | | | | |<

This word is addressed in line 00.04 using the explicit name TOM; it could also be accessed
using the tag SPACE + 10.

Although the EQUL form has been described in connection with the addressing of words
allocated by AREA lines, its use is not limited to this type of addressing. That is, the
content field address designation may be any permanent tag or decimal address in the
program,



UNIVAC III SALT

3. Executive Area

Every SALT system object program contains a 44-word area. It is divided into two sections,
the first of which is used for program control in connection with the Executive Routine. The
second section contains a table of tape information consisting of a five-word packet for each
UNISERVO IIIA file associated with the program. These two sections occupy the first words
of the first segment of the object program and are automatically established by the assembler.
The programmer is not required to supply an AREA line to provide for this information. How-
ever, overlaying or altering its contents by the source program must be avoided. A chart
describing the Executive Area is contained in Appendix D.



- SECTION:

UNIVAC III SALT 5

3-B

UP- : PAGE:
2558 f

B. SEQUENTIAL ASSIGNMENT
1. Item Number

The item numbering system used in the SALT Assembler is based on the Dewey

System. The eight characters of the item number field are treated as four two-character
numbers, each of which may range from 00 through 99. The left-most two characters are
treated as the major ordering level, the right-most as the most minor ordering level. The
assembly process evaluates an item number using both the numerical value and level
position. When an item number differs from the preceding item number only on a given level,
all higher levels may be left blank and these will be considered to be identical with the
predecessor. All lower levels may be left blank and will be assumed to be zeroes.

In Table 3-1, the first column illustrates a series of item numbers as they might appear
in the item number field. The second column shows the full eight-character number as it
is interpreted by the Assembler.

The Dewey System notation shown in the second column, where periods indicate the level

partitions, will be found throughout the text. This notation is also used in the source code
whenever an item number is to be specified in the content field. Such notation permits item
numbers to be written in a shortened form, subject to the following rules:

a. The left-most period shown represents the left-most divisional line in the item number
field; a second period represents the second line, and so forth,

b. The period at the end of a series of numbers or after a single number is omitted.
c. Terminal zeroes may be omitted.

d. Any two-character number, whose left-most character is zero may be written as a single
character,
The item numbers shown in Table 3-1, when written in the shortened form, would appear as:
1
1.0.1
1.0.1.1
2.0.0.2

N
©
[oY



SECTION:
3-B

UNIVAC III SALT

2 | 2558

ITEM NO. FIELD | SALT INTERPRETATION
ojt] | || || 01.00.00.00
ol1]olofol 1] | 01.00.01.00

L 1] || [o] 01.00.01.01
0]2]ojolojo]o]2 02.00.00.02

| ]| o]} | 02.00.01.00

Table 3-1. Item Number Interpretation

Every line need not have an entry in the number field. If no entry appears, SALT Assembly
System will assign the immediate Dewey System successor of the preceding number by
adding a one to its lowest specified level. For example, the successor of:

01 is 02;
01.00 is 01.01;
01.01.99 is 01.02.00;
01.04 is 01.05.

The assembly will treat as an error a line whose item number and class field entries
are identical to those of a previously encountered line.

2. Class

An * (asterisk) in the class field specifies that the contentof this line is not to be placed
in the object program in the position that its item number would normally indicate, but is to
be isolated into a special area of the object program known as a pool segment. This class
designation is usually used for words, such as program constants, that will not be executed
directly and which will remain unchanged throughout the program. Duplicate words are
eliminated by the compiler when sent to the same pool segment. Further information on the
pool segment will be found in section 3-C, Segmentation.

An E in the class field also specifies an object program placement differing from that
normally indicated by the item number, In this case, the content of the line is retained in
the segment indicated by the item number, but it is placed atthe end of the segment. This
class is generally used for words such as program counters, that will not be executed
directly and which will vary throughout the progtam. Unlike duplicate asterisk class words,
duplicate E class words are retained in the object program.



SECTION:

UNIVAC III SALT

A - (hyphen) in the class field can have one of two meanings, depending on the statement
in the content field. One meaning is to specify that the content field of this line is a con-
tinuation of the content field of the preceding line. In general, this device is used when
there is insufficient space in the content field for the complete statement of a program in-
struction or compiler directive. Both the tag field and item number of the hyphenated line
are disregarded by the assembler.

The — (hyphen) also may be used to link together a series of data designator or declara-
tive lines. This usage of the hyphen specifies that the content of the linked lines will
occupy consecutive memory locations in the object program. Thus, if the first line of the
series has an E or an * (asterisk) in its class field, the entire series will be treated as a
single entity in terms of placement within the object program and the elimination of dup-
licates. The item numbers of the hyphenated lines are disregarded by the assembler, but
the tag fields retain their normal function. This use of the hyphen to specify multiword
entries is further discussed in section 2-B-4, under heading Multiword Data.

A space in the class field indicates that the line does not require any of the features
offered by the other class field entries.



' SECTION:

UNIVAC III SALT | C
UP- g iPAGE: .
|

C. SEGMENTATION

A SALT system source program is subdivided into segments. A program may contain up to 126
segments; each segment may contain 1024, or less, lines of source code that will occupy
consecutive memory locations in the object program.

The item numbers of the lines are used by SALT to order the lines and to associate them with

the proper segment, The programmer defines segments by indicating the item numbers that are

to be associated with each segment. The segment definition also fixes the position that the
segment is to occupy in computer memory and its position on the Master Instruction Tape relative
to the other segments in the program.

Two types of segments may appear in a source program: coding segments and pool segments.
Source code lines which contain a blank or an E in the class field go to a coding segment.
Lines which contain an asterisk in the class field, lines which are created by theuse of im-
plied addressing, and temporary storage lines go to a pool segment. The same range of item
numbers may be included in both a coding and a pool segment. The class field of a line deter-
mines the type of segment to which that line belongs. Furthermore, the item number of a line
which does not contain an asterisk in the class field, but which does contain either an implied
address designation or a temporary storage tag address, must be included in both a coding seg-
ment and a pool segment, This is necessaty because while the line itself is part of a coding
segment, it is directing another line to a pool segment.

Usually, one pool segment is defined to encompass the item numbers included in several coding
segments, Pool segments as well as coding segments are limited in size to 1024 lines. There-
fore, it is necessary to take cognizance of the number of lines being sent to pool segments in
order to determine the number of coding segments which a given pool segment will cover. The
elimination of duplicate lines from pool segments usually results in their containing less lines
than actually sent to them.

Macro-instructions may create lines which will go to a pool segment. Also, use of the SALT
system input-output routines (to bé discussed in sections 5 and 6) requires that pool segments
be defined for the lines communicating with these routines. Therefore, it is a recommended
ptactice to include one or more pool segment definitions covering the item numbers of all coding
segments in the program, since the occurrence of a pool segment line whose item number is not
included in a pool segment definition will be treated as an error.

1. Segment Definition

A segment definition line is identified by the symbol SGMT in the form field. Such a line is
required for each segment of the program. The segment definition lines for the entire program
are written immediately following the initial label line. These lines have the following
format:



SECTION:

3-C
- - UNIVAC TII SALT
2 2558
_ITEM NO. TAG C] FORM CONTENT \
"1“}"AA1A AAL slclMlT's!L'lsqf'Ll‘l'ldgl'xdgl'|'1'|'|'1 Lyl 1(
\_/\\—*" —

a. The entry nnn in the item number field designates the number, 1 through 126, of the
segment being defined. It is justified left, with spaces to the right. The segment num-
ber defines the position on tape occupied by the object code segment, relative to the
other segments in the program, and is a decimal number, 1 through 126. The SALT As-
sembly will store the object code segments on tape in ascending sequence by segment
number. The position of the segment on tape is important to the programmer in specify-
ing program loading. (Refer to heading C-3, Load Definition.)

b. The tag field contains a permanent tag which names the first line of the segment, or it
may be left blank.

c. The class field either is blank indicating a coding segment, or contains an asterisk
indicating a pool segment.

d. The form field contains the symbol SGMT.

e. The entries sy, s9, ..., in the content field define the position that will be occupied
in memory by the segment being defined relative to the other segments in the program,
and are either ZERO or SEGnnn,

(1) ZERO, to indicate that this segment has no predecessor in memory; that is, this
segment occupies the first part of the memory area allocated to the program. The
initial segment of a program (segment number 1) is always in this position, and no
other segment may be so defined. It should be noted that the first segment contains
the executive area and thus may never be overlaid.

(2) SEGnnn, to indicate that segment number nnn immediately precedes this segment in
memoty. In a program with overlays, it may be necessary to define a segment posi-
tion by specifying more than one predecessor. (Refer to section 4-B, Overlay.)

For example, consider a program containing four segments. Segment 1 is the initial
segment of the program, and is defined as having no predecessor (s is ZERO,).
Segments 2 and 3 are overlays which will never be in memory at the same time, but
whichever is present will immediately follow segment 1. Therefore, each of these
segments is defined as having segment 1 as its predecessor (s is SEG1,). Segment
4 will follow either segment 2 or segment 3 in memory and will always be present.
It is defined as having both segments 2 and 3 as predecessors (s is SEG2, SEG3, ).
The position of segment 4 is defined in this manner because segment 4 must be
available in memory with either predecessor, and therefore must start in memory



2558

UNIVAC III SALT . ‘
|

beyond the end of the longest predecessor. This specification of all possible pre-
decessors provides the SALT system with the information necessary to properly
position the segment.

f. The entries dy, d2, . . ., in the content field are Dewey number designations which de-
fine the ranges of item numbers contained in the segment, Lines within a program are
assigned to a type of segment by various mechanisms. For example, a line which con-
tains * (asterisk) in its class field, or which has been created by an implied address
designation, is assigned to a pool segment; one with no entry or an E is assigned to a
coding segment. The actual segment to which a line is assigned depends upon the item
number of the line. The Dewey number (d) designation in a segment definition line de-
fines the item numbers contained in the segment by specifying the lower limit of the
range of item numbers contained in the segment. The upper limit of this range is defined
by the next higher d designation for any segment of the same type.

For example, a program which comprises four segments, two coding and two pool, might
contain the indicated ranges of item numbers.

SGMT
DEWEY NUMBER
SEGMENT TYPE RANGE OF ITEM NUMBERS (d) DESIGNATION
1 Coding 00.00.00.00 through 01.49.99.99 0,
2 Coding 01.50.00.00 through 04.99.99.99 1.50,
3 Pool 00.00.00.00 through 03.99.99.99 0,
4 Pool 04.00.00.00 through 04.99.99.99 4,

Table 3-2. Segment Designations (d)

Note that the upper limits of segments 1 and 3 are implicitly defined by the lower limits
of segments 2 and 4. The upper limit of both segment 2 and 4 is assumed to be the highest
item number in the program (04.99.99.99), since there are no higher d designations for

any segments of the same type. Note, too, that the ranges of pool segments 3 and 4 over-
lap those of coding segments 1 and 2, but do not overlap each other. This reflects the

fact that a segment may overlap any number of segments of a different type, but may not
overlap a segment of the same type.

It should be further noted that the d designation is written in Dewey notation, and may
appear eitherin its full form, or in any acceptable shortened form, as shown in the ex-
ample above.



SECTION:

PAGE:

UNIVAC III SALT

If a segment contains more than one range of item numbers, the lower limit of each
range is specified. For example, coding segment 1 of a program contains item numbers
0 through 10.5.2, and 12.2 through 12.5. Coding segment 2 contains item numbers 10.6
through 11.9. The Dewey number designation to be used in the content field of the SGMT
coding line for segment 1 is 0, 12.2, , and for segment 2 is 10.6, .

Some examples of segment definition lines appear at the end of this section.

2. Specification of Segments by Subroutines

In the sections on input-output, sort, and merge routines (sections 5, 6, and 7), it will be
seen that these routines may create their own segments in a program. The establishment of the
relative position of these segments in the program is the responsibility of the programmer. In
general, the positions of these segments are specified when the routine is called. However,
the programmer may wish to use a segment of one of these routines as the predecessor for a
program segment, These segments are specified by a designation of the form m* SEGnnn,
where m (called a marker) is a permanent tag assigned to the line calling the routine, and

nnn is the number of the last segment created by the routine. The specific value of nnn is
given in the descriptions of the routines.

. Load Definition

A load is composed of one or more segments which will be contiguous memory locations at
one time. These segments are stored on the object code tape in an unbroken ascending
sequence. Their segment numbers must be in an unbroken sequence. When loaded into the
computer, the segments comprising the load are to occupy one continuous area in memory.

A SALT system program consists of one or more loads. Each load is defined by a compiler
directive load definition statement, which may appear anywhere in the source program, The
load that is defined to contain the first segment of the program is automatically read into
memotry when the program is initiated.

Subsequent loads may be read into memory as program overlays. (The method of calling for
an overlay is described in section 4-B, under the heading Overlay.) Load definitions, in
themselves, produce no coding in the assembled object program. They simply direct the
assembler to partition the program into units which are eligible to be treated as overlays.

A load may be defined to become one in a chain of loads. That is any load definition statement
may specify a successor load which is always to accompany the defined load in memory. The

successor load, in turn, may define its successor, and so forth. Thus, two or more segment
groupings that cannot be defined as a single load because their segments are not consecutively
numbered, or because they are not to occupy contiguous memory areas, may be defined as a
series of chained loads and treated as a single overlay.



SECTION:

UNIVAC III SALT 3-c

UP- PAGE:

7 2558 5
The format of the load definition statement is:
TAG c| FoRm CONTENT \
TAG | || LOADInmim sy | 11
/\/\\A

a. The item number field is not relevant.
b. The tag field entry is a permanent tag naming the load.

c. The class field is blank.

Q.

. The form field contains the symbol LOAD.
e. nnn is the segment number of the first segment in the load.

f. s is the name of a load to be chained to this load. If there is no chained load, this
designation is omitted.

For purposes of illustration, consider a program requiring three distinct memory layouts
during its execution. The program is composed of eight segments. In its initial state,
segments 1, 2, 3, 5, and 6 are in memory. An alternate state requires that segments

1, 4, 5, and 6 are in memory, where segment 4 occupies the same relative position in
memotry as segments 2 and 3 in the initial state. Furthermore, it may be necessary to re-
turn to the initial state after the alternate state has existed. In a closing state, segments

1,7, 8, 5, and 6 are in memory where segments 7 and 8 occupy the memory space of segments
2 and 3.

The three possible memory layout states are shown graphically below and represent rela-
tive positions of segments in memory after various overlays have been called. Note that
each segment always occupies the same area in memory.

ALTERNATE CLOSING
INITIAL LOAD (AFTER AN OVERLAY) | (AFTER AN OVERLAY)
Seg 1 ; LOAD A Seg 1 |t LOAD A Seg 1 LOAD A
Seg 2 |l LOAD B Seg 7
Seg 4 |} LOAD C LOAD E
Seg 3 e
\ch 8
Seg 5 | Seg 5 Seg 5
LOAD D LOAD D - \ LOAD D
Seg 6 Seg 6 Seg 6

Table 3-3. Segments in Memory (After Overlays)



SECTION:

3-C

PAGE:

UNIVAC III SALT

uP-
2558

Segments 1, 2, 3, 4, and 5 in the example below, are coding segments; segment 6 is a pool
segment encompassing the same item numbers as these segments. Segment 7 is a coding
segment, and segment 8 is a pool segment encompassing the item numbers of segment 7.
The segment definition lines required for program are:

0. TAG c| Form CONTENT \
~ (Item Nos. 00.00 — 01.99) J

R N T T N T O O A
SGM TIs Ec1 2 . (Item Nos. 02.00 - 02.99) \
A N R B A R B A A A A B

(Item Nos. 03.00 - 03.99)
Sy | [SOMTISEG2 030y

1 | ‘ SIGJM‘T ZlEIR OI,]0|,

e ———— ]
N
=
e

t . . - .

/l 14 I N N SR S U s[GJM|Tle|Glll'l4J 'l:l(llelln 'lqols |0410(l) L0L4J99)J [ S

\ : (ltem Nos.05.w—05.99)>

Nt N S GMT|SEG3 , SEG4,, SEGS , 15,1 | | | |1 1]

t R (Item Nos. 00.00 — 06.99) (
L] NI SOMTISEG S 0,5y | | v bbb g

( (Item Nos. 07.00 — 99.99) )

U N SIGMTISIEGI Y (7,05 1 1 00 1 b L

) | . (Item Nos. 07.00 — 99.99) (

IRENL] AN SGMTISIEG 7, 7,05y | v 1 L1

BRI EE————— ] —

Note: Segment 5 requires the specification of two predecessor segments.

The load definition lines required for this program are:

\ TAG c| FORM CONTENT \
‘ Contains SEG. 1 )

||L, OADA | | LOADIT. LOAD B, =
Contains SEG.2& 3 \

L OADB | | LOAD|2,LOADD, x| | U
Contains SEG. 4 /

LOADC | | LOADI4), 5 | | v b0 bbb
Contains SEG.5& 6 )

) L|0|A|D|Dl [ LlolAlD 5|’|:l | A A I O P | 1._l S N W NN NS W M |
( Contains SEG.7 &8 K

LOADE | | LOADI7, 5y oy v v b g
\./\ 4

The initial state is composed of three separate loads, A, B, and D, together. Load A

contains only segment 1, load B contains segments 2 and 3, and load D contains seg-
ments 5 and 6. Load B is separated from load A because it may require reading as an
overlay after the alternate state has been in memory. Load D is separate from load B

because it does not necessarily occupy memory contiguous with load B. Load C, con-
taining segment 4, and load E, containing segments 7 and 8 are separate loads by vir-
tue of their overlay status,



SECTION:

UNIVAC III SALT | -4

UP- PAGE:
2558 1

4. PROGRAM CONTROL STATEMENTS

It should be noted that the SALT system not only includes the source program language and an
assembler, but also includes elements which control the execution and operation of object pro-
grams produced by the assembler.

This portion of the manual deals with source program statements which call upon the program
control elements of the system which constitute the SALT Executive Routine. These statements
provide for:

m starting the program,

u calling for overlays,

s taking memory dumps,

m establishing rerun points and terminating the program,
® handling overflow and invalid operation codes,

® controlling the typewriter and logging,

A. START

The starting line of the program, that is, the first line to be executed after the program has
been loaded, is specified in a line of the form:

c| ForRM CONTENT \
]SITIRITTIAIGI’IIIlllllllllILJIII(
U— —

The form field contains the symbol STRT . The content field contains a permanent tag naming
the starting line, and all other fields of the line are disregarded by the compiler.Only one such
line may appear in a program.

The starting line must be a line which will be read into memory with segment 1, that is, it
must be contained in segment 1, or in the load containing segment 1, or in a load which is
chained to the load containing segment 1.

Before transferring control to the starting line, the SALT Executive Routine will load Index
Register 1 with the address of the firstline of the segment which contains the starting line.
Thus, to address other lines in the same segment, the starting line should either designate
Index Register 1 as an address modifier or be mapped by Index Register 1.



SECTION:

UNIVAC III SALT | B

UP- ' PAGE:
2558 : 1

B.

OVERLAY

A load, or a series of chained loads, may be read into memory as an overlay at any point during
the execution of the program. The position which the overlay will occupy in memory is deter-
mined by its segment definitions. Segment 1 of the initial load may not be overlaid. The coding

calling for an overlay includes in part, two statements the first of which is illustrated in the
following example:

\|[c] Form CONTENT

&Hqcoﬁﬁle‘PxTN%'lLllll 11117]

This line specifies the particular load being called.

Item number, tag, and class field may be any valid entries.

XLocC must appear in the form field,
0, must be the first designation in the content field,
(LDID: o]), is the use of the implied form of address in lieu of a second

coding line, where LDID is a form used to fabricate a load
identifier word.

a is a permanent tag naming the load definition (LOAD) line of
1 the overlay load.

A LDID statement has the following form:

<] Form CONTENT\

SLIDllqul’JllllleleI‘151<

where:

item number, tag, and class fields may contain any valid entry.

LDID, must appear in the form field.

q, is the entry used in the tag field of the LOAD coding line naming
the particular load.

The line which follows the XLOC line, is a standard LOCA line linked to the XLOC
line by a hyphen in the class field. It establishes the address of the line to which control
will be transferred when the overlay load has been read into memory.



SECTION:
4-B

PAGE:

o UNIVAC III SALT

2558

c| ForRM CONTENT ]

_/\—'

XlLLOlC OI,I(IL!D'I D

L |~|L.0,CAfag |

\/—L___/-——-\/\__/\/’_,_\_/\/—\)

Item number, tag, and class fields may be any valid entries.

LOCA

must appear in the form field,

a2, is a permanent tag naming the line to which control will be trans-
ferred when the overlay has been read into memory. Any line that
will be in memory after the overlay has been read in may be
designated.

In addition to these statements, the coding calling for the overlay must include instructions
to initiate the actual read-in of the overlay. These instructions will load Arithmetic Register
1 with the information fabricated by the XLOC line, and load Arithmentic Register 2 with the
address fabricated by the LOCA line. Control is then transferred to the location specified by the INAD
control word in low order memory location 23, as illustrated by the |A,, TUN,, $LOC23

instruction statement in the following example. (Note that no index register address modifier
is required, and that mapping does not apply.)

When these instructions have been executed and the overlay load has been read into memory,
control will be returned to the program at the address specified by the LOCA line. The
loadings of the index and arithmetic registers are unchanged.

An example of coding calling for an overlay load is given below.

TAG C| FORM CONTENT )

Fabricate address of load ID l

Xrocjo,(LDID:LOADB) . : L

(2[CALLB | |-|[LOCAIBEGI NB , : | |, | | ||

Fabricate address of first instn.
I I I A O O A T O

Load XLOC and LOCA words
L ,12, CALILB, 5y )

Read in the overlay

'IAI'MITIU!N!'llllelolclzl3l'1:l I VO O N

L Lt

LOAD B is the tag field entry of the LOAD definition line of the overlay load. The permanent

tag, BEGIN B, names the address to which control will be transferred after the overlay is read
into computer memory.



SECTION:

UNIVAC I SALT | -

UP- ' PAGE:
2558 1

i |

C. OVERFLOW

Two types of overflow are recognized by the SALT system; expected and unexpected. Expected
overflow is overflow which is anticipated by the programmer. An arithmetic instruction that is
expected to cause overflow is followed by an unconditional transfer (TUN) instruction. If overflow
does not occur in the execution of the arithmetic instruction, the TUN,will transfer control to

the appropriate instructions. If overflow does occur, control will be transferred to the instruction
which immediately follows the TUN, and which is expected to be the first line of the programmer’s

overflow coding.

Lines 3-5 in the example below cover expected overflow.

LITEM NO. TAG C| FORM CONTENT)\
2J L) I ! Ly Ry GO UNTERG ) 1(
Sl a2y o A Y S TSy 141J
[ 13 Ly L1 LUJNLLQLFJJ141LJL14L¢141#\
/l A pon s GpeME 0 Ly 12
\1 5§51 L 48T, Vv COUNTER ) 1L1¢j
\E_# R B L1l 1|L|||4¥414|4|1|r||[

This coding adds the contents of temporary storage location ($T5) to the contents of a line
named COUNTER. When overflow does not occur in the execution of line 2, control is
automatically transferred to line 3 which will always contain a TUN instruction. In this
example, line 3 transfers control to line 5 where the sum of the addition is stored in the
counter, and processing continues.

When overflow does occur in the execution of line 2, control is automatically transferred to
line 4 where the coding to handle the overflow condition begins. In this example, the counter
is set to zeroes and processing continues.



SECTION:

4-C

PAGE:

UNIVAC IIT SALT

uP-
2558

Unexpected overflow is overflow which is not anticipated by the programmer, that is, it is
caused by an arithmetic instruction thatis not followed by a TUN instruction., Unless every
arithmetic instruction in the program is followed by a TUN instruction, a special section of
coding to handle unexpected overflow must be included in the program. The first line of this
coding is as follows:

\ TAG c| FORM CONTENT \
(\'l“lgl Ll S GAD[ta9, /)
P— - O

This line specifies its own permanent tag in the content field. The word resulting from the

SGAD line will contain the address of the first line of the segment containing this SGAD
line.

The instructions to be executed if unexpected overflow occurs will immediately follow the SGAD
line. When unexpected overflow occurs, Index Register 1 will be loaded with the value established
by the SGAD word before transferring control to these instructions. Therefore, these instructions
should be mapped by Index Register 1 or should designate it as an address modifier.

In addition to the inclusion of coding written to handle unexpected overflow, a program containing
this coding must also contain a line naming the location of this coding. This line may appear
anywhere in the program and has the form:

[c] FORM CONTENT \

\OlleRui’{llillllllllf1|\|iil

b 1t —0 1

a;  The item number and class fields are disregarded.

b. The tag field may contain a permanent tag.
c. The form field must always be OVER.

d. The content field contains:

q, is a permanent tag naming the firstline (the SGAD line) of the unexpected
overflow coding.

The sample program in Appendix A illustrates the use of these control statements.



;’ SECTION:

UNIVAC III SALT | =€

UP- PAGE:
2558 3

When an arithmetic instruction which is not expected to cause overflow is to be followed by

an unconditional transfer, the special operator TUNS must be used. This operator will function
in the same manner as a TUN operator, unless the arithmetic instruction preceding it causes
overflow. If this occurs, the overflow will be considered unexpected overflow, and the SALT
system will transfer control to the program’s OVER coding.

The following is an example of coding written using the TUNS operator:

fo TAG C| FORM CONTENT\
\ Mo o vV COUNTER J
} (20 LA NGB M L s T ) ey LJJ_\
1+13 IR} L JTYNS G TES Ty J
21  4/COUN TER, DCM\LIO | o e L\

SpL hM T DCMLITO gy 1||11114141(
Q/—\/\-——J

In this example, the addition in line 2 is not expected to overflow, but the logic of the program
is such that a transfer of control instruction is required in the line immediately following the
addition. If a TUN operator appeared in line 3, SALT would interpret this as expected overflow,
and in the event of overflow, transfer control to line 4.

The use of the TUNS operator avoids this, and if overflow occurs, control will be transferred to
the OVER coding for the program, When overflow does not occur, control goes to line 3 and the
TUNS operator effects an unconditional transfer of control to an address named by the tag TEST.



SECTION:
| 4-D

UNIVAC IIT SALT

UP- PAGE:
2558 | 1

D.

INVALID OPERATION CODES

If there is a possibility that the program may at some time contain invalid operation codes, a
special section of coding must be included. The SALT system will transfer control to this
coding whenever the execution of an invalid operation code is attempted. The first line of this
coding is:

TAG C| FORM CONTENT \
[ tiajg; | 1 g | SGADIt@aig, v v 4o |(
——— \N

This line specifies its own permanent tagin the content field. The word resulting from the SGAD
line will contain the program relative address of the first line of the segment containing the

SGAD line.

Immediately following the SGAD line are the instructions to be executed when the execution of
an invalid operation code is attempted anywhere in the program. When such an attempt is made,
Index Register 1 will be loaded with value established by the SGAD line before transferring
control to these instructions. Therefore, these instructions should be mapped by Index Register
1 or should designate it as an address modifier.

In addition to theinclusion of the invalid operation coding, a program containing this coding must
also contain a line naming the location of this coding. This line may appear anywhere in the
program and has the form:

‘c FORM CONTENT\
INOPJa /| | v b b l(
—_

where:

a. The item number and class fields are disregarded during assembly.
b. The tag field may contain a permanent tag.
c. The form field must always be INOP.

d. The content field contains a, a permanent tag naming the first line (the SGAD line) of the
invalid operation coding.

The sample program in Appendix A illustrates the use of these control statements.



SECTION:

UNIVAC II1T SALT

4-E

UP- PAGE:
2558

TYPEWRITER CONTROL

The standard means of communication between an operational program and the computer
operator is through the console typewriter.

The source program must contain coding necessary to prepare ot interpret any messages which
its logic requires. The Executive Routine controls the actual writing of the messages ot the
transfer of messages to computer memory.

Information written through the typewriter must be organized into message units whose length
can range from 1 — 127 characters. These messages may be typed from memory to the console
typewriter or typed into an allocated area from the typewriter to memory. A single message
unit area is used for either type-out or type-in, but not both.

Messages appear on the console typewriter log sheet in chronological order. When several
programs are sharing the computer, the messages originated as a result of their execution
will be interspersed on the log. Furthermore, each program will produce both input and output
messages originating from several sources with the program. The input-output routines

which are called into the source-coded program during assembly (see Section 5, 6, and 7, of
this manual), the Executive Routine, and the programmers own coding, will require operator
communication. Rapid comprehension of each message and an accurate response, when
necessaty will be contingent upon the ability of the operator to recognize and interpret the
particular message. Conventions have been developed for typewriter messages which provide
this identification of the origin of messages. The use of these conventions can result in the

conservation of time and memory space. The following paragraphs explain these conventions
in detail.

1. Typewriter Conventions

The print line of the typewriter consists of 72 character positions and is divided into six
12-character columns by five tab stops. The first line of every type-out message begins

with a header which is supplied by the Executive Routine. The header consists of

a carriage return, a five-character clock reading, a number of tabs, and a six-character routine
designator, The header of a message originated by the Executive Routine is preceded by no
tabs, that of a message originated by a input-output routine is preceded by one tab, and
that of a message originated by an object program is preceded by two tabs. Therefore, the body
of a message starts at character position 12, 19, or 31, depending on the nature of the routine
which originated the message. The second and succeeding lines of a message begin with a
carriage return and the same or greater number of tabs as the header. The carriage returns and
tabs for these lines are to be supplied by the routine which originated the message.

The general format of a message originated by an object program is as follows:

ccccc AAAAAAA | AAAAAAAAAAAA | (nn) AAfkAmmm . . .mmmz

1 12 |13 24 | 25




SECTION:
4-E

PAGE: uP.
2 2558

\
| UNIVAC III SALT
|

The clock reading, ceccc, is supplied by the Executive Routine for the first line of every
message. If the system does not contain an addressable clock, five 0’s will be supplied.

The routine designator, (nn) AA, is supplied by the Executive Routine for the first line of
every message. As described below, it is also supplied when there is a change of direction
within a message.

The message (which must be in alphanumeric notation) starts in character position 31 of
the print line. The followingparagraphs describe its format:

The first character of the message is a flagsymbol, {, which classifies the message in.
terms of operator action, It has the following values.

(f) SsYMBOL INTERPRETATION

/ Message is a type-out which does not require action by the
operator.

$ Message is a type-out which requires operator action and a
type-in.

S Message is a type-in made by the operator in response to a
type~out.

) Message is a type-in by the operator to request an
action,

The second character of a message is a classification code, k, which classifies the message
in terms of subject matter. It may be assigned any values meaningful to the programmer.

It should be noted that messages initiated by the operator, the SALT system, and the input-
output routines may use f designations other than those shown above. These routines should
use a standard convention for k designations if possible. Appendix E contains a complete list
of f and k designations.

The text of the message, m. . .m, is separated from the k designation by a space, and starts
in character position 34 of the print line. It may result from both type-outs and type-ins.
The SALT system will automatically supply a carriage return, two or more tabs (depending
upon the number specified in the request) and the routine designator each time there is a
change of message direction. Information typed in is justified left by the Executive Routine.
Source program information to be typed out should be justified left by the program.

A sentinel (z) is supplied by the Executive Routine at the end of each type-in and type-out:
a period signals the end of a type-in and an asterisk signals the end of a type-out. These
sentinels should be considered by the programmer in calculating the length of a print line.
When a carriage return is not given at the proper time, the typing will continue, but the last
character will be struck over,



SECTION:
| 4_E

UNIVAC II1 SALT

UP- PAGE:
2558

2. Indicator Coding

During the execution of the object program, there may be a delay between a request
for a type-in or a type-out and the actual typewriter action satisfying that request.
The SALT system provides a mechanism which allows the possibility of the program
being able to operate during this waiting period.

In writing the source program, the programmer supplies two addresses in connection
with each request, One address is the location to which program control will be
returned when the typewriter request has been initiated. The program can proceed

from this point with any processing that does not depend on the completion of the
typewriter action. The other address is a location to which control will be temporarily
transfetrred when the requested typewriter action has been successfully completed.
This location is the beginning of a special section of source coding called indicator
coding. The purpose of this codingis to allow the program to set a switch indicating
the completion of a typewriter (input-output) action. The Executive Routine will
temporarily interrupt the processing currently in progress and at the point of successful
execution will transfer control to the indicator coding associated with the message.
Indicator coding should always be written in a closed subroutine format with an exit loop.
After this coding has been executed, control returns to the point of interruption. The
indicator coding should be as brief as possible because input-output interrupt remains
inhibited while it is being executed.

Through this device, the Executive Routine allows the program to set a switch indicating
the completion of a typewriter action. The processing performed between the time of the
typewriter request and the transfer of control to the indicator coding will normally include
instructions which test this switch. Thus, after the indicator coding has been executed
and control has been returned to the point of interruption, the switch will be found to be
set, and processing can proceed to that part of the program which is dependent on the
completion of the typewriter (input-output) action. This flow of control is shown
schematically in the diagram on the following page.



SECTION:

|
4-E ‘
e | UNIVAC IIIl SALT
PAGE: | UP- !
4 ‘ 2558 l
FROM
EXECUTIVE Er;?’ Set ready switch ;8 EXECUTIVE
ROUTINE UTINE
S
‘ ~N
R?Gdy switch ‘| ~N ~
1s not set ~
~N
Request . Ve
b A > typewriter soses Ready switch set? eee
action POINT TO

WHICH
EXECUTIVE ROUTINE

RETURNS CONTROL
TO THE
SOURCE PROGRAM

lNo

Release
Control
to the

Executive

Routine

Figure 4-1.

Typewriter Control Schematic

The upper line represents the indicator coding subroutine, the address of which is supplied
to the Executive Routine when the request is made. The indicator coding is entered auto-

matically when the typewriter action has been successfully completed, and sets a program
switch called a ready switch, Control returns to the point of interruption. The line between
connectors 1 and 2 represents processing which can continue even though the typewriter

action has not been completed. Connector 1 represents the address to which control will
be transferred after initiating the typewriter action. Connector 2 represents the entry point
from which the processing continues after the typewriter action has been completed.

It is recommended that a routine providing indi cator coding be included in the source program
and used for all messages; otherwise, the program will never know when its typewriter re-

quests are completed.




UNIVAC III SALT

2558

Indicator coding may appear anywhere in the source program. It has the following format:

\ TAG C| FORM CONTENT\

‘ ij-jc)- taj9 SGADJi - =t @900 | 1‘]

LJI\! L L NOP e
. . R e e J
indicator codmg

| T s e TN T T e o e A T O N e

‘ L4y Coc AL TUN -t e T,

The first line is always a SGAD line, which contains a permanent tag naming it as the
first line of the indicator coding. The address designation in the content field is the
permanent tag used in its own tag field. The next line is always a NOP line, and is the

exit line of the subroutine.

When the associated typewriter action is completed, the SALT Executive Routine will
execute the following instructions before control is relinquished.

Index Register 1 will be loaded with the SGAD word in order that it may be used to
map the indicator coding.

(IR1 = SGAD i-c-tag).

Index Register 2 will be loaded with the indicator coding address.

(IR2 = i-c-tag).

Index Register 3 will be loaded with the address of the TPAK just completed which
specified this indicator coding.

(IR3 = tag 2).

Control is released by the execution of a 2, TR,,1, instruction.

The exit from indicator coding, with IR1 and IR2 unchanged, is accomplished through one

of the following instructions:
1A, 2, TUN,, 1,

or

IA, 1, TUN,, i-c-tag + 1,

As shown above, the lastline of the indicator coding is an unconditional transfer to the
location specified by the contents of the NOP line. This returns program control to the
Executive Routine allowing it to complete its function.



SECTION:
4-F

FAGE: 0F: UNIVAC III SALT

6 2558

Since indicator coding is a closed subroutine executed as part of the Executive Routine,
certain restrictions are imposed on indicator coding. These restrictions are listed below.
m A possibility of overflow must not exist.
m The execution of invalid operations must be precluded.
m Release of control to another routine is prohibited.

m Index Registers 4-15 must remain intact.

3. Single Message Unit Request

To request a type-in or type-out of a single message unit of information (1 to 127 characters),
the source program must contain two packets of linked statements. The first packet consists
of the first three lines illustrated in the following example:

\ TAG c] ForM CONTENT\
Lo VTP AN i Se ey Ji/
L b Y P T b

LAV TN SN ot NN U (72 U T O O O O e O O

e - = S —— — -

The first line may be named by a permanent tag.

a. The item number and class fields may contain any valid entries,
b. The form field must contain the symbol TPAK.

c. The content field must contain three designations:

n, is the number of characters, 1 through 127, in the message.

i/o, is IN for a type-in request, or
OUT for a type-out request; and
a, is a permanent tag naming the first (most significant word) of the
message.

The second line is chained to the first by a hyphen in its class field.

a. It may be named by a permanent tag.
b. The form field must be blank.

c. The content field may contain three designations:

TYPE, specifies that this is a typewriter message (another variant of this
designation is described under heading F. Logging.

T, is a number in the range of 2-5 specifying the number of tab spaces
desired.
b, is a permanent tag naming the first line (that is, the SGAD line) of the

indicator coding for this request. This designation is a blank when no
indicator coding is associated with the request.



. SECTION:

UNIVAC IIT SALT E

UP- PAGE:
2558 .

The third line is linked to the second by a hyphen in its class field.

It may be named by a permanent tag.
The form field must be blank,

The content field contains only a comma.

The second packet consists of an XL ST line linked with a LOCA line, and is illustrated
in the example below.

c| FORM ‘ CONTENT

\ \
{ XLST|TYPE , , a, J
I O T O T T T T L U I S T I O O
\1"Ls°1c|Ab|'|||114||n11111|||;1;,1|

Q/’_\/\/\"\/—\/\/_/\/\—/\)

The first line of this packet is an XLST line.

It may be named by a permanent tag,

The item number and class fields may contain any valid entries.

The content field must contain three designations:

TYPE, specifies that this is a typewriter message.
PR A blank designation.
a, is the tag naming the address of the third line in the TPAK packet.

The next line is a LOCA line linked to the XLST line by a hyphen in its class field.
It may be named by a permanent tag.

b, names the line to which program control is to be transferred when the typewriter
action has been initiated.



SECTION:

4-E
_ - UNIVAC III SALT
8 2558
The programmer must include instructions to initiate the request for typewriter action. The
instructions will perform three functions: load Arithmetic Register 1 with the XLST word,
load Arithmetic Register 2 with the LOCA word, and transfer control to the location
specified by the contents of standard location 22 (1A, , TUN, , $L0C22,).
The coding belowillustrates a single message unit request to type out ORIGINAL PASS.
\ TAG C| FORM CONTENT \
Xl oy TPYUT ALPRICG/ZBAOD v [](
(lzllllltll_1‘11RI'LGL|J'IIIII\Iltllll\lllllllllilllllIll
\|3| o e ONARADY L
14|1|||\1|'r'1|P|A|s|s|'1||;|\|1|||1||;1||||[||||||1||||
SUNPYT ALPH :1N|°“|N1°|Poi°|| N Y T O O O O O Y O O O 1\
i NI TPAK6 . OUT, OUTPUT \\ | |y 1 |\
17111; N O N TIYIPIEI'Izi’i'iNJDJIicl'LLiJlIiIlllllLllllLJiLliJ
BPACKETY -] 'Illlllll\JlllilIIIIIIIIIIIllLIlllllI,
VB XS TT Y PE . PACKE T
)|‘o PACKET2 |-~ OCAMAYTLO0P
Mo o M Y2 PACKET2
M2l Loy |97C8 2. PACGKET2, oSBT PACKET2 NEGATHVE,)
|13 I Y O O Lo |IA1'|'1T| UINJ 'J'[lelolqzlzl N T T T T A O
MwArTLOOP s eSY  P AR E T
i NI o A"k 098, $L0625,,:SEE SUBSECTION H | |
‘6|PROCESS, L YN GONT I NUE,:PROCESS AFTER MESSAGE
l‘7|lNlDI|IC1 [ SIGIAID IINlDlllcl . Y Y T N T S T O
L TR o NOP g
L NI o M P AC R E T 2
W MENIN 11 SlTIC‘S“HL,lPJA[ClKlE‘lei,l I A I NI S AN AR A
/l21 N T S L] IlAl 'l'lTlulNl'I'lIINiD\I1c1+|]l'I AN AN T N T N U OO T I A |i\

In this example, the message unit to be typed is entered in lines 1 through 4. The first

character of the message is the flag symbol.



SECTION:
4-E

UNIVAC III SALT

UP- PAGE:
2558 9

Lines 6 through 8 and 9 through 10 represent the two packets of statements. The instructions

to activate the request for the type-out appear in lines 11 through 13. After the request has been
accepted by the Executive Routine, control will be returned to line 14 which relinquishes
control to the Executive Routine until the indicator coding associated with this request has
been completed.

Multiple Message Unit Request

When a message contains more than 127 characters or when a single message involves both
type-outs and type-ins, more than one message unit must be provided. Since type-ins are
generally preceded by a type-out, the multiple request form has been developed to allow a
related set of bidirectional message units to be treated as a single message. It is recommended
that bidirectional messages be handled as shown below.

The two packets described above for a single message unit request are also required for a
multiple message unit request. However, the first line of the TPAK packet (the TPAK line),
takes a different format. A list of typewriter control words, each control word identifying a
message unit, is included in the program. The (first) TPAK line for a multiple request has
the form:

) TAG C| FORM CONTENT \
{_ S N T S W Tlpiﬁl'( AL '1!1tllllllLlLJ
| - 1

All fields except the content field are as described above under the heading, Single Message
Unit Request. The first two designations are left blank, but the terminating commas are
retained. m, is a permanent tag naming the first line of the typewriter control word list. The
control words are stored in consecutive memory locations and have the form:

\ TAG C| FORM CONTENT)
g’TlALGl]I Ll TCON|n, i /lem @y |



SECTION:

- UNIVAC III SALT

2558

a. Item number may contain a valid entry,
b. ‘The tag field must contain a permanent tag naming this line. (see m designation TPAK line)
c. The form field must always contain TCON.

d. The content field contains:

n, is the number of characters, 1 through 127, in the message unit,.
i/o, isIN, if the message unit is to be typed in, or
OUT, if the message unit is to be typed out; and

a, is a permanent tag naming the first line of the message unit storage area.



| SECTION:
| 4-E

UNIVAC III SALT —
2558 | 1

Any control word may be named by a permanent tag; the first word of the list is always
named by a, of the TPAK line. The second and succeeding words are linked to the first

by hyphens in their class fields. The last control word in the list is followed by a stop
control word of the form:

\Ic! FoRM CONTENT )
/ - S|T1°1P T OO U N Y O Y N O A Il
i - —

This word signals the end of the control word list to the Executive Routine,

The instructions required to initiate a multiple message unit request perform the same
functions as those required for a single message unit request; that is, load Arithmetic
Registers 1 and 2 with the XLST and LOCA words, respectively, and transfer control to
the location specified by the contents of low order memory location 22,



SECTION:

S ! UNIVAC III SALT
12 2558 {
TAG FORM CONTENT |
ouTPUT | ALPHIGS CAS ) 0wy 0 1)
L1 | 1EJLIEJCI’!!l!Il!Llli!Illlj{
Ll ! \ (ITIAIOIPI)I:IIIIIIIIIIIIJLJ\
| | ] | T1||01N|:l A I Y U S S (N U SN S A

INPIUIT | VJOAAMAAN ) L T
| L TPIAKI JUTICOINLILISIT 1 1 b1 bbbt 1
L1 1 LT PE 2 ENDINC )

I 72 T S T S N S N S I O A

P |

l

XILIST TJYJPlEL.l.|P1A|C|K1E1T|11).1 [ T S S O

PACKET,?2

LOCAIWAILTLIOOP,, | | { | | 0 | (| 1] |1

P,

T/CONLIS,T

TCON|V 6, 00T JOULTPUIT 1 | 1) 1| ]

P st

LB NG ENPIO T,

—

STOPl L b

Cb Y2, PACKIETI2 ) )

SiTlclsl'lzl'IPIAICIKIEITI2I'| I N I |

g T ————

\N\__.—-’/

L AL, TIUNG, ) 1 $L101C1212) 0 | ) |

LS PACKET2

1 A TPOS 1 $1L101C12[51,l

) I 1 12y 111 L1 ]
_/.——”\\_/- 4/____)‘
TAG FORM CONTENT |
IlNIDIIICI | S|G1A|D'|NJD1|1C1 T N U T W N S SN S SO N B 1}
L] | lNIO}PI'lllllllkliLlllliLJ
Lo 1 s L1'1‘1'1P|A:C1K1E1T121'| A T O O R
[ [ I SITLCISI'I]J'LPIAJCLKLEiTIZI'I L4 J_l(
L1 | CNA L TUNL S END T, |h




SECTION:

4-E
UNIVAC II1I SALT 5 PAGE:

2558 13

The coding chart on the opposite page illustrates a multiple message unit request, where the
program types out the words SELECT OPTION, then waits for the operator to reply before
processing continues, The operator is expected to type in a four-character coded answer.
Indicator coding changes the sign of the word at the address PACKET 2 when the message

has been completed.

This illustrates the type of coding that is recommended for any program where there
must be a waiting period for the completion of the operation. The Executive Routine will
transfer control to the other programs sharing the computer until the present program
receives its response and is ready to proceed. This insures that there will be efficient

usage of the computer at all times.

In this example, the message unit to be typed out appears in lines 1 through 4, the first
character of which is the flag symbol. The next character is a classification code C,
recommended for messages involving operator choice. Line 5 is the location that will
receive the operator reply when it is typed in. Lines 6 through 10 represent the two packets
of statements, Lines 11 through 13 represent the ‘control word list. The instructions
requesting the communication appear in lines 14 through 16. The sign of the word at
PACKET 2 is set to minus. Lines 17 and 18 are the instructions that the program executes
while it waits for the completed response. These lines return control to the Executive
Routine until the indicator coding changes the sign of PACKET 2 at which time control is
transferred to the coding that will continue the program. The associated indicator coding
is shown in lines 19 through 23.



SECTION:
4-F

UNIVAC III SALT

UP- PAGE:
2558 1

F. LOGGING

The computer log is a complete record of all messages transmitted between the computer operator
and the programs. The standard UNIVAC III medium for this communication is the console type-
writer; however, this information may also be recorded on a UNISERVO IIIA tape unit when a servo
is allocated for this purpose. The Executive Routine supplied for such a configuration will auto-
matically record on the log tape all messages that are initiated by the SALT system. Messages
initiated by the source progrtam may be directed to the typewriter only, to the log tape only, or to
both. The log tape is always referenced by the numeric file designator 62 (Refer to Section 6).

1. Directing Log Information

The destination of log information, that is, whether it is to be directed to the console typewriter,
to a log tape, or to both, is specified by the source program in the second line of the standard
TPAK packet. For messages which are to be recorded on the typewriter only, the form of the
packet remains as described under subsection E, Typewriter Control.

C| FORM CONTENT\

S Y O Y | Ii

-
o
| >

=

3
[~

-]
—
—Q

The designation TYPE in the second line of the above example indicates typewriter logging
only.

[1c] Form CONTENT |
“ TPAKIn . i /ioynt@ey by v 0 1y 00 l]
-l |TAPES T e e
i (T O N T O N O I I

B

For messages which are to be recorded on the log tape only (see the example above), the
second line of the packet contains the designation TAPE.



SECTION:

4-F

PAGE:

UP-

UNIVAC III SALT

2558

} J¢] ForMm CONTENT }
TIPIAK|n jit/1ol dttatai Vi, | & | 1 1 1 1 | | | L)
= I DI I PN LN el LN e AL N B A B B A A B B
B T T T T T T T O

] S |

For messages which are to be recorded on both the typewriter and the log tape, the second
line of the packet (see the example above), contains a blank designation.

Log Tape Conventions

Messages to be recorded on the log tape must conform to the conventions described for
typewriter messages. The general format of the log tape conforms to the standard UNIVAC
III data tape conventions as shown in Appendix F. The arrangement of the data recorded
on the log tape is described in Appendix G.



SECTION:
UNIVAC III SALT b
PAGE:
2558 1
G. PROGRAM LABELS
Programs are stored and maintained on UNISERVO IIIA library files in alphabetic order by
name. This name is established by a header card input that is converted to tape with the
source code card entry check.
A label line is written in the following form:
\o. ITEM NO. TAG c| FORM CONTENT \
any comment; no colon required (
(IWABIE'W L0 00990 IR IR R R IR
L’_\, ,——\———-\_L

a. The item number field contains the symbol LABELAAA,

b. The tag field contains an eight-character program identifier in the form aadaaaaa, where:

aaaaaaaa

is an eight-character alphanumeric program name, the first character of which

must be alphabetic.

c. The class and form fields are to be left blank.

d. A description of the program may appear in the content field. It may be extended by the
use of a hyphen in the class field through as many lines as are required. The colon

comment signal, required for all other lines is not needed in the label line.



gsecrwNz

UNIVAC III SALT | -

UP- PAGE:
2558 1

H. CONCURRENT PROCESSING

The Executive Routine coordinates the exchange of control between the various programs
sharing the computer. Control is automatically passed to successive programs on a rotating
basis each time a source program releases control to the Executive Routine. Control is
relinquished each time an input-output function is performed. This may occur through the
execution of a SALT input-output control subroutine or through a request to initiate a

quest to initiate a
typewriter message.

When it can be determined that a program is likely to retain control over a relatively lengthy
period of time, control should be periodically relinquished to the executive routine. Other
programs, which require more frequent use of input-output functions are thereby enabled to
make efficient use of the peripheral equipment. This release of control to the Executive
Routine is accomplished by the following coding lines in the source program.

\  TAG c] FORM CONTENT \
Ll oo b GLOC A NEXT) 1|<
| S N [ IiAl’I'LuiNﬁ'l’isrLlolcﬁlsl o IO N T B

where: the first line is an instruction which loads Arithmetic Register 1 with the address of
the first instruction to be executed after control is returned to this program by the Executive
Routine. The implied form of addressing has been used to fabricate a LOCA address. It has
been assumed that the next instruction to be executed is named by the tag NEXT.

The second line transfers control to the Executive Routine at the address specified by the
INAD word at low order memory location 25.



UNIVAC III SALT

 SECTION:
4-1

l
;
' PAGE:
2558 i 1

I. INFORMATION MEMORY DUMP

An informational memory dump, writes the contents of memory onto an output data tape
for later editing and printing. The informational memory dump is used primarily in error

paths of the program as a debugging aid.

An informational memory dump may be taken at any point during the execution of the program.
The memory dump is written on an output data file specified by the programmer, for subsequent
editing and printing. The specified file must be on a magnetic tape mounted on a UNISERVO
IIIA tape unit (refer to Section 6). The execution of the program continues after the memory

dump has been written.

An informational memory dump requires that an XFAD line be included in the source program

of the form:

[c] FORM CONTENT \
XFADIE viaw Lo 1(

Item number and class fields may contain any valid entries.

The tag field may contain a permanent tag naming the XFAD line.

The form field must always contain XFAD.

The content field contains:

£, designates the numeric file identifier of the UNISERVO IIIA output data file
on which the memory dump will be written.
a, is a permanent tag or implied address designation naming the line to which

control will be transferred after the memory dump has been taken.



SECTION:

4-1

PAGE:

‘UP-

2558

UNIVAC III SALT

The program must also include instructions to activate the memory dump coding. These
instructions will perform the following functions:

a. Load Arithmetic Registers 1 and 3 with binary 0’s.

b. Load Arithmetic Register 2 with the XFAD word.

c. Transfer control to the INAD control word at standard location 24 (see the second
instruction in the example below).

Control will be returned to the program at the address specified by the XFAD line, after
the dump has been taken. The loadings of arithmetic and index registers are unchanged
except for Arithmetic Register 4.

An example of coding calling for an informational memory dump is as follows:

TAG CONTENT \
Lld1 BLLNLYOM1LIJ1J1111111lillJlLl(
Ll 3. MATNLOOP,, | | | v 1 1ty
DUMP, | | | I I I S A

Load AR's 1,2,&3
) O T .| |- “‘l'l]lzlsluDLUlMlPJ'l:I I I O O T T O |
To mem dump
LlL1 LA, , TUN,  ,$LOC2/4,;:) | | | ||
\/\—-\_v e e ]

The number 3 in the XFAD line is the external file number of the output data file on
which the memory dump will be written (external file numbers are in the range of 1-41).

The permanent tag, MAIN LOOP in the XFAD line names the address to which control
will be transferred after the memory dump has been taken.



SECTION:

UNIVAC III SALT ]

UP- PAGE:
2558 1

J. TERMINATION

Normally, a program is brought to an orderly stop when it has completed processing and has
closed its input-output files. (Refer to Section 5 and 6.)

1. Otrderly Stop

The source program includes an XLOC line of the form

/] Form CONTENT \

\)XILLOJC,I;IIIILl!lllllllllllll(

—t 1

a. The item number and class fields may contain any valid entries.

b. The tag field may contain a permanent tag naming this line.

c. The form and content fields are written exactly as shown.

The instructions provided by the programmer must perform two functions: load Arithmetic
Register 1 with the XLOC word, and transfer control to the location specified by the
contents of low order memory location 23 as illustrated in the following example:

FORM CONTENT \

C
g Pl L1'1]1'|(1xxl‘|°|c1’1'|)1'| Ll bl

1] 1 IIAI’I’ITlUlNI’l’l$1LI°ICI213l'I 1

e ———— e

2. Specification of a Successor Program Load

When the Executive Routine terminates a program, it will attempt to load another into
memory. In order for a new program to be loaded, its program ID must have been placed
in words 41-43 of the executive area of the terminating run. (Refer to Appendix D.) The
specification of a successor run is usually accomplished through control cards which are
introduced by the programmer into Object Code Service Run at the time the Master
Instruction Tape is prepared.

Any program may contain coding which changes the designation of the previously specified
successor program,. It can do this through the communication of the proper information to
the Executive Routine at the time of termination. The coding lines needed to terminate a
program and to override the designation of the successor program that may have been
specified by the Object Code Service Run are as follows:



SECTION:

4-]
| UNIVAC III SALT
PAGE: uP-
2 2558
0. TAG FORM CONTENT\
j i ALPHlaaaay @ i
Y The program ID established
I o, | |aja,aa ) by thelabelline
y | PlR!OIGlel 1*1 | 01010101 A SN NN Y N N N N O N N I O
\ L,123, PROGIX, \
| | A D R | | I R I R S TR N T S T U N N N A |
\ N RN AR M IP
< I R e e Y GXR 0 G s e
/ N oo (hA e TN 8L0cC23, |\

The first three lines are ALPH form lines linked together to set up a three-word constant
as aaaaaaaa0000, where caaaaaaa is the program ID which is the entry used in the tag
field of the LABEL line (see subsection 4-G). The eight alphabetic characters are
supplemented by four alphabetic zeroes.

The next two lines contain instructions to load the data into words 41-43 of the executive
area. The last two lines will then cause the termination of the program.



SECTION:
4-K

UNIVAC II1I SALT

uP- PAGE:
2558 i

K. JETTISON

A jettison, or emergency stop and termination, may be requested at any time by the source
program. Generally, it is requested when unplanned conditions, such as unexpected overflow,
occur during the execution of the program. If desited, an informational memory dump can be
included as part of the jettison procedure. A program may be jettisonned at any time if source
code lines have provided for it.

1. Jettison with Print Dump

An XLOC line is used to fabricate information needed by the Executive Routine to initiate
the jettison action. If an informational memory dump is desired at the time of jettison, the
following statements must be included in the source program:

C| FORM CONTENT \

—]

Loy W GXLO0C: 3P ) ey

o YA TUNG, 8LI0CG23

I |

—

where the word fabricated by the XLOC line is loaded into Arithmetic Register 1, and
control is transferred to the address specified by the INAD word at low order memory
location 23.

The implied form of address has been used in lieu of an XLOC line. The implied address
designation must be written exactly as illustrated.

2. Jettison

If it is desired to jettison the program without attempting a memory dump, the following
statements are required:

c| FORmM CONTENT \

) N YL . S TR I I A N R I,

lIA"I'A TIULNJ’I'1$ILloic12|3l L4 N S B

N S - —

where the word fabricated by the XLOC line is loaded into Arithmetic Register 1 and
control is transferred to the address specified by the INAD word at low order memory
location 23. The implied form of address has been used inlieu of an XLOTC line. The
implied address designation must be written exactly as illustrated.




SECTION:

UNIVAC III SALT | | b

UP-  PAGE:
2558 ; 1

|
i
s

I3
L.

RERUN MEMORY DUM

The SALT system provides for a second type of memory dump, called a Rerun Memory Dump.
In this case, the contents of memory and other pertinent information are written on an output
data tape to provide a means of restarting the program at that point, instead of restarting
the program from it’s beginning. The Rerun Memory Dump is not edited for printing, and is
primarily intended to restore memory to the dump time conditions for program restart.

It is recommended that rerun points be established periodically during the execution of the
object program. The programmer has full control of the selection of these points. Depending
on the nature of the program, they may be established at periodic clock intervals, at intervals
based on the processing of a fixed number of items, at file termination points, or at other
points in the program. The Executive Routine contains a program which will write (on a
UNISERVO IIIA output tape) the information necessary to restart the program from any rerun
point selected. This information includes a memory dump, the contents of the index and
arithmetic registers, the settings of all indicators, the address at which the program is to
start, and the position and identification of all UNISERVO IIIA data tapes. After each memory
dump is completed, control will be returned to the source program.

The Executive Routine contains a program which can use the information provided by the
rerun dump to restart the program. Therefore, once a series of memory dumps has been
provided, the operator may reinitiate the run from any of the established rerun points. The
program will be restored in memory as it was at the completion of the memory dump. The
UNISERVO IIIA tapes are automatically repositioned to the point to which they had been
read or written at the time of the dump. Each peripheral control routine is signalled that
processing is to be resumed and control is transferred to the source program at the specified
restart address.

Provision for the repositioning of files mounted on general purpose channel input and
output devices is the responsibility of the programmer. The rerun dumps should be taken at
points that will facilitate the repositioning of these files.

Three statements are included in the source program to develop information required by the
Executive Routine for rerun. Instructions that activate the rerun coding reference these data
words. These statements have the form:

\[c] Form CONTENT \
LOCAfa , | b 1/
=|XFADIf by, g
“ISCGADIC .\
[ B




SECTION:

4-L

PAGE:

up-

UNIVAC IIT SALT

2558

The fitst line is a standard LOCA line, giving the address of the line at which processing
will resume when the program is restarted from this rerun point.

a. Item number and class fields may be any valid entries.

b. The tag field may contain a permanent tag naming the LOCA line.
c. The form field must always be LOCA.

d. The content field contains:

is a permanent tag naming the line at which processing is to begin if the
program is rerun.

’

The second line is an XFAD line, which is linked to the LOCA line by a hyphen in the
class field. It designates the data file f on which the rerun information will be written,
and the line to which SALT will transfer control after the rerun information has been writ-
ten on tape.

a. The tag field may contain a permanent tag naming the XFAD line.

b. The form field is always XFAD.

The content field contains:

f, designates the numeric file identifier of the UNISERVO IIIA output data file
(refer to Section 6, Tape Routines) on which the rerun information will be
written.

b, is a permanent tag, or implied address designation, naming the line to which
control will be transferred after the rerun information has been written.

The third line is a standard SGAD line, which is linked to the XFAD line by a hyphen in
the class field. It provides the address of the first line of the segment containing the
restart line. This address will be loaded into Index Register 1 by the Executive Routine
when the program is restarted from this rerun point. .

The tag field may contain a permanent tag naming the SGAD line.

The form field is always SGAD.

The content figld contains:
C is any permanent tag in the segment containing a.

In addition to these statements, the programmer must also include instructions to activate
the rerun dump. These instructions will perform the following functions:

a. Load Arithmetic Registers 1, 2, and 3, with the LOCA, XFAD, and SGAD words,
respectively.

b. Transfer control to the location specified by the contents of INAD control word at
$LOC24. The transfer of control is accomplished by the instruction in the fifth line of
the example shown on the following page.



UNIVAC III SALT

\
&
|
|
|

SECTION:

When these instructions have been executed and the rerun information has been written on tape,
SALT will return control to the program at the address specified by the XFAD line with the comparison
indicators, and index registers unaltered. The content of the arithmetic registers will have been changed.

Note that no index register address modifier is required and that mapping does not apply.

An example of coding calling for a rerun memory dump is given below.

TAG c| Form CONTENT \
Address processing begins clffer res‘l‘ar (
*

} 1] N S N N L‘OICIA PlRlolclElslsl’l N Y O T S O Y L |

Add-«for control after dump
2 o =X FADJ6, PIOSTDUMP, 5y )
l 3|RRDUMP, | |-ISGADIPROCESS ,; | | | | | | | | | | ] J(
Al Ly by 1,23, RRDUMP,, ]
|5 I L] P L4 liA!'l'lTLUlNl'i'1$LLiOIc12141'l S I 1)

L\/‘ )




SECTION:

UNIVAC III SALT ' A

UP- PAGE:
2558 | .

5. INPUT-OUTPUT ROUTINES

The input-output units of the UNIVAC III are controlled by input-output routines which may be
called into a source program during assembly. Sections 5 and 6 of this manual describe the
input-output control routines. A subsection containing general information introduces the control
routine concept. It is followed by the detailed description of each of the individual routines.

A. GE}

The SALT system provides a complete set of control subroutines to handle the input and output
of data files processed on the following devices:

SECTION 5 SECTION 6
Card Reader (80 column) UNISERVO 1A

Card Reader (90 column) UNISERVO II1A
Card Punch (80 column) '
Card Punch (90 column)

Paper Tape Reader

Paper Tape Punch

Printer

As many as forty-one files may use the input-output equipment listed above in any combina-
tion.

The programmer provides for the inclusion of the input-output routines by writing statements
which cause selected routines to be assembled with the program. Each calling statement is
followed by a series of designations which describe to the called routine the files to be
processed, and the conditions under which the processing is to occur. The functions of each
routine can be varied depending on the specific external medium involved and on the conditions
under which it will be processed.

The SALT system uses the parameters specified by the calling statement to modify the
called routine to fit the conditions described by the programmer. The input-output subroutines
have been prepared for inclusion in the program as a separate load. The routines may be

entered by the processing program any time that the program logic requires access to the
various functions they provide.

The basic concept of all the input-output routines is the use of an item advance function,
which makes available to the program successive items for processing in input files, or suc-
cessive areas for storage of data to be placed in output files. The item advance function
transmits data to or from the external media as the need arises. One current input item, or one
current output-item area-is automatically made-avaitable for processing.

A set of input-output macro-instructions have been provided in each subroutine to simplify com-
munication. The use of a macro-instruction causes the assembly routine to include at that point



SECTION:

PAGE:

UNIVAC IIT SALT

2558

in the assembled object program the particular group of instructions identified by the name of
the macro-instruction specified. The number of lines in this coding must be considered by the
programmer when computing the capacity of his program segments. There is a macro-instruc-
tion available for each function which an input-output routine performs. Separate sets of
macro-instructions are available to perform the functions for each file when more than one
file is invoived. A macro-instruction may be used anywhere in the source program that its
function is required.

The rules for the use of the input-output macro-instructions, the addressing of input-output
items, and the integration of the input-output routines into a source program are covered in the
paragraphs below. The specific information associated with each of the individual routines
follows under a separate heading for each routine.

1. Calling Statements

A calling statement in the source program calls for the inclusion of an input-output routine
and supplies certain parameters. The general form of a calling statement is:

ITEM NO. TAG c| FORM CONTENT\

routine-name, P1: P2+ - -

marker {
PR MAAAAL T SUBRI | | o b1

i

Pons Pas1r = 0

I

The item number assigned by the Programmer is restricted to the upper two levels of the
item number. The item numbers from nnnnAAAA through nnnn9999 are reserved for use by the

input-output routine, These numbers may not be used elsewhere in the program.

The entry in the tag field of a SUBR coding line is called a marker, and follows the rules
for permanent tags. It is used in the source program to access the object code produced by
the routine. For example, all macro-instructions communicating with a routine require the
use of this marker as a part of the macro-instruction name.

The class field of the first line of the calling statement is always blank. The entries in
the content field may require several lines, as shown. If so, the class field entries of the
subsequent lines contain hyphens.

The form field always contains the symbol SUBR in the first line, as shown.

The first designation in the content field is the specific name assigned to the routine. The
remaining designations are the parameters required by the routine. The order and form of
the parameters vary with the particular routine.

All calling statements include file identifiers among their parameters. These are symbolic
names or designations assigned by the programmer to each data file processed by the
routine. A unique one-or-two-character numeric designator, in the range of 1-41, must be
assigned by the Programmer to each data file involved in the program.



UNIVAC III SALT

SECTION:

UP-

2558

PAGE:

5-A

In addition to these external file numbers, a second set of file designations must be used

in some of the routines. These designations are one- or two-character alphanumeric
characters, where the first character is always alphabetic. This designation, along with
the marker, enables the program to identify the particular file that is to be processed.

All calling statement parameters are described in detail in the descriptions for individual

routines.

Integration with Source Program

Calling statements for input-output routines may appear anywhere in the source program.
Each input-output routine comprises a program load. The routines supply their own load-
definition statements. The source program must provide for reading the input-output loads
into memory, either by chaining them to other program loads, or by calling them in when

needed as overlay loads.

In additionto providing for the reading-in of the input-output loads, the source program
must also specify the location these loads are to occupy in memory. Each input-output

toutine contains segment definition lines for defining the position of the input-output seg-

ments in memory, relative to one another. However, the input-output segments must be

assigned a location in memory relative to the source program segments, through specifica-

tion of their source program predecessor segments. If the location of an input-output
routine can be assigned by specifying a single predecessor segment, the segment
number of the predecessor is specified as a parameter during the call of the input-output

routine, If more than one segment must be specified to establish the location of the

routine, the predecessor segment parameter is left blank and the source program must

include a partial segment definition line of the SGRT form (see example).

c| FORM CONTENT \
{ SlGlR\T“‘l*LSIEIGJwlsllllszlrl-l-l-l [ A L?
L’_\/

This line may appear anywhere in the source program.

Its item number, tag, and class fields are disregarded during assembly.
The form field always contains the symbol SGRT.

The designation m* SEG], in the content field names the first segment of the input-output routine,

where m is the marker used in the calling statement for this routine. The designations

$1/ 52/ ... name all the possible predecessor segments of m*SEG]1, (the first segment of the

subroutine).

For all input-output routines, the first segment of the input-output load is named m * SEG1,
and the last segment of the load is named m * SEG2, (where m is the marker of the calling

statements) regardless of the number of segments included in the load. These names may
be used in any SGMT and SGRT statements in the source program for assignment of the

input-output segment locations.



SECTION:

PAGE:

UNIVAC III SALT

3. Input-Output Macro-Instructions

Macro-instructions are supplied by the SALT system input-output routines to provide communi-
cation between themselves and the processing program. The general form of an input-output
macro-instruction is:

\c| FORM CONTENT \
( m * macro-name, p], P2, ‘e {
MCROI | v v T g

The item number of a macro-instruction may be assigned by the source program or may be
supplied by the SALT assembly. In either case, there must be both a coding segment and a
pool segment in the source program, defined to contain this item number. Furthermore, both
of these segments must be under the control of a MAPS statement at the point at which the
macro-instruction appears in the source program. Index Register 1 may not be used to map
the pool segment defined to include the item number of the macro-instruction.

The tag field may contain a permanent tag. It will name the first line of the coding produced
by the macro-instruction after the program is assembled. A MCRO line does not survive the
assembly.

The class field of a macro-instruction is always blank.

The form field always contains the entry MCRO.

The first designation in the content field, m * macro-name, is the name of the macro-in-
struction, where m is the marker used in the SUBR line which called the routine. In
certain routines that operate on a single file, the name of a macro-instruction is a fixed
functional name, such as ADV for item advance. In routines designed to operate on more
than one file, this name may be composed of two parts: the first part is the fixed functional
name, and the second part is the alphabetic file designation. For example, the macro-name
of the item advance for a UNISERVO IIIA file is ADV f, where f is the alphabetic file
designation. The full name of this macro-instruction is therefore m*ADY f{,.

The designations Py, P2, ... are parameters which may be required in particular macro-
instructions. A list of the macro-instructions available with each routine describing their
functions, and the formats of their content field designations, appears in this section under
a separate heading for each routine,

In general, after a macro-instruction has been executed the following conditions exist:

a. The contents of the index registers are unchanged except in those subroutines where
an index register is specified as a parameter. In these instances, the specified index
register will have had its contents altered.

b. The contents of the arithmetic registers are altered by the execution of the input-output macro-
instructions. Furthermore, arithmetic re gisters may be utilized by some macro-instruc-
tions to carry information back to the processing program.



| SECTION:

UNIVAC III SALT s

UP- | PAGE:
2558 | 5
!

c. The status of the comparison indicators may be altered; the status of the sense indi-
cators is not altered.

d. Information concerning a particular file may be placed by the macro-instruction in one of
two memory locations contained in the input-output routine. These locations are tagged
m*f], and m* fy,
where m is the marker of the calling statement and

§ is an a2lnhaheatic fila degignation
¢ 1S an a.:pnasetic I1i¢ aesignation.

These lines occupy consecutive memory locations and they may be addressed by the
processing source program using indirect addressing. For example, the contents of m * f1,
may be loaded into Arithmetic Register 1 by the execution of the instruction:

/FORM CONTENT \

\I 1| IlAI'I'!Li'Lll’L(

. *
JNAD L am T AT |'|/

where m is the marker, and A is the alphabetic file designation.

The particular exit conditions for each macro-instruction are given in the description
of the pertinent input-output routine.

4. Addressing Items

The input-output routines maintain full control over the actual location of input-output
items in computer memory. Successive items of the same file may occupy different posi-
tions in memory. The allocation of specific memory areas to contain the items and the
location of the current item is controlled by the input-output routine. Each time an item
advance macro-instruction for a file is executed, the address of the new current item

is loaded into a specified index register before control is returned to the worker
program. Coding which references the item uses this index register to furnish the base
address of the item in memory. A single set of coding can process all the items for one
file., While the base address of the item is a variable component of this coding, the relative
position of each word in the item is fixed. Two techniques are available for the addressing
of items using these components: decimal addressing and a special type of permanent tag
addressing.

a. Decimal Item Addressing. The program relative address supplied in the specified index
register by the macro-instruction is the 15-bit address of the first word of the current
item. The index register containing this address must be specified as the address
modifier in the instructions referencing the item. The address designation of these in-



SECTION:
5-A

|
PAGE: LUP- |l

UNIVAC III SALT

Thus, if Index Register 2 has been loaded with the address of the current item, the
address designation for the first word of the item in an instruction is 0. For example,
the instruction:

\ FORM CONTENT\

(lll 2[’1L1ﬂ11'101'11111111illlll(

loads the first word of the item into Arithmetic Register 1, and the instruction:

| FORM CONTENT \

)1 L2 S T Y e L |/
e ————

stores the contents of Arithmetic Register 1 in the tenth word of the item.

While this addressing technique offers the advantage of brevity, the address designa-
tions have no mnemonic quality. When a decimal address is referenced and the IR
designation has been left blank, the index register mapping the segment which contains
the instruction, would become the address modifier, instead of the index register mapping
the segment which contains the item. Therefore, since mapping cannot be used, the index
register address modifier must be stated explicitly for each instruction.

b. Item Addressing with Permanent Tags. The SALT system provides an alternate item
addressing technique which allows the IR designations to be omitted from the source
code statements. The fields within an item may be mnemonically named and mapped by the
use of the SALT form EQDX. The general format of an EQDX line is:

c| FORM CONTENT\

EQDX|x+n ,=tag 1 ,ta92, ..., l/

where the item number, class and tag fields are disregarded during assembly,

(x) is a decimal number, 1 through 15, which specifies the index register containing the
base address of the item (specified in the subroutine calling statement for this use),
(n) is a decimal number representing the address of the field being named, relative to
the first word of the item. If n equals 0, that is, if the first word of the item is being
named, the plus sign and the zero may be omitted. The designations (tag 1, tag 2, ...)
are permanent tags without modifiers, which are assigned to field n and are used in
instructions to reference these fields.



| SECTION:
UNIVAC II1 SALT [ >oh
.  PAGE:
2558 | ”
For example, if the first and tenth words of an input item are to be named FIELD 1 and
FIELD 10 respectively, and if Index Register Z has been assigned to control the address-
ing of the item, then the lines:
Jc] FORM CONTENT
Equates the word at relative address zero with the tag FIELD 1
EQD X2 , =F I EL D1, : ‘ ‘
e T A O e et T o S O T T s N U N s O Y
l Equates the word at relative address 9 with the tag FIELD 10
EQDX)2+ 9, = FVELD VO, 0y | b
L — — i
-—\/—W\————Nf e e
rlliL|1¢||||111141¢1111L111|t111v|1111|irJ
K o sV FVERD Y
Both instructions now accomplish the same action
IO O L VI IV U I S A Y A B O O
} o By R VBP0 Y
\ 5\ Both instructions now accomplish the same action
L PSS Y e e
L—\/W—_\ —

In both cases, of course, Index Register 2 would have to be loaded elsewhere in the
program with the starting address of the item.

5. Recovery Coding

The SALT system input-output routines controlling the general purpose channels have been
programmed to attempt reprocessing of records when hardware detected errors occur. The
routines will automatically attempt for a limited number of times to reread or repunch the
record which produced the error signal. If the error clears up within the alloted number of
reprocessing attempts, the program will continue to be executed. Occasionally an error con-
dition will be encountered which does not clear up after several attempts at reprocessing.
In this instance, the input-output routine can telinquish control to a routine provided by

the source program.

When coding has been included in the source program to supplement the input-output
routine, the tag of the first line of source code routine is to be specified as a parameter
when the SUBR line is written. The actual transfer of control to this coding will occur as
the result of a type-in response. The response will be to a message typed-out by the
input-output routine, informing the operator that a persistent errer has been encountered.



SECTION:

5-A

PAGE:

|
|

uP-

UNIVAC IIT SALT

2558

The first line of the source code recovery coding should be a SGAD line in the following
format:

TAG c| Form CONTENT {

RECOVERY| [SGADIRRECONVERY oy | | | | 1 L1111
V____./_\. B

(_.__-——-4

The item number field may contain any valid entry.

The tag field contains a permanent tag naming the first line of the recovery coding.
The c field is to be blank.

Form is always SGAD.

The content field contains a designation which is the permanent tag naming this line.

The SGAD line will be immediately followed by the instructions which are to be executed.
This coding may provide for the bypass of the particular unit causing the error. It may
close out all the files assigned to the program and terminate the run. If the recovery pro-
cedure attempts to continue processing by reprocessing or bypassing the record, the
subroutine must be reinitialized. This is done by again executing the macro-instruction

m * INIT,. Reinitialization must precede the execution of any further macro-instructions.

The recovery coding must be mapped by Index Register 1. The loading of Index Register 1
with the starting address of the segment is accomplished by the input-output subroutine,
prior to the transfer of control to the source code subroutine. Control will be transferred
to the instruction immediately following the SGAD line.



| SECTION:
5-B

UNIVAC III SALT

|UP- PAGE:
7 2558 1
|

B. 80-COLUMN CARD READER CONTROL SUBROUTINE

A control system for reading cards from an 80-Column Card Reader is available through

a single routine of the SALT Data Processing Library. This routine, CRD80RZZ, is
called from the library into the source program. The call includes a parameter set which modi-
fies the control system to conform to and provide options required by the source program. The
modified control routine is assembled with and becomes an integral part of the user’s program.

The control system represents a single program load and thus will occupy a unit of the
memory area required by the assembled program. This load includes the card control
subroutines and storage area for the card images read. In addition, a single set of macro-
instructions is defined by the subroutine.

Macro-instructions provide complete control over the card control subroutines. These instruc-
tions are used by the programmer in the source program where their specified functions are
needed. The macro-instructions are assigned names in the form m*function. The Card Reader
routine is made unique by assigning a marker, m, to the call on CRD80RZZ. This marker is
in the form of a SALT tag. The function is as defined by the subroutine.

1. General
a. Addressing Card Images.

Successive card images may be read into different positions in memory. As each image
is advanced, the address of the first word of the current image area is supplied by the
Card Reader routine in a specified index register.

A single set of coding designed to process one card image is supplied by the programmer.
This coding addresses words of the image relatively. A valid address of a word of the
current image is derived by modifying the relative address with the index register con-
taining the current image area address supplied by the Card Reader routine.

The n words of an image, from first to last, are numbered relatively from 0 through n-1.
For cards read with translation, n equals 20; for cards read with no translation, n equals
40. The relationship of card columns and rows to the n words is conventional.

(1) Instructions coded to access words of an image use these numbers as a SALT
decimal address. These instructions are modified by the index register loaded with
the first word of the current image area.

For example, with the current image area address in Index Register 4 , to load the last word
of a translated image into Arithmetic Register 1, use the instruction: 4, L, 1, 19,.

To store the contents of AR1 in the last word of an untranslated image, use the entry:

4,5T,1,39,.

(2) An alternate way to construct image processing coding is available through use of
the SALT form EQDX. A tag, naming a particular image word, is equated with an
index register number combined with the image word number (0 through n-1).



SECTION:

5-B

PAGE:

“UP-

UNIVAC 111 SALT

2558

For example, to equate tags for the first and tenth word of a translated image with

IR4, use:
Ic] Form CONTENT\
\>E.QlD’vX4l’4=iTigNiEj'l A SN T T NS S DO S B N |
{L o A s TTEN

An instruction to load AR1 with the first word of the image would be written as:
L,1,TONE,.

An instruction to store AR1 into the tenth word of the image would be written as:

ST,1,TTEN, or ST,1,TONE +9,.

. The Current Card Image Area.

Only one card image area is current at any time. The words of the image are available
for processing when its area is current.

. Opening the Card Reader File.

The card reader file is opened by the macro-instruction m*INIT,.The card reader file is
opened at the start or restart of a program before any card image area is requested.

. Advancing Card Image Areas.

The address of the first word of the current card image is obtained by executing the
macro-instruction m*ADV,. After each execution of m*ADYV, the next card image is
advanced and becomes the current image. The address of the first word of the current
image area is supplied in a specified index register.

. Retaining Access to a Card Image.

Processing may dictate that information from specific card images shall govern the
processing of succeeding card images. (This occurs typically when a header/trailer card
relationship exists in a given card file.) In this case, the programmer must provide for
the retention of the required information fields. This is accomplished by moving the
required fields from the image storage area to a storage area in the source program while
the card image containing such data is current.



’ ' SECTION:

UNIVAC III SALT

2. Calling Statement

The general form of the calling statement for CRD80RZZ Card Reader Routine is shown
below.

It should be noted that the INDX and SLCT lines, although a part of the calling statement,
are not hyphenated. Parameters Py through Pg may take as many lines as necessary, and
all of these lines following the first line are hyphenated as shown.

ITEM NO. TAG c| FORM CONTENT|
marker J
jn njnn AAAAL SUBRICRDBORZZ, P/, P, | | |
LTJ I R = I i P L. TR I A A A B A . IJ
Ll Ll IlNlD\xPZ'llllIlll\kllllllli|.l)
Ll Lol SLCTIRDAPAPS o\ | v vy L\
B S NS

The item number field contains a two level item number as indicated: the lower levels
are restricted for use by the subroutine coding. marker is a permanent tag making the coding
produced by CRD80ZZ unique.

The parameter CRD8ORZZ specifies that the 80 column Card Reader routine is being called.

P] defines the location in memory of the first segment of the reader routine coding by speci-
fying its predecessor. If the predecessor segment is part of the source program, this
parameter is of the form SEGn, where n is the segment number of the predecessor. If the
predecessor segment is part of a routine produced by the SALT assembly, this parameter is of
the form m * SEGn, where m is the marker used in calling the routine, and n is the number of
the last segment in the routine. If more than one predecessor is needed to define the location
of the reader routine coding, Py, is A (space). In this case, a SGRT line naming the prede-
cessors is to be included elsewhere in the source program. (Refer to heading A-2 of this
section.)

Py is the successor load, if any, which is to be chained to the Card Reader load. If a load is
to be chained to the Card Reader load, p,, is a permanent tag naming the load definition

line of the chained load. If no load is to be chained to the Card Reader load, Por is a space.

P3 is the numeric file designation for the card reader file, and is a unique number, 1 through
41.

Py is the number, 1 through 6, of reserve storages to be allocated to the routine.

Pg is to specify the use of automatic translation. It is NT if the cards are to be read without
translation. It is a space if the cards are to be read with translation.



SECTION:

UNIVAC III SALT

PAGE:

uP-
2558

Pg is a permanent tag naming the first line of the recovery coding supplied by the source
program. If such coding is not supplied, Ps is to be left blank,but the terminating comma is
to be retained.

P, is a number, 2 through 15, specifying the communication index register to be used by
the m * ADV, macro-instruction. Note that Index Register 1 may not be specified.

RDA P4Ps the parameters P4 and Pg, described above, are combined without punctuation to
form a name used internally by the routine. For example, if P4 has been specified as 4 and
P5 as .NT, this designation is RDA4NT. If P4 is 1 and P5 is a space, this designation is
RDAIL. If this statement is omitted, a routine providing for six reserve areas and automatic
translation is supplied. It will be as though RDA6 was specified.

Integrating the Card Reader Routine with the Soutce Program

A few SALT Assembly System directives must be provided in the source program to effect
the proper integration of the Card Reader program load.

a. Positioning the Load.

The Card Reader program load is identified by the name, m*$NAM]I,.

Using this name it may be read in as an overlay. More frequently it will be chained to a
load of the source program and be read into memory along with it. This is accomplished
by writing a LOAD statement in the source program as follows:

\ TAG C| FORM CONTENT \
(AINLYITIAJGI ! LOAD|s , m* $ NNAMT | | | | [ p 10 l/
T ———

Where ANYTAG names a load of the source program whose first segment is s. The Card
Reader program load m*$NAM]I, is a successor to the load ANYTAG and will be read
into memory when ANYTAG is read.



SECTION:

UNIVAC III SALT >-B

UP- PAGE:
2558

b. Positioning Segments.
(1) The first segment of the Card Reader program load is always m*SEG]I,.

The user may establish a single predecessor to this segment by simply specifying
SEGn, or m*SEGn, as a parameter (p,) of the subroutine call. The form m*SEGn,
(where n is the number of the predecessor segment) is used when the predecessor
segment belongs to another subroutine called into the source program. The first
segment of the input-output routine will be assembled relative to the last line of
the specified predecessor.

The user may establish more than one predecessor segment by specifying parameter
Py as A,. This in effect defers specification to a statement that must appear in the
source program as follows:

FORM CONTENT \

\c
{’SIGLRIT m* SEGV,,  SEGIn , SEGP, 1)

| —]

m*SEG1, names the first segment of the input-output routine and SEGn, and SEGp,
are its predecessors.

In this case m*SEG]1, will be assembled relative to the last line of the longest of its
predecessor segments.

(2) The last segment of the input-output program load is always, m*SEG2,. This segment
may be named as the predecessor of a segment of the source program. If required,
this is done simply by specifying m*SEG2, in the appropriate SGMT, or SGRT, line
of the source program.



SECTION:
P UNIVAC III SALT
PAGE: A‘UP-
6 2558
4. Card Reader Macro-Instructions
(Each instruction produces four lines of object code)
m*INIT,
[c] FORM CONTENT\
} MCROIm* LNU T vy v 010 L(
LVW

Entrance

Conditions: None.

Results: m*INIT, opens the Card Reader routine by setting all initial conditions.

Discussion: m*INIT, must be executed once, and only once, prior to the execution of the
m*ADY, macro-instruction.

m*ADY,
FORM CONTENT \
}’MCIRIO m* ADY I/

Entrance

Conditions: None.

Results: m*ADYV, causes the reading of cards in the Card Reader. m*ADY, places in a
specified index register the address of the next card image, making it the current
card image.

Discussion:

The programmer should provide a procedure for detecting the end of the file, based
on some field or fields in a current image. No further m*ADV, macro-instructions
should be executed after detecting this situation. Six cards should follow the

card on

which detection of end of card file is based. This will insure that a

reader off normal, due to an empty input magazine, does not occur.



SECTION:
5-B

UNIVAC IIT SALT

UP- PAGE:
2558

5. General Considerations When Using Card Reader Macro-Instructions
a. All of the input-output macro-instructions produced are subject to the same basic con-
siderations with regard to use.
(1) Program Requirements

Each macro-instruction must be assigned an item number in the range encompassed

L ~ PR W, R B PSR £ ¥ ol ¥ | - 2 T am S i de e e mevom fam e bk
by both code and pool segment definitions {SGMT). An index register mapping state-

ment (MAPS) for both the code and pool segments must precede the use of any macro-
instruction in the source program.

(2) Program Restriction
No macro-instruction may be included in a segment whose pool is mapped with Index
Register 1.

(3) General Exit Conditions
(a) Index Registers

Except for the case where a specified index register is to contain the address of
a current item, no other index registers are altered by the execution of a macro-
instruction.

(b) Arithmetic Registers

The contents of the arithmetic registers are altered by the execution of the macro-
instructions.

(¢) Indicators

The status of the Low, High, and Equal indicators may be altered by the execu-
tion of the macro-instructions.



SECTION:
w 5-C

UNIVAC III SALT |

.UP- PAGE:
i 2558 1

C. 90-COLUMN CARD READER CONTROL SUBROUTINE

A control system for the reading of data into the UNIVAC III Central Processor for 90-Column
Punch cards is available through a routine of the SALT Data Processing Library. This routine
CRD90RZZ, is called from the library into the source program. The call includes a parameter
set which modifies the Card Reader Control Routine to conform to and provide options re-
quired by the source program. The modified control routine is assembled with and becomes an
integral part of the user’s program.

The control system represents a single program load and thus will occupy a single consecu-
tive portion of the memory area required by the assembled program. This load includes the
card reader control subroutines and storage areas into which the punched card images are
read. In addition, a single set of macro-instructions is defined by the subroutine.

Macro-instructions provide complete control over the punched card reader control subroutines.
The programmer will use these instructions within the source program at the points where
their specified functions are needed. Macro-instructions of the routine are assigned names in
the form m* function. The Card Reader routine is made unique by assigning a marker, m, to
the call on CRDYORZZ. This marker is in the form of a SALT Tag. The function is as
defined by the subroutine.

1. General

a. Storing Data

Multiple storage areas provide the card reading subroutines with the means of achiev-
ing efficiency in card reading. These storage areas are used by the subroutine on a
rotating basis. Card Images are made available to the programmer when advanced, at
his direction, to bring the next image into a current status. The advancement of each of
the card images is accomplished through the use of an index register designated by the
programmer when the subroutine is called. This index register is loaded with the address
of the first word of the current storage area. When the current storage area is advanced,
the address of the first word of the next card image is placed in the specified index
register.

A maximum of six storage areas may be designated by the programmer for use by the
card reader subroutine CRD90RZZ, to store successive card images. A simple means of
addressing the card image areas is available to him.

The subroutine has been designed to provide the programmer with the possibility of us-
ing the same set of instructions to process each card image without regard as to the
work area being used. The words within the storage areas are to be addressed on a
relative basis. This relative address is converted to a valid address by modifying the
relative address with the contents of the designated index register. Control of the con-
tents of the index register as each work area changes is provided by the subroutine.



SECTION:

5-C

UNIVAC IIT SALT

PAGE:

2558

The storage areas for reading 90-column cards are 24 words in length, When card images

are read into these areas, most of the words delivered contain four alphanumeric characters.

Two words, located, at relative addresses 11 and 23 receive special treatment. A single
alphanumeric character is delivered to each of these words from columns 45 and 90
respectively. The character is stored in the most significant part of the word, with the
rest of the word filled with binary zeroes.

Instructions in the source program may use the decimal form of address to access words
of the current card image area. The actual address of a word within the storage area is
developed automatically by modifying the decimal number used in the m position of the
SALT instruction line by the contents of the designated index register (The index
register contains a value equal to the address of the first word of the current image
area.) For example, assume that a number representing the starting address of the first
word of the current image area has been loaded into Index Register 4. Assume also that
a programmer wishes to load four words of data from the last four words of a card image
resulting from the reading of a 90-column card. The instruction will be written as
follows: 4, L, 1234, 23,,

Another way to address words within a storage area is by tags through the use of the
SALT form EQDX. A tag naming a particular storage area word is equated with an index
register and the decimal designation of the storage area’s relative address. Noting that
the first word of the storage area has a relative address of zero, the following is an
example of the EQDX form equating tags to the first and tenth words of the storage area:

\c| FORM CONTENT \
EQDX[4, =CASH., | | 11111 1/
e 4+ 9 = PIAY g J)
— s —(

An instruction to load AR1 with the first word of the storage area could then be written

as: L,1,CASH,.



UNIVAC III SALT

SECTION:

5-C

2558

PAGE:

An instruction to load the contents of AR2 from the tenth word position of the storage

area could be written two ways as shown in the example:

\ CONTENT\

|
\ L., 2, CASH+9 " | || | | "

) —————

b. The Current Card Image Areas.

Only one card image is current, or normally accessible to the programmer at any one
time. The data are accessible for processing in an area only when that area is current.

c. Opening the Card File.

The card file is opened when the user program executes a macro-instruction m*INIT,.
The card file must be opened before the m*ADYV, macro-instruction can be used. The
source program must be constructed in a way that permits the execution of this macro-
instruction at the start or restart of a program. This action does not in itself make a

card image available for processing.

d. Advancing the Card Image Areas.

The address of the first wotd of the current image is obtained by executing the macro-

instruction m*ADV, . Each time a new image is desired, the m*ADYV, instruction must be
executed. The address of the first word within the next current storage area is supplied

automatically by the card reader subroutine in an index register designated by the

programmer.

e. Retaining Access to a Card Image.

Processing may dictate that information from specific card images shall govern the

processing of succeeding card images. (This occurs typically when a header/trailer card
telationship exists in a given card file.) In this case, the programmer must make provision
to retain access to the required information fields. This is accomplished when the card
image is current by moving the required fields from the image storage area to a storage

area in the source program.



SECTION:

5-C

PAGE:

UP-
2558

UNIVAC IIT SALT

2. Calling Statement

The general form of the calling statement for CRD9ORZZ Card Reader routine is shown

below.

It should be noted that the INDX and SLCT lines, although a part of the calling statement,
are not hyphenated. Parameters Py through Pg may take as many lines as necessary, and
all of these lines following the first line are hyphenated as shown.

b. ITEM NO. TAG C| FORM CONTENT
g nininin AAAAImar ke r; | S.UBR|CRD90RZZ, Py, P, | | [ | | ! |
\ 1 L L) [ S OO . VIO YN LY 73 N N O O O S
! I R J END Xlpsio 0 0y 00 0
| | | ! L1 l x SLer RIDIAJE4IP5|'I N T T T T S S B
[ — - — 1

The item number field contains a two level item number as indicated; the lower levels are
restricted to use by the subroutine coding. The entry, marker, is a permanent tag making the
coding produced by CRD90RZZ unique.

The parameter CRD9ORZ Z specifies that the 90-column card reader routine is being called.

Py defines the location in memory of the first segment of the reader routine coding by spe-
cifying its predecessor. If the predecessor segment is part of the source program, this
parameter is of the form SEGn, where n is the segment number of the predecessor. If the
predecessor segment is part of a routine produced by the SALT assembly, this parameter is
of the form m * SEGn, where m is the marker used in calling the routine, and n is the
number of the last segment in the routine. If more than one predecessor is needed to define
the location of the reader routine coding, Pqis A (space). In this case, a SGRT line nam-
ing the predecessors is to be included elsewhere in the source program. (Refer to heading

A-2 of this section.)

P, defines the successor load, if any, which is to be chained to the card reader load. If a
load is to be chained to the reader routine load, "2 is a permanent tag naming the load
definition line of the chained load. If no load is to be chained to the card reader load, Py

is a space.

P3 is the numeric file designation for the card reader file, and is a unique number, 1

through 41.

P4 is the number, 1 through 6, of reserve storages to be allocated by the routine.




SECTION:
5-C

UNIVAC III SALT

UP- PAGE:
2558 5

Pg specifies the use of automatic translation. It is .NT if the cards are to be read without
translation. It is space if the cards are to be read with transiation

Pg is a permanent tag naming the first line of the recovery coding supplied by the source
program. If such coding is not supplied, Pg is to be left blank but the terminating comma is
to be retained.

P7 is a number, 2 through 15, specifying the communication index register to be used by the
m * ADVY, macro-instruction. Note that Index Register 1 may not be specified.

RDA P4 P the parameters P4 and Pg. described above, are combined without punctuation to
form a name used internally by the routine. For example, if p, has been specified as 4 and
P5 as .NT, this designation is RDA4NT. If Py is 1 and Pg is a space, this designation is
RDAT.

. Integrating The Card Reader Routine With The Source Program

A few SALT Assembly System directives must be provided in the source program to effect
the proper integration of the Card Reader program load.

a. Positioning the Load.
The Card Reader program load is identified by the name, m*$NAMI1,.
Using this name it may be read in as an overlay. More frequently, it will be chained to a

load of the source program and be read into memory along with it. This is accomplished
by writing a LOAD statement in the source program as follows:

\ TAG c| FORM CONTENT \
z ANY TAG | LOAD|s ,m*$ NAMIT, | | | | | |, | | || 1(
v e ™

ANYTAG names a load of the source program whose first segment is s. The Card Reader
program load m*$NAM]1, is a successor to theload ANYTAG and will be read into
memory when ANYTAG is read.

o

Positioning Segments.

The first segment of the Card Reader program load is always m*SEGI,.

The user may establish a single predecessor to this segment by simply specifying
SEGn, or m*SEGn, as a parameter (p])of the subroutine call.

n is the number of the predecessor segment. The form m*SEGn, is used when the
predecessor segment belongs to another subroutine called into the source program.
The first segment of the input-output routine will be assembled relative to the last
line of the specified predecessor.



SECTION: |
5-C

UNIVAC III SALT

PAGE: UP-

2558

- B S

The user may establish more than one predecessor segment by specifying parameter P
as A,. This in effect defers specification to a statement that must appear in the source
program as follows:

] Form CONTENT  \

( S GR T|m* SEG 1, ,,S EGn, ,SEGpP ,j. 1. ] | 1(

il

m*SEG1, names the first segment of the input-output routine and SEGn and SEGp
are its predecessors.

In this case m*SEGI1, will be assembled relative to the last line of the longest of its
predecessor segments.

The last segment of the input-output program load is always, m*SEG2,.
This segment may be named as the predecessor of a segment of the source program. If

required, this is done simply by specifying m*SEG2 in the appropriate SGMT or SGRT
line of the source program.

4. Card Reader Macro-Instructions

(Each instruction produces four lines of object code.)

m*INIT,
C] FORM CONTENT\
iMlclRIO mPUNU T n/
| e

Entrance

Conditions: None.
Results: m*INIT, opens the Card Reader routine by setting all initial conditions.

Discussion: m*INIT, must be executed once, and only once, prior to the execution of the
m*ADY, macro-instruction.



 SECTION:
UNIVAC III SALT s
- | PAGE:
2558 | 7
|
m*ADY,
C FORM CONTENT
MCROIm* AD 'Y\, | | | | | 1 b
U —— —
Entrance
Conditions: None.
Results: m*ADY, causes the reading of cards in the Card Reader. m*ADYV, places in a

specified index register the address of the next card image, making it the current
card image.

Discussion: The programmer should provide a procedure for detecting end of card file based
on some field or fields in a current image. No further m*ADV, macro-instruc-
tions would be executed after detecting this situation. Six cards should follow
the card on which detection of end of card file is based. This will insure that a
reader off normal, due to an empty input magazine, does not occur.

5. General Considerations When Using Card Reader Macro-Instructions
a. All of the input-output macro-instructions produced are subject to the same basic con-
siderations with regard to use.
(1) Program Requirements.

Each macro-instruction must be assigned an item number in the range encompassed
by both code and pool segment definitions (SGMT). An index register mapping

statement (MAPS) for both the code and pool segments is made before any macro-
instruction is included in the program.

(2) Program Restriction.
No macro-instruction may be included in a segment whose pool is mapped with Index
Register 1.

(3) General Exit Conditions.
(a) Index Registers

Except for the case where a specified index register is to contain the address of
a current item, no other index registers are altered by the execution of a macro-
instruction.

(b) Arithmetic Registers.

The contents of the arithmetic registers are altered by the execution of the
macro-instructions.

(c) Indicators.

The status of the Low, High, and Equal indicators may be altered by the execu-
tion of the macro-instructions.



SECTION:

UNIVAC 111 SALT >-D

UP- PAGE:
2558 1

D. 80-COLUMN CARD PUNCH CONTROL SUBROUTINE

A control system for the punching of data into 80-Column Punch Cards from the UNIVAC III
Punch is available through a routine of the SALT Data Processing Library. This routine,
PUN8BOPZZ, is called from the library into the source program. The call includes a parameter
set which modifies the control routine to conform to and provide options required by the source
program. The modified control routine is assembled with and becomes an integral part of the

car’a neaaram
ST S5 piVEiIdiiie

£

The control system represents a single program load and thus will occupy a unit of the memory
area required by the assembled program. This load includes the card punching control sub-
routines and storage areas from which the punched card data is punched. In addition a single
set of macro-instructions is defined by the subroutine.

Macro-instructions provide complete control over the punched card control subroutines. The
programmer will use these instructions within the source routine at the points where their
specified functions are needed. Macro-instructions of the routine are assigned names in the
form m* function. The Card Punch Routine is made unique by assigning a marker, m, to the
call on PUN8OPZZ. This marker isin the form of a SALT Tag. The function is as defined
by the subroutine.

1. General

a. Storing Data

Multiple storage areas provide the Card Punching subroutines with the means of achiev-
ing efficiency in card punching. These storage areas are used by the subroutine on a
rotating basis. Storage areas are made available to the programmer for assembling card
format when advanced at his direction to bring the next area into a current status.
The advancement of each of the storage areas is accomplished through the use of an
index register which is designated when the programmer calls the subroutine. The index
register is loaded with the program relative address of the first word of the area. When
the current storage area is advanced, the address of the first word of the next storage
area is placed in the specified index register by the subroutine,

A maximum of four reserve storage areas may be used by the programmer to edit and
assemble card format punched under control of the card punching subroutine PUNS8OPZZ.
The programmer is responsible for writing the instructions to assemble punched card
format into these storage areas. A simple means of addressing the storage areas is
available to him.

The subroutine has been designed to provide the programmer with the possibility of
using the same set of instructions to assemble a particular format without regard as to
the work area being used. The words within the storage areas are addressed during the
assembly of the card format on a relative basis. This relative address is converted to
a valid address by modifying the relative address with the contents of the designated
index register.



SECTION:

5-D

PAGE:

UNIVAC III SALT

2558

The size of the storage areas needed to edit card images depends on whether punching
is to be translated from UNIVAC III machine code to Hollerith punched card code ot
punched in machine code (untranslated). When translation is specified, the capacity of
each card is limited to 20 words of information. The capacity of a single card is 40
words when data is punched untranslated. The words within a wotrk area are addressed
on a decimal number basis ranging from zero for the first position to 19 or 39 depending
on the number of words that can be punched at one time.

Instructions in the source program may use the decimal form of address to access
words of the current storage area. The actual address of a word within the storage area
is developed automatically by modifying the decimal number used in the m position of
the SALT instruction line by the contents of the designated index register (The index
register contains a value equal to the address of the first word of the current storage
area). For example, assume that the starting address of the first word of the current
image area has been loaded into Index Register 4. Assume also that a programmer
wishes to store four words (16 columns) of data in the last four words of a storage
area that is being edited for translation to Hollerith code. These words have already
been loaded into the arithmetic registers. The instruction will appear as follows:

M CONTENT)

XI 4l'lslTl'l'|213|4|'1119]'1 S N N T OO B 11
L

If the programmer wishes to store the contents of AR1 in the 40th word of a storage
area being edited for punching without translation, the instruction would look like this:

£M CONTENT)

\1 4,08 T VL 39 L
/"'\——-\/f

Another way to address words within a storage area is by tags through the use of the
SALT form EQDX. A tag naming a particular storage area word is equated with an index
register and the decimal designation of the storage area’s relative address. Noting that
the first word of the storage area has a relative address of zero, the following is an
example of the EQDX form equating tags to the first and tenth words of the storage area,

kl Form CONTENT\
} EQDX|4, = CASH , | | | | | | | | J/
) L 4 = PAY
L-\—A.‘ e




SECTION:

UNIVAC III SALT >P

UP- PAGE:
2558 3

An instruction to store AR1 in the first word of the storage area could then appear as:

M CONTENT\

Si STV CASHG |(
e ™ ——

An instruction to store the contents of AR2 into the tenth word position of the storage
area could be written in the following two ways:

RM CONTENT\
LS T2 PAY g 1[
LIS T2 CASHH 9
N

b. The Current Card Storage Areas.

Only one storage area is current, or normally accessible to the programmer at any one
time. The data is to be stored for punching in an area only when that area is current.

c. Opening the Card Punching File.

The card punching file is opened when the user program executes a macro-instruction
m* INIT. The card punching file must be opened before any other macro-instruction
can be used. The source program must be constructed in a way that permits the execu-
tion of this macro-instruction at the start or restart of a program. This action does not
in itself make a work area available for editing card data for punching.

d. Advancing the Card Storage Areas.

The address of the first word of the current storage area is obtained by executing the
macro-instruction m*ADYVY,. Each time a new storage area is desired, the m*ADY,
instruction must be executed. The execution of this instruction will cause a new
storage area to be advanced for the assembly of data for punching. The address of the
first word within the next current storage area is supplied automatically by the card
punching subroutine in an index register designated by the programmer.

e. Punching Cards from Storage Areas.

The contents of a storage area are punched into a card and the area is made available
for reuse by the execution of the macro-instruction m*PUNCH,. The storage areas are
punched in the same sequence that they become current through execution of m*ADYV,.

The punching of cards may be delayed if so desired by the programmer. In normal
practice, the execution of a m* PUNCH, macro-instruction should occur immediately fol-
lowing the completion of moving the data to be punched into the work area. This
practice insures the most expeditious program treatment for efficient card punching.



SECTION:

5-D
UNIVAC II1I SALT
PAGE: UP-
4 2558
2. Calling Statement

The general form of the calling statement for the 80-Column Card Punch Routine is shown

below.

It should be noted that the INDX and SLCT lines, although a part of the calling statement,

are not hyphenated. Parameters p, through p, may take as many lines as necessary, and

all of these lines following the first line are hyphenated as shown.
jo. ITEM NO. TAG c| FORM CONTENT\

/
marker

\J nnnn | AABAL SUBRIPUNBOPZZ,py oPyey (| 4 | 1 4 11
II N N e B ooy Py PgePg PGy o
(JL!&ILII] IINIDIXP1'1lillillllllllllllll\
/: ! I SLCTIPUAPPS | | | 1 v 1

The item number field contains a two-level item number as indicated; the lower levels are
restricted for use by the subroutine coding. marker is a permanent tag making the coding
produced by PUN8OPZZ unique.

The parameter PUNSOPZZ specifies that the 80-Column Card Punch Routine is being called.

Py defines the location in memory of the first segment of the punch-routine coding by
specifying its predecessor. If the predecessor segment is part of the source program, this
parameter is of the form SEGn, where n is the segment number of the predecessor. If the
predecessor segment is part of a SALT produced routine, this parameter is of the form

m * SEGn, where m is the marker used in calling the routine, and n is the number of the
last segment in the routine. If more than one predecessor is needed to define the location
of the punch-routine coding, p, is a space. In this case, a SGRT line naming the prede-
cessors is included elsewhere in the source program. (Refer to heading A-2 of this section.)

Py defines the successor load, if any, which is to be chained to the card punch load. If a
load is to be chained to the punch routine load, P, is a permanent tag naming the load

definition line of the chained load. If no load is to be chained to the card punch load, P2
is a space.

P3 is the numeric file designation for the card punch file, and is a unique number, 1
through 41. .

P4 is the number, 1 through 4, of reserve storages to be allocated by the routine.

Pg specifies the use of automatic translation, It is .NT if the cards are to be punched with-
out translation. It is a space if the cards are to be punched with translation.



 SECTION:
‘ 5-D

UNIVAC III SALT

UP- | PAGE:
2558 ‘. 5

Pg is a permanent tag naming the first line of the recovery coding supplied by the source
program. If such coding is not supplied, Pg is to be left blank but the terminating comma is
to be retained.

P7 is a number, 2 through 15, specifying the communication index register to be used by the
m * ADV macro-instruction. Note that Index Register 1 may not be specified.

PUA P4 Pc the parameters P4 and b, described above, are combined without punctuati
form a conflguratlon name used internally by the routine. For example, if P4 has been
specified as 4, and Pg as .NT, this designation is PUA4NT. If P4 is 3, and Pg is A (space),
this designation is PUA3,. If the SLCT line is omitted, a routine providing for four reserve
areas and automatic translation will be supplied. It will be as though PUA4,had been
supplied.

. Integrating The Card Punching Routine With The Source Program
A few SALT Assembly System directives must be provided in the source program to effect

the proper integration of the Card Punching program load.

a. Positioning the Load.
The card punching program load is identified by the name, m * $NAMI,.
Using this name it may be read in as an overlay. More frequently,it will be chained to a

load of the source program and be read into memory along with it. This is accomplished
by writing a LOAD statement in the source program as follows:

[ TAG c| FoORM CONTENT|
‘)‘AlNlYlTlﬁ«iGl l LOAD|s,, m* $ NAMTY,| | | | | || || 1)
s

ANYTAG names a load of the source program whose first segment is s, The Card
Punching program load m*$NAM1, is a successor to the load ANYTAG and will be read
into memory when ANYTAG is read.



SECTION:

5-D

UNIVAC II1I SALT

PAGE:

up-

2558

. Positioning Segments.

The first segment of the Card Punching program load is always m*SEG]1,.

The user may establish a single predecessor to this segment by simply specifying
SEGn, or m*SEGn, as a parameter (p1) of the subroutine call, where n is the number
of the predecessor segment. The form m*SEGn, is used when the predecessor segment
belongs to another subroutine calledinto the source program. The first segment of the
Card Punching Routine will be assembled relative to the last line of the specified
predecessor.

The user may establish more than one predecessor segment by specifying parameter Py
as A,. This in effect defers specification to a statement that must appear somewhere in
the source program as follows:

Ic| FORM CONTENT \
)SIGLRITml*lleIGIII'ISIEIGI"I'ISJEIGIPI'!'I'I'l ! ;(
[ — —

m*SEGI1, names the first segment of the Card Punching Routine and SEGn, and SEGp,
are its predecessors.

In this case m*SEG]1, will be assembled relative to the last line of the longest of its
predecessor segments.

The last segment of the card punching program load is always m*SEG2,.

This segment may be named as the predecessor of a segment of the source program or
another subroutine. If required, segment definition is accomplished by specifying
m*SEG2,in the appropriate SGMT or SGRT line of the source program or parameter in a
successor subroutine,



SECTION:

UNIVAC III SALT >-D

UP- PAGE:
2558

4. Card Punch Macro-Instrctions

m*INIT,

Each coding line used by the programmer to call this macro-instruction results in four source
coding lines actually being included in the program. The calling line may be coded as follows:

] Form CONTENT\

)lMlclRloml*lllNlllTI:l N AR 1(
N

Entrance
Conditions: None.

Results: m*|NIT, opens the card punching routine by setting up the starting conditions.

Discussion: m*INIT, must be executed once and only once prior to the execution of the
m*ADV, macro-instruction. It will not in itself make a storage area available
for editing a card image.

m*ADYV,

Each coding line used by the programmer to call this macro-instruction results in four coding
lines actually being included in the object program. The calling line may be coded as
follows:

| ForM CONTENT\
8 MCGROIm* AD Vo) | | | 1 v J
L ——

Entrance
Conditions: None.

Results: m*ADY, causes a reserve storage area to be made available for editing data to
be punched. The address of the first word of this reserve storage area is placed
in the specified index register.

Discussion: This macro-instruction is used to make successive work areas available to the
programmer. It does not cause a card image to be punched. The macro-instruc-
tion m*INIT, must be executed prior to using m*ADV,. For each use of m*ADY,
there should be a corresponding use of m*PUNCH, .



SECTION:

AGE:

UNIVAC III SALT

uP-
2558

m*PUNCH,

Each coding line in the source program calling this macro-instruction results in four source
coding lines being included in that program. The calling line may be coded as follows:

FORM CONTENT\
MCRO[m™*PUMNCH , | | | | (4 1141 i)
|
Entrance
Conditions: None.
Results: m*PUNCH, causes the punching of data from a reserve storage area into a card.

After its contents have been punched, the reserve area is returned to the pool
of available areas. It will then be delivered to the source program for possible
reuse via m*ADY,.

Discussion: The sequence of the work areas to be punched is inflexible. The punching will
be accomplished from each work area in the same sequence as delivered by
m*ADYV,. Each of the storage areas will be punched in rotation according to the
number of areas designated.

It may be necessary for the programmer to provide for the runout of the card
punch after the last card has been advanced. His program must execute enough
m*PUNCH, instructions to get all the work areas punched as well as the
moving of the last of the punched cards out of the card punch and into the
stacker. Normally, two additional m*PUNCH, instructions will suffice.

The subroutine program will direct the correctly punched cards to card stacker
number 1. When punching errors are detected, they will be directed to card
stacker number 0.



SECTION:
5-D

UNIVAC III SALT

UP- PAGE:
2558 9

5. General Considerations When Using Card Punching Macro-Instruction

All of the input-output macro-instructions currently available in UNIVAC III SALT Library
are subject to the same general considerations with regard to use.

a. Program Requirements.

Macro-instructions produce coding lines that become an integral part of the program-
mer’s own program. The call on these instructions must be provided by the programmer
in his own program lines. Index registers are unspecified in the lines of coding result-
ing from macro-instructions. When brought into a program, the index register mapping

of the segments into which they are inserted must apply to them also. Therefore, a MAPS
statement for both code and pool segments must be present in the calling program
statement prior to the insertion of the macro-instruction coding.

b. Program Restriction.

No.macro-instruction may be included in a segment whose pool is mapped with Index
Register 1.

General Exit Conditions.

e

(1) Index Registers

Except for the case where a specified index register is to contain the address of a
current item, no other index registers are altered by the execution of a macro-
instruction.

(2) Arithmetic Registers

The contents of the arithmetic registers are altered by the execution of the macro-
instructions.

(3) Indicators

The status of the Low, High, and Equal indicators may be altered by the execution
of the macro-instructions.



SECTION:

|
UNIVAC III SALT T
|

E. 90-COLUMN CARD PUNCH CONTROL SUBROUTINE

A control system for the punching of data into 90-Column Punch Cards from the UNIVAC III
Punch is available through a routine of the SALT Data Processing Library. This routine,
PUN9OPZZ, is called from the library into the source program. The call includes a parameter
set which modifies the control routine to conform to and provide options required by the source
program. The modified control routine is assembled with and becomes an integral part of the
user’s program,

The control system represents a single program load and thus will occupy a unit of the memory
area required by the assembled program. This load includes the card punching control sub-
routines and storage areas from which the punched card data is punched. In addition a single a
set of macro-instructions is defined by the subroutine.

Macro-instructions provide complete control over the punched card control subroutines. The
programmer will use these instructions within the source routine at the points where their
specified functions are needed. Macro-instructions of the routine are assigned names in the
form m* functions. The Card Punch routine is made unique by assigning a marker, m, to the
call on PUNYOPZZ. This marker is in the form of a SALT Tag. The function is as defined
by the subroutine.

1. General
a. Storing Data for Punching

Multiple storage areas provide the Card Punching subroutines with the means of achiev-
ing efficiency in card punching. These storage areas are used by the subroutine on a
rotating basis. Reserve storage areas are made available to the programmer for assembling
card format when advanced, at his direction, to bring the next area into a current

status. The advancement of each of the storage areas is accomplished through the use

of an index register which is designated by the programmer using the subroutine. The
index register is loaded with the address of the first word of the current storage area.

When the current storage area is advanced, the address of the first word of the next storage
area is placed in the specified index register by the subroutine.

A maximum of four reserve storage areas may be used by the programmer to edit and
assemble card format punched under control of the card punching subroutine PUNSOPZZ.
The programmer is responsible for writing the instructions to assemble punched card
data into these storage areas. A simple means of addressing the storage areas is
available to him.

The subroutine has been designed to provide the programmer with the possibility of us-
ing the same set of instructions to assemble a particular format without regard as to the
work area being used. The words within the storage areas are addressed during the
assembly of the card format on a relative basis. This relative address is converted to a
valid address by modifying the relative address with the contents of the designated
index register.



SECTION:
5-E

UNIVAC IIT SALT

PAGE: uP-
2 2558

The storage areas for assembly of data to be punched into 90-column cards are 24
words in length. When data is punched from these areas into the cards, most of the words
deliver four alphanumeric characters. Two words, located, at relative addresses 11

and 23 receive special treatment. A single alphanumeric character is delivered by each
of these words to columns 45 and 90 respectively. The character punched is that

stored in the most significant digit of the word, the data in the rest of the word is not
punched. It is the responsibility of the programmer to edit the data assembled in the
storage area to conform to the described punching pattern.

Instructions in the source program may use the decimal form of address to access words
of the current storage area. The actual address of a word within the storage area is
developed automatically by modifying the decimal number used in the m position of the
SALT instruction line by the contents of the designated index register. (The index
register contains a value equal to the address of the first word of the current storage
area). For example, assume that the starting address of the first word of the current
image area has been loaded into Index Register 4. Assume also that a programmer wishes
to store four words of data (16 columns) in the last four words of a storage area that is
being edited for punching 90-column cards. These words have already been loaded into
the arithmetic registers. The instruction will appear as follows:

RM CONTENT \

\| 4l'lslTl'l]lzl3i4!'12|3l’\ A T T O T I]
———— P

If he wishes to store the contents of AR1 in the 24th word of a storage area being edited
for punching without translation, the instruction would look like this:

RM CONTENT\

\l 4l'lsl.rl'l.ll'izlsl'l I N T O B l/
L

W"——_\\

It is assumed in this case that only the most significant character of the word is to be
punched. Another way to address words within a storage area is by tags through the use
of the SALT form EQDX. A tag naming a particular storage area word is equated with an
index register and the decimal designation of the storage area’s relative address.
Noting that the first word of the storage area has a relative address of zero, the follow-
ing is an example of the EQDX form equating tags to the first and tenth words of the
storage area:

¥] FORM CONTENT \|

{ EQDXf4,, = CASH, | | | | 1]

\ Lo M9 = PAY L i}
e




SECTION:
5-E

UNIVAC II1I SALT

UP- PAGE:
2558 3

An instruction to store ARL in the first word of the storage area could then appear
as:

RM CONTENT \

IS T Y CASHY L g I{

An instruction to store the contents of AR2 into the tenth word position of the storage
area could be written in the following two ways:

T CONTENT\

21 ST 2 PAY Y g |/

IS T2 G CASHES

b. The Current Card Storage Areas.

Only one storage area is current, or normally accessible to the programmer at any one
time. The data is to be stored for punching in an area only when that area is current.

c. Opening the Card Punching File.

The card punching file is opened when the user program executes a macro-instruction
m*INIT,.The card punching file must be opened before any other macro-instruction

can be used. The source program must be constructed in a way that permits the execu-
tion of this macro-instruction at the start or restart of a program. This action does not
in itself make a work area available for editing card data for punching.

d. Advancing the Card Storage Areas,

The address of the first word of the current storage area is.obtained by executing the
macro-instruction m*ADYV,. Each time a new storage area is desired, the m*ADY,
instruction must be executed. The execution of this instruction will cause a new
storage area to be advanced for the assembly of data for punching, The address of the
first word within the next current storage area is supplied automatically by the card
punching subroutine in an index register designated by the programmer.

e. Punching Cards from Storage Areas.

The contents of a storage area are punched into a card and the area is made available
for reuse by the execution of the macro-instruction m*PUNCH,. The storage areas are
punched in the same sequence that they become current through execution of m*ADY,

The punéhing of cards may be delayed if so desired by the programmer. In normal
practice, the execution of a m*PUNCH, macro-instruction should occur immediately



SECTION:

5-E

UNIVAC III SALT

PAGE:

uP-
2558

following the completion of moving the data to be punched into the work area. This
practice insures the most expeditious program treatment for efficient card punching.

2. Calling Statement

The general form of the calling statement for the 90-Column Card Punch routine is shown
below.

It should be noted that the INDX and SLCT lines, although a part of the calling statement,
are not hyphenated. Parameters Py through Pg may take as many lines as necessary, and
all of these lines following the first line are hyphenated as shown.

—
(o]

ITEM NO. TAG C| FORM CONTENT\

— ]

marker
nnin

n A[A A A SIUIB;R P|U|N19501P|Z|z|'Ip‘ll'lp2’l [ S B

|

i

|

| | | | IlliLl‘_JJlpa'lpﬂ'PSI'lpG'llllllll!ll

]

i VU

Ll N UNDXPa ey ) 0 1 0

|

|

|

| | 1 1 Ll SLCTIPUAPS » | | | 1 v | | 1010

(
)

(wb—’_

The item number field contains a two level item number as indicated; the lower levels are

restricted to use by the subroutine coding. The entry, marker, is a permanent tag making the

coding produced by PUN90ZZ unique.

The parameter PUN9OPZZ specifies that the 90-Column Card Punch routine is being called.

P1 defines the location in memory of the first segment of the punch routine coding by spe-
cifying its predecessor. If the predecessor segment is part of the source program, this
parameter is of the form SEGn, where n is the segment number of the predecessor. If the

predecessor segment is part of a routine produced by the SALT system, this parameter is of

the form m * SEGn, where m is the marker used in calling the routine, and n is the number
of the last segment in the routine. If more than one predecessor is needed to define the
location of the punch routine coding, Py is a A (space). In this case, a SGRT line naming
the predecessors is to be included elsewhere in the source program. (Refer to heading
A-2 of this section.)

P9 defines the successor load, if any, which is to be chained to the card punch load, If a
load is to be chained to the punch routine load, Py is a permanent tag naming the load-
definition line of the chained load. If no load is to be chained to the card punch load, P2
is A (space).

P3 is the numeric file designation for the card punch file, and is a unique number,
1 through 41.



SECTION:
5-E

UNIVAC III SALT

UP- PAGE:
2558

P4 is the number, 1 through 4, of reserve storages to be allocated by the routine.

Pg specifies the use of automatic translation. It is .NT if the cards are to be punched with-
out translation. It is a space if the cards are to be punched with translation.

Pg is a permanent tag naming the first line of the recovery coding supplied by the source
program. If such coding is not supplied, Pg is to be left blank but the terminating comma
is to be retained.

P- ic a number, 2 through 15, specifying the communication index register to be used by
the m * ADYV, macro-instruction. Note that Index Register 1 may not be specified.

PUA P4 Ps. the parameters P and Pg, described above, are combined without commas to
form a configuration name used internally by the routine. For example, if P4 has been spe-
cified as 3, and Pg as .NT, this designation is PUA3NT. If the SLCT line is omitted, a
routine providing for four reserve areas will be supplied. It will be as though PUA4 had
been supplied.

. Integrating the Card Punching Routine with the Source Program

A few SALT Assembly System directives must be provided in the source program to effect
the proper integration of the card punching program load.

a. Positioning the Load.
The card punching program load is identified by the name, m*$NAMI,.

Using this name it may be read in as an overlay. More frequently it will be chained to a
load of the source program and be read into memory along with it.

This is accomplished by writing a LOAD statement in the source program as follows:

\ TAG C| FORM CONTENT \
)AINLYITIAIGI | LOAD|s , m*$NAMIT ., | | | | |/
e

ANYTAG names a load of the source program whose first segment is s. The Card Punch-
ing program load m*$NAMI, is a successor to the load ANYTAG and will be read into
memory when ANYTAG is read.

b. Positioning Segments.

The first segment of the card punching program load is always m*SEGI1,.

The user may establish a single predecessor to this segment by simply specifying
SEGn, or m*SEGn, as a parameter (P]) of the subroutine call, where n is the number of
the predecessor segment. The form m*SEGn, is used when the predecessor segment
belongs to another subroutine called into the source program. The first segment of the
card punching routine will be assembled relative to the last line of the specified
predecessor.



SECTION:
5-E

PAGE:

uP-
2558

UNIVAC III SALT

The user may establish more than one predecessor segment by specifying parameter P,
as A,. This in effect defers specification to a statement that must appear somewhere in
the source program as follows:

Ic] FORMm CONTENT \
»5161R|Tm1*1515191‘|'151519|"|:15|E|G1Pl:1-|-1-| 1 1]
/\/\

m*SEG1, names the first segment of the card punching routine and SEGn, and SEGp,
are its predecessors.

In this case m*SEG1, will beassembled relative to the last line of the longest of its
predecessor segments.

The last segment of the card punching program load is always, m*SEG2,.

This segment may be named as the predecessor of a segment of the source program or
another subroutine. If required, segment definition is accomplished by specifying
m*SEG2, in the appropriate SGMT or SGRT line of the source program or parameter in a
successor subroutine.

4, 90-Column Card Punch Macro-Instructions

m*INIT,

Each coding line used by the programmer to call this macro-instruction results in four object
coding lines actually being included in the program. The calling line may be coded as follows:

Ic] FORM CONTENT\
*
MCROJm* I NV Ty p b 11 |/

L’\
Entrance
Conditions: None.
Results: m*INIT, opens the card punching routine by setting up the starting conditions.
Discussion: m*INIT, must be executed once and only once prior to the execution of the

m*ADV, macro-instruction. It will not make a storage area available for editing
a card image.



SECTION:
5-E

UP- PAGE:
2558

UNIVAC III SALT

m*ADY,

Each coding line used by the programmer to call this macro-instruction results in four-object
coding lines actually being iricluded in the object program. The calling line may be coded
as follows:

|l Form CONTENT\
{MICIRIO m*AD Y L 1/
k\/—— w’_\/\A

Entrance
Conditions: None.

Results: m*ADV, causes a reserve storage area to be made available for editing data to
be punched. The address of the first word of this reserve storage area is placed
in the specified index register.

Discussion: This macro-instruction is used to make successive work areas available to the
programmer. It does not cause a card image to be punched, The macro-instruc-
tion m*INIT, must be executed prior to using m*ADV,.For each use of m*ADV,
there should be a corresponding use of m*PUNCH,.



SECTION:

5-E

PAGE:

"UP-

2558

UNIVAC III SALT

m*PUNCH,

Each codingline in the source program calling this macro-instruction results in four object
coding lines being included in that program. The calling line may be coded as follows:

Entrance
Conditions;

Results:

Discussion:

ic| FoOrRM CONTENT\
I MCROfm* PUNCH , | | | | | | | | 1| | | Ii{
L—'—"\

None.

m*PUNCH, causes the punching of data from a reserve storage area into a card.
After its contents have been punched, the reserve area is returned to the pool of

available areas. It will then be delivered to the program for possible reuse via
m*ADYV,.

The sequence of the work areas to be punched is inflexible. The punching will
be accomplished from each work area in the same sequence as delivered by
m*ADV,. Each of the storage areas will be punched in rotation according to the
number of areas designated.

It is necessary for the programmer to provide for the runout of the card punch
after the last card has been advanced. His program must execute enough
m*PUNCH, instructions to get all the work areas punched as well as the moving
of the last of the punched cards out of the card punch and into the stacker.
Normally, two additional m*PUNCH, instructions will suffice.

The subroutine program will direct the correctly punched cards to card stacker
number 1. When punching errors are detected, they will be directed to card
stacker number 0.



- SECTION:

UNIVAC III SALT | | >E

UP- | PAGE:

2558 1‘ 9

—— i

5. General Considerations When Using Card Punching Macro-Instructions
a. All of the input-output macro-instruction currently available in UNIVAC III SALT
Library are subject to the same general considerations with regard to use.

(1) Program Requirements.

Macro instructions produce coding lines that become an integral part of the pro-
grammer’s own program. The call on these instructions must be provided by the pro-
grammer in his own program lines. Index registers are unspecified in the lines of
coding resulting from macro-instructions. When brought into a program, the index
register mapping the segments into which they are inserted must apply to them also.
Therefore, a MAPS statement for both code and pool segments must be present in the
calling program prior to the insertion of the macro-instruction coding.

(2) Program Restriction.
No macro-instruction may be included in a segment whose pool is mapped with Index
Register 1.

(3) General Exit Conditions.
a. Index Registers

Except for the case where a specified index register is to contain the address of a
current item, no other index registers are altered by the execution of a macro-
instruction.

b. Arithmetic Registers

The contents of the arithmetic registers are altered by the execution of the macro-
instructions.

c. Indicators

The status of the Low, High, and Equal indicators may be altered by the execution
of the macro-instructions.



| |
UNIVAC II1 SALT |
|

F. PAPER TAPE READER CONTROL SUBROUTINE

A control system for the reading of data from the UNIVAC III Paper Tape Reader is available
through a routine of the SALT Data Processing Library. This routine, RDPTTZZ, is called
from the library into the source program. The call includes a parameter set which modifies

the control routine to conform to and provide options required by the source program. The
modified control routine is assembled with and becomes an integral part of the user’s program.

The control system represents a single program load and thus will occupy a unit of the
memory area required by the assembled program. This load includes the paper tape reader
control subroutines and storage area into which data is to be read from paper tape. In
addition a single set of macro-instructions is defined by the subroutine.

Macro-instructions provide complete control over the paper tape reader control subroutines.
The programmer will use these instructions within the source routine at the points where
their specified functions are needed. Macro-instructions of the routine are assigned names in
the form m* fynction. The Paper Tape Reader routine is made unique by assigning a marker,
m, to the call on RDPTTZZ. The marker is in the form of a SALT Tag. The function is as
defined by the subroutine.

1. General
a. Processing Paper Tape Character Words.

Multiple storage areas can be used to provide the Paper Tape Reader subroutines with a
means of achieving efficiency in Paper Tape Reader usage. When multiple storage areas
are available, successive paper tape characters are read into the first storage area until
that area has been filled. Subsequently, another storage area will be referenced and the
next reading of paper tape will bring paper tape character images into a second area.
Storage areas are used on a rotating basis to store various quantities of paper tape
character images.

The advancement of each storage area into current status is accomplished through the
use of an index register. This register is designated by the source program during the
call of the Paper Tape Reader subroutine. The designated index register contains the
program relative address of the first word of the current paper tape character storage
area. As each storage area is advanced, the address of the first word of the current
image area is supplied by the Paper Tape Reader subroutine in the specified index
register.

One or more sets of coding designed to process paper tape data is written by the pro-~
grammer. The code sets address wotds of the paper tape character storage area relative-
ly. A valid address to a paper tape character word in a storage area is derived by
modifying the relative address of the word within the current storage area with the index
register containing the address of the first word of the work area.



ECTION:

AGE:

UP-

2558

UNIVAC III SALT

Each paper tape character storage area is of equal length, but the length must be speci-

fied by the programmer at the

time of call. The words are numbered relatively from 0

through n-1. (n = the specified number of characters to be stored in a work area).

Instructions designed to process paper tape character words in a current storage area
use the relative position of the words in the area as a SALT decimal address. These
addresses are then modified by the specified index register which has been loaded with
the address of the first word of the current image area.

For example, assume that the current storage area address has been loaded into IR4.
To load a tape character that has been read into the first position of the storage atea
into AR1, this instruction would be used: 4,L,1,0,.

To load two characters into AR’s 1 and 2 from the 16th and 17th positions of the storage

area, the first position of the
4,L,12, 16, .

storage area being zero, the instruction word would be:

An altemate method of addressing any current storage area is available through use of

the SALT form EQDX. A tag,

naming a particular area word, is equated with an index

register and the decimal designation of the storage area’s relative address. Noting that
the first word of the storage area has a relative address of zero, the following is an
example of the EQDX form equating tags for the first and 16th word of a storage area.

CONTENT \

41 'I=lSI°lRLTI IK,E,Y“]

4,+1,5,=TRNS C

A T T Y A |
L

ODE ., |

(
A
!

————

The instructions illustrated in the above example could now be written as:

RM CONTENT

[L Loy S ORT K EY b

}J L,V2  TRNS, (CODE+ VW) ¢ vy g

\LL-\LL'J]LZUISIOIRITI KEY+ 1,6, 1L1mi512c1m: 3;:‘7“‘:"':"1"‘:;"'1“91"els"l"-[ L
.

s mm—

o



{ SECTION:
S5—-F

UNIVAC III SALT

|
|
|UP- PAGE:
f 2558 3

b. Special Programming Considerations.

Paper tapes are read into the UNIVAC III by the Paper Tape Reader one character at a
time. Variable input conditions can result in the termination of a paper tape read opera-
tion before the storage area into which the tape is being read is completely filled. The
paper tape reader subroutine has provided for this contingency by adding one additional
word to each specified storage area. This status word immediately follows the
storage area with which it is associated and is accessed at relative address n. (See
examples of the use of decimal addressing above.)

The status word provides the programmer with a means for determining the number of
characters actually read into its associated storage area. It also provides a signal indi-
cating the reason for termination of reading. It is the responsibility of the calling pro-
gram to provide coding to test status word data and to provide for the conditions
encountered,

The status word is made up of the following two parts. Bit positions 1-15 contain the
address of the last character read into the storage area. Bit positions 21-25 indicate the

reason for termination of reading.

A list of reasons for terminating conditions, and the corresponding codes is shown below:

Termination Condition Code Last Character Read Counter
(bits 21.25) (bits 1-15)

Normal, storage filled 00000 Address of n-1

Wired stop character 00010 Address of stop character

sensed.

Parity check failed 00001 Address of last character read

(3 times) (the bad character)

Paper tape characters are brought into the central processor under control of the Format
Connector(see paragraph h below). Each character occupies the lower order bits of a single
word; the number of bit positions used depends on the number of channels in the tape

that is being read. The paper tape code is not automatically converted to UNIVAC III code.
It is the responsibility of the calling program to provide for this translation.



SECTION:

UNIVAC III SALT

PAGE: ‘UP-

c. The Current Paper Tape Character Storage Area,

Only one storage area is current at any time.

d. Opening the Paper Tape Reader Routine.

The Paper Tape Reader routine is opened by executing the macro-instruction m*INIT,.
The routine is opened at the start or restart of a program before any paper tape
character storage area is requested.

e. Advancing Paper Tape Character Storage Areas.

The address of the first word of the current storage area is obtained by executing the
macro-instruction m*RDPT,. After each execution of the macro-instruction, a new paper
tape character storage area is selected and becomes the current storage area. The
address of the first word of the current storage area is automatically supplied in a
specified index register by the Paper Tape Reader routine.

f. Retaining Access to a Paper Tape Character Storage Area.

Processing may dictate that information from one storage area will not in itself com-
prise a complete record and must be held over until a complete record can be assembled
from data contained in a subsequent area, In this case the programmer must make
provision to retain access to the required information fields. This is accomplished when
the first storage area is current by moving the information from the current storage area
to another storage area in the source program.

g. Bypass of Bad Records.

The Paper Tape Reader control routine will make three attempts to read a record when a
parity error is encountered. If the error persists after the third try, the reading to the
storage area will be discontinued. The bad character will be the last character read into
the partial block. The character following the bad character will be the first character
read into a new storage area upon execution of m*RDPT, macro-instruction.

The status word of the storage area which was being filled when the parity error
occurred will contain 00001 in bit positions 21-25 and will indicate by a binary number
in bit positions 1-15, the address of the last character read.



SECTION:
UNIVAC IIT SALT T
|
UP- ' PAGE:
2558 i 5
h. Format Cennector.
The programmer must be aware of the specifications used in the wiring of the Format
Connector. The wired stop code, parity check bits, and possible rearrangement of
channels are controlled by this device. All tests within the Paper Tape Reader for
conditions controlled by the Format Connector must be based on the specific re-
quirements.
2. Calling Statement
The calling statement for RDPTTZZ is shown below.
Parameters Py through Pg may take as many lines as required; all lines after the first are
hyphenated. The INDX and SLCT lines, although part of the calling statement, are not
hyphenated.
fo. ITEM NO. TAG c] FORM CONTENT\
\ nninn AANAL Ly SUBRIRDPTT Z/Z,pPy.Py-Pari \ | | | | | 1)
/11 clovr v v =l PaAePEePEe
\IL111|111411 IINDXUPgoy 0y 0 g
<LIIJ||I1!|' SLI‘JCITRIDIAIPS'IIli!lliilllllllllk
L/ﬂ\ \/—_\—-\/\/‘\]

The item number field contains a two level item number as indicated; the lower levels are
restricted for use by the subroutine coding. The entry, marker, is a permanent tag making the
coding produced by RDPTTZZ unique.

The designation RDPTTZZ is the fixed routine name.

P defines the location in memory of the first segment of the RDPTTZZ coding by specify-
ing its predecessor. If the predecessor segment is part of the source program, this parameter
is of the form SEGn, where n is the segment number of the predecessor. If the predecessor
segment is part of a routine produced by the SALT system, this parameter is of the form
m*SEGn, where m is the marker used in calling the routine, and n is the numberof the last
segment in the routine. If more than one predecessor is needed to define the location of

the RDPTTZZ coding, Py is A (space). In this case, a SGRT line naming the predecessors
is to be included elsewhere in the program. (Refer to heading A-2 of this section).

P2 defines the successor load, if any, which is to be chained to the RDPTTZZ load. If a
load is to be chained to the RDPTTZZ load, P, is a permanent tag naming the load
definition line of the chained load.



SECTION:

5-F

PAGE:

(UP-

UNIVAC III SALT

2558

If no load is to be chained to the RDPTTZZ load, Py is A (space).

P3 is the numeric file designation for the Paper Tape Reader file, and is a unique number,
1 through 41.

P4 is the maximum number of characters an item of the file may contain. It may be 256, or
any number in the range 4 through 126.

P5 is the number of item areas, 1 through 4, that are to be allocated to the routine.

Pg is a permanent tag naming the first line of the recovery coding supplied by the source
program. If such coding is not supplied, Pg is to be left blank but the terminating comma is
to be retained.

P7 is a number, 2 through 15, specifying the communication index register to be used by
the routine. This is the index register that will be loaded with the program relative address
of the first word of the current area.

RDAp,,parameter Pss without its terminal comma, is combined with the letters RDA to
form a configuration name used internally by the routine. For example, if P5 has been
specified as 3, this designation is RDA3. If the SLCT line is omitted, a routine providing
for only one read area is supplied. It will be as though PTA1 had been specified.

If the maximum number of characters specified in Py is less than four, it will be considered
as though four had been specified. If the maximum number specified is greater than 126 and
less than 256, 126 words will be provided, although the status word will be at the location it
would have occupied if the specified words had been allocated. It will be at n, where n
equals the number of characters actually specified, instead of at relative address 126.

. Integrating The Paper Tape Reader Routine With The Source Program

A few SALT Assembly System directives must be provided in the source program to effect
the proper integration of the Paper Tape Reader program load.

a, Positioning the Load.

The Paper Tape Reader program load is identified by the name, m*$NAM1,. Name this
name it may be read in as an overlay. More frequently it will be chained to a load of the
source program and be read into memory along with it. This is accomplished by writing
a LOAD statement in the source program as follows:

\ TAG C| FORM CONTENT \
/1 ANYTAG | LOAD[s  m*$ NAMT, | | | | | | | i} 1(

ANYTAG names a load of the source program whose first segment is s. The Paper Tape
Reader program load m*$NAM]1, is a successor to the load ANYTAG and will be read into
memory when ANYTAG is read.



| SECTION:

UNIVAC III SALT i |

5-F

PAGE:
2558 |
|

b. Positioning Segments

The first segment of the Paper Tape Reader program load is always m*SEGI,.

The user may establish a single predecessor to this segment by simply specifying
SEGn, or m*SEGn, as a parameter (p-l) of the subroutine call. Where n is the number
of the predecessor segment. The form m*SEGn, is used when the predecessor segment
belongs to another subroutine called into the source program. The first segment of

the Paper Tape Reader routine will be assembled relative to the last line of the specified
predecessor.

The user may establish more than one predecessor segment by specifying parameter pl
as A,. This in effect defers specification to a statement that must appear in the source
as follows:

FORM CONTENT \

€
1 S, GRT|m* S EG1, S EGn , SEGp ,j. .;.| | |

————

m*SEG], names the first segment of the Paper Tape Reader routine and SEGn, and SEGp,
are its predecessors.

In this case m*SEG1, will be assembled relative to the last line of the longest of its
predecessor segments.

The last segment of the Paper Tape Reader program load is always, m*SEG2,.
This segment may be named as the predecessor of a segment of the source program. If

required, this is done simply by specifying m*SEG2, in the appropriate SGMT or SGRT
line of the source program.



SECTION:

5-F

PAGE:

_ UNIVAC III SALT

2558

4. Paper Tape Reader Macro-Instructions.

Each coding line in the source program calling this macro-instruction results in four object
code lines being included in that program,

m*INIT,
\c] FORrRM CONTENT\
*
MCROIm* ENVT o v J
L' \/\/—-—\l
Entrance

Conditions: None.

Results: m*INIT, opens the Paper Tape Reader routine by setting all initial conditions.

Discussion: m*INIT, must be executed once, and only once, prior to the execution of the

m*RDPT, macro-instruction. m*INIT, does not deliver the first block of
characters to the worker program,

m*RDPT,
| Form CONTENT\
) MCRO|m* RD/PT )\ | | |\ p 1 LZ
]

Entrance

Conditions: None.

Results: m*RDPT, causes the reading of paper tape in the Paper Tape Reader. m*RDPT,

places in a specified index register the starting address of the current read
area. Each time the read macro-instruction is used, the previously current
area is freed and made available for new data.

Discussion: The programmer should provide a routine for testing and processing an end-of-
tape file condition., Coding must also be provided to check the condition of the
status word. When less than the full capacity of the storage area has been
used, due to parity, error, fault, or wired stop character, the programmer’s cod-
ing must recognize the limits of the valid information read,



SECTION:
| 5-F

UNIVAC III SALT

2558 9

'UP- PAGE:
i

5. General Considerations When Using Paper Tape Reader Macro-Instructions

All of the input-output macro-instructions produced are subject to the same basic consider-
ations with regard to use.

a. Program Requirements,

Each macro-instruction must be assigned an item number in the range encompassed by
both code and pool segment definitions (SGMT). An index register mapping statement
MAPS for both the code and pool segments is made before any macro-instruction is
included in the program.

b. Program Restriction.
No macro-instruction may be included in a segment whose pool is mapped with Index
Register 1.

c. General Exit Conditions.
(1) Index Registers

Except for the case where a specified index register is to contain the address of a
current item, no other index registers are altered by the execution of a macro-
instruction.

(2) Arithmetic Registers

The contents of the arithmetic registers are altered by the execution of the macro-
instructions.

(3) Indicators

The status of the Low, High, and Equal indicators may be altered by the execution
of the macro-instructions.



SECTION:
5-G

UNIVAC III SALT

2558

|
UP- E PAGE:
|

G. PAPER TAPE PUNCH CONTROL SUBROUTINE

A control system for the punching of data onto Paper Tape from the UNIVAC III Paper Tape
Punch Unit is available through a routine of the SALT Data Processing Library. This
routine, PUNPTTZZ, is called from the library into the source program. The call includes a
parameter set which modifies the control routine to conform to and provide options required
by the source program. The modified control routine is assembled with and becomes an
integral part of the user’s program.

The control system represents a single program load and this will occupy a unit of the
memotry area required by the assembled program. This load includes the paper tape punch
control subroutines and storage area from which the datais to be punched into paper tape.
In addition, a single set of macro-instruction is defined by the subroutine.

Macro-instructions provide complete control over the paper tape punch control subroutine.
The programmer will use these instructions within the source routine at the points where
their specified functions are needed. Macro-instructions of the routine are assigned names
in the form m* function. The paper tape punch routine is made unique by assigning a marker,
m, to the call on PUNPTTZZ. This marker is in the form of a SALT Tag. The function is as
defined by the subroutine.

1. General
a. Punching Paper Tape Character Words.

Two storage areas are always used to provide the Paper Tape Punch subroutine with a
means of achieving efficiency in using the Paper Tape Punch. These storage areas are
used by the subroutine on a rotating basis.

The advancement of each storage area into current status is accomplished through the
use of an index register. This register is designated by the source program during the
call of the paper tape punch subroutine. The index register provides the address of the
first word of the current storage area. When the current storage area is advanced, the
address of the first word of the next storage area is automatically placed in the speci-
fied index register.

One or more sets of coding designed to assemble paper tape data for punching is written
by the programmer. The code sets address words of the paper tape character storage
area relatively. A valid address to a paper tape character word in a storage area is
detived by modifying the relative address of the word within the current storage area
with the index register containing the address of the first word of the work area.

Each paper tape character storage area is of equal length, but the length must be speci-
fied by the programmer at the time of call. The words are numbered relatively from 0
to n-1. (n = the number of words specified to be stored in a work area).

Instructions designed to assemble paper tape characters in a current storage area will
use the relative position of the words in the area as a SALT decimal address. These
addresses are then modified by an index register loaded with the first word of the
current storage area.



SECTION:

PAGE:

UNIVAC III SALT

2558

For example, assume that the current storage area address has been loaded into Index
Register 4 (IR4). To store a character into the first position of a work area using Arith-
metic Register 1 (AR1), the instruction would be written as follows: 4, ST, 1, 0,.

To store two characters into storage positions 16 and 17 using AR’s 1 and 2, the
instruction would be written as follows: 4, ST, 1, 16,.

An alternate method of addressing any current storage area is available through use of
the SALT form EQDX. A tag, naming a particular storage area word, is equated with an
index register and the decimal designation of the storage area’s relative address,
Noting that the first word of the storage area has a relative address of zero, the
following is an example of the EQDX form equating tags to the first and 16th words

of a storage area.

\c|__FoRrm CONTENT \

E QD Xj4,, = SORT (KE\Y,| { | | | [ | |1 1{

el |4+ V5, = T RINS, | CODE;r| | | | | |

Ib\

The instruction illustrated in the above example could now be written as shown below.

v CONTENT\
s T, SORT KEY., | l]

These li il
kslTl'lllzl'lTlRllel COPE+T sccomplish the
ISIL'J]LZI'ISIOIRITI lKLE|Y|+I] 16[’1 L same result.
U _—

N-\

b. Special Programming Considerations.

The Paper Tape Punch punches one character for every UNIVAC III word. It is the
responsibility of the calling routine to edit characters into the format expected by the
punch and format connector.

The first word following each punch area is a status word. This word is accessed by
modifying the decimal address of the status word at location n(n = the number of
characters to be punched) with the contents of the specified index register. The status
word provides a signal to indicate a low paper condition. It is composed of two parts:
The address of the most recently punched character is found in bit positions 1-15.



C.

Q.

e

go

SECTION:
UNIVAC III SALT -
UP- PAGE:
2558 3

The status control code is indicated in bit positicn 21-25 as fcollows:

Control Condition Code ‘ Address

(bits 21-25) | (bits 1-15)
Normal Punching 00000 Address of last character punched
Low Paper Condition 00010 Address of last character punched

It is the responsibility of the calling program to test the status word each time a new

word indicates that a low paper signal was encountered when that area was last punched
out. A typeout notifies the operator to change paper tape reels when the area is returned
to PUNPTTZZ for punching. The calling program must provide for an end-of reel pro-
cedure and any desired signals to be placed on the tape before the change-reel message .
is typed.

This subroutine always attempts to punch an entire storage area. The calling program
should provide a wired stop character and plan for certain wiring of the Format Con-
nector, if it is desired to punch less than the entire storage area.

The Current Paper Tape Character Storage Area,

Only one storage atea is current at any time.

Opening the Paper Tape Punch Routine.

The Paper Tape Punch routine is opened by executing the macro-instruction m*INIT,.
This routine is to be entered at all the start or restart points of a program before any
work area is requested. At this time the starting address of the first reserve storage

area is placed in a specifiable index register.

Paper Tape Characters.

Paper tape characters are read from memory to the Paper Tape Punch under the control

of the Format Connector (see g, below). One word in memory must be used for each

paper tape character to be punched. The UNIVAC III code is not automatically translated.
The paper tape characters must be edited by the calling routine in the low order positions
of the words from which they are to be punched. The number of positions used will depend
on the number of channels in the tape to be punched.

Punching Paper Tape from Storage Areas.

The contents of a storage area are punched into paper tape and the area is made avail-
able for reuse by the execution of the macro-instruction m*PUNPT,. After each execu-
tion of the macro-instruction, the next paper tape character storage area is selected
and becomes the current storage area.

The address of the first word of the current storage area is supplied in a specified index
register by the Paper Tape Punch routine.

Formaf Connector.

The programmer must be aware of the specifications used in the wiring of the Format



SECTION:

5-G

FAGE:

- UNIVAC III SALT

2558

Connector. The wired stop code, parity check bits, and possible rearrangement of

channels are controlled by this device. All tests within the paper tape punch, for condi-

tions controlled by the Format Connector must be coded based on the specific
requirements.

2. Calling Statement

The calling statement for PUNPTTZZ Paper Tape Punch Routine is shown below.

Parameters P, through P5 may take as many lines as required; all lines after the first are
hyphenated. The INDX line, although part of the calling statement, is not hyphenated.

ITEM NO. TAG C| FORM CONTENT\

fpnnm AANAAL | ) ] SIUIBIRPIUINlPLT\TIZIZI:Iplhlp2l:lp31:! |

The item number field contains a two level item number as indicated; the lower levels are
testricted for use by the subroutine coding. marker is a permanent tag making the coding
produced by PUNPTTZZ unique.

The designation PUNPTTZZ is the fixed routine name.

P1 defines the location in memory of the first segment of the PUNPTTZZ coding by spe-
cifying its predecessor. If the predecessor segment is part of the object program, this
parameter is of the form SEGn, where n is the segment number of the predecessor. If the
predecessor segment is part of a routine produced by the SALT assembly, this parameter
is of the form m*SEGn, where m is the marker used in calling the routine, and n is the
number of the last segment in the routine. If more than one predecessor is needed to
define the location of the PUNPTTZZ coding, Py is A,(space). In this case, a SGRT line
naming the predecessors is to be included elsewhere in the program. (Refer to heading
A-2 in this section.)

P2 defines the successor load, if any, which is to be chained to the PUNPTTZZ load. If
a load is to be chained to the PUNPTTZZ load, P, is a permanent tag naming the load
definition line of the chained load. If no load is to be chained to the PUNPTTZZ load,
Py is A,(space).

P4 is the numeric file designation for the Paper Punch Tape file, and is a unique number,
1 through 41.

P4 is the maximum number of characters an item of the file may contain. It may be either
256, or any number in the range 4 through 126.

P, P
T IR b I . 20 TN IR A B A A B A B N N B BN

P
U N NN (N N N Y N Y A IlNlDlX61'JllI|IIl|IIIlI|IIl]I‘B



SECTION:
5-G

UNIVAC II1 SALT

UP- PAGE:
2558 5

p5 is a permanent tag naming the first line of the recovery coding supplied by the source
program. If such coding is not supplied, p5 is to be left blank but the terminating comma is
to be retained.

p6 is a number, 1 through 15, specifying the communication index register to be used by
the routine. This is the index register which will contain the program relative address of
the first word of the current storage area.

. Integrating the Paper Tape Punch Routine with the Source Program

A few SALT Assembly System directives must be provided in the source program to effect
the proper integration of the Punch Paper Tape program load.

a, Positioning the Load.
The Paper Tape Punch program load is identified by the name, m*$NAMI,.
Using this name it may be read in as an overlay. More frequently it will be chained to a

load of the source program and be read into memory along with it. This is accomplished
by writing a LOAD statement in the source program as follows:

\ TAG c] FoORrRM CONTENT\
(LAINIY!TIAIGI | LOAD|s,, m* $NAMT | | | | | | g 1/
N

ANY TAG names a load of the source program whose first segment is s. The Paper Tape
Punch program load, m*$NAM1, is a successor to the load ANYTAG and will be read into
memory when ANYTAG is read.

b. Positioning Segments.
The first segment of the Paper Tape Punch program load is always m*SEG]1,.

The user may establish a single predecessor to this segment by simply specifying
SEGn, or m*SEGn, as a parameter (p]) of the subroutine calling statement. n is the
number of the predecessor segment. The form m*SEGn, is used when the predecessor
segment belongs to another subroutine called into the source program. The first

segment of the Paper Tape Punch routine will be assembled relative to the last line
of the specified predecessor.

The user may establish more than one predecessor segment by specifying parameter (1)
as A,. This, in effect, defers specification to a statement that must appear somewhere
in the source program as follows:

\c] FoOrRM CONTENT \

) SGRT|m*SEG1,, SEGn,SEGP,, . /-1 | |
T ——




SECTION:
5-G

UNIVAC III SALT

PAGE: {UP-
6 2558

m*SEG1, names the first segment.of the Paper Tape Punch routine and SEGn, and SEGp,
are its predecessors,

In this case, m*SEG]1, will be assembled relative to the last line of the longest of its
predecessor segments.

The last segment of the Paper Tape Punch program load is always m*SEG2,,
This segment may be named as the predecessor of a segment of the source program or
another subroutine. If required, segment definition is accomplished by specifying

m*SEG2, in the appropriate SGMT or SGRT line of the source program or parameter in
a successor subroutine,

4. Paper Tape Punch Macro-Instructions

m*INIT,

Each coding line used by the programmer to call this macro-instruction results in four source
coding lines actually being included in the program. The calling line may be coded as follows:

fcT Form CONTENT\
yMiclRlo m* VN T l(
/\N e ———

Entrance

Conditions: None.

Results: m*INIT, opens the Paper Tape Punch routine by setting up the starting conditions,
and places the starting address of the first reserve area in a specified index
register.

Discussion: m*INIT, must be executed once and only once prior to the execution of the
m*PUNPT, macro-instruction,

m*PUNPT,

Each coding line used by the programmer to call this macro-instruction results in four coding
lines actually being included in the program. The calling line may be coded as follows:

\c] ForRM CONTENT\
) MCRO[m* PUNP T ,; | :M

Entrance
Conditions: None.

Results: m*PUNPT, causes the initiation of a paper tape punch instruction to punch data
from the reserve area onto paper tape.

Discussion: After its contents are punched, a reserve area is returned to the pool of avail-
able areas maintained by the PUNPTTZZ routine and is then available for
reuse,



SECTION:

UNIVAC III SALT >¢

UP. PAGE:
2558 7

5. General Considerations when using Paper Tape Punch Macro-Insturctions

All of the input-output macro-instructions currently available in UNIVAC III SALT Data
Processing Library are subject to the same general considerations with regard to use,

a. Program Requirements.

Each macro-instruction must be assigned an item number in the range encompassed
by both code and pool segment definitions (SGMT). An index register mapping state-
ment (MAPS) for both the code and pool segments is made before any macro-instruc-
tion is included in the program.

b. Program Restriction.
No macro-instruction may be included in a segment whose pool is mapped with index
register 1.

c. General Exit Conditions.
(1) Index Registers.

Except for the case where a specified index register is to contain the address of
a current item, no other index registers are altered by the execution of a macro~
instruction.

(2) Arithmetic Registers.

The contents of the arithmetic registers are altered by the execution of the
macro-instructions.

(3) Indicators.

The status of the Low, High, and Equal indicators may be altered by the execu-
tion of the macro-instructions.



| SECTION:
5-H

UNIVAC III SALT

UP- | PAGE:

| |

H. PRINTER CONTROL SUBROUTINE

A control system for the printing of data on the UNIVAC III Printer is available through a
routine of the SALT Data Processing Library. This routine, PRNTO1ZZ, is called from the
library into the source program. The call includes a parameter set which modifies the control
routine to conform to and provide options required by the source program. The modified control
routine is assembled with and becomes an integral part of the user’s program.

The control system represents a single program load and thus will occupy a unit of the memory
area required by the assembled program. This load includes the printer control subroutines and
storage area for the printer line data to be printed. In addition a single set of macro-instructions
is defined by the subroutine.

Macro-instructions provide complete control over the printer control subroutine. The pro-
grammer will use these instructions within the source routine where their specified functions
are needed. The macro-instructions are assigned names in the form m* function. The Printer
routine is made unique by assigning a marker, m, to the call on PRNTO1ZZ. This marker is
in the form of a SALT Tag. The function is as defined by the subroutine,

1. Functional Description

The SALT printer routine, PRNTO01ZZ, provides coding to print data from memory on the
High-Speed Printer. One call on this routine controls one printer file. Each item of a
printer file represents a print line, and occupies 32 consecutive words in memory. The
data contained in these words is represented in the UNIVAC III alphanumeric character
code as defined in Appendix H.

Horizontal spacing of the print line is controlled by the placement of the data in the item
area. Every 10 characters equals one inch on the print line. The print routine always
assumes that an entire print line of 128 characters will be printed. Areas of the line that

are not to be printed are expected to contain spaces, or other non-printing characters,
in the positions that are to be blank.

Several options are available for the manipulation of items in memory and the positioning
of these items on the printed form. These options are described in the paragraphs immedi-
ately below. Detailed descriptions and formats follow in the succeeding paragraphs.

a. Item Manipulation. For each call on PRNTO1ZZ, the routine must be initialized by the
execution of the macro-instruction m*INIT,.

Following initialization, the address of an item area is made available by executing
the macro-instruction m*SELECT,.

The program assembles an item in this area, and then delivers the item for printing by
executing the macro-instruction m*PRINT,.

b

Area Retention. It is not necessary to print an item as soon as it has been assembled
in a work area. Rather than immediately delivering the item for printing, the program
may execute another m*SELECT, to obtain the address of another item area. In



SECTION:

5—-H

PAGE:

UNIVAC III SALT

2558

e

addition, m*PRINT has an item-retention option; after an item is printed, its area may
be either released to PRNTO1ZZ for assignment to a subsequent item or withheld and
kept accessable to the program. If the item area is retained through the item-retention
option, the item can be used for further processing or for subsequent reprinting. Thus,
through the use of m*SELECT, and the item-retention option of m*PRINT, the program
may have access to a number of item areas at one time.

The content of a retained item area may be altered by the program after each printing.
However, it may not be altered or resubmitted for printing until the print routine has ful-
filled the previous print request for this item area. The routine uses the sign of a word in
a three-word control packet (called an Item Descriptor) to indicate the status of a retained
item area. When an item area is initially supplied by m*SELECT, this word is positive and
m*PRINT, may be executed for the item area when an item has been assembled. When retention
of the item area is specified, the execution of a m*PRINT, macro-instruction will make
this word negative. It will remain negative until printing of the item has been com-

pleted. At this time, the print routine will make the word positive, The source program
must test the word, and find it positive before the item area is altered or resubmitted

for printing.

Retention of an item area is specified by a special information word (XLST word
described in Appendix M) prepared by the source program and loaded into an arithmetic
register before entering m*PRINT,.

Storage Areas. A calling statement parameter specifies the number of item areas to be
used by the print routine; this number may range from one through five. However, if the
printer is to be kept running at maximum speed, within the limits imposed by the paper
advance and the composition of the data, and if no items are retained by the program,
three or more areas are recommended.

Item Description Packet. Since items need not be printed in the order in which their

areas were obtained, and since the contents of an item area may be printed many times
before the area is released, the particular item to be printed must be identified for each
execution of the m*PRINT, macro-instruction. In addition to an item area address,

each execution of m*SELECT, supplies the routine with the address of the third word

of a three-word item-descriptor packet. When the item is to be printed, the routine supplies
m*PRINT, with the address of the descriptor packet.

Paper Positioning. The length of the paper form or page to be used in printing a file is
specified in the routine calling statement in terms of the total number of print lines that
the form can accommodate. Vertical spacing of the printer, which is set at the control
panel by the operator, may be six or eight lines per inch. An item to be printed is
vertically positioned on the form in one of two ways:

An explicit line number of the form may be specified, or

the number of lines that the form is to be advanced before printing may be specified.
This information is specified as part of the special information word (XLST word) that
is delivered to m*PRINT, (described later).



SECTION:
5-H

UNIVAC II1I SALT

UP- PAGE:
2558 3

In addition, two macro-instructions provide options for advancing the paper without print-
ing. The macro-instruction m*PADN,n, advances the paper n lines, The macro-instruction
m*PADTOL,!, advances the paper to the Ith line of the form.

Margins at the top and bottom of the paper form are specified in the calling statement of
the routine. These margins are automatically observed by the routine for every m*PRINT,
that is executed with the advance n lines option. That is, if the number of lines is such
that the printed line would fall within the lower margin, of the form, or the upper margin

of the next form, paper is advanced automatically so that the line is printed as the first
line on a new form. Its position, relative to the last printed line, is n plus the sum of

the lines in both margins. When m*PRINT, is used with the advance to line | option, the
margins of the form are ignored by PRNTO01ZZ and the line can be printed in either margin.
If this is done, it should not be followed by m*PRINT, in combination with the advance n

lines and print XLST word.

The advancement of the form from a variable starting point (somewhere ineither margin)
could adversely affect accurate placement of the next printing line.

If the automatic treatment of new page conditions described above is not satisfactory,
the programmer may include his own new page coding. This coding is to be in the form
of a closed subroutine. (Refer to New Page Condition, in Appendix M.) It will be
entered by the print routine whenever the execution of m*PRINT, using the advance n
lines option would result in printing a line within either margin or in the last print line
of a form (that is, in the line immediately above the lower margin). Several options may
be incorporated into the new page subroutine:

m Control may be returned directly to the print routine, which will then print the line
under control of its own automatic new page coding.

B One or more m*PRINT, macro-instructions may be executed, the first of which must
use the advance to line | option. These additional macro-instructions will be exe-
cuted in the order submitted, and after they release control to the print routine, the
original macro-instruction will be executed.

B The number of lines to be advanced may be changed by altering the value of n in the
special information word (XLST word which is described later) associated with the
macro-instruction. The macro-instruction will be executed when control is returned to
the print routine. Control will not be returned to the new page subroutine until the
next page is reached.

Printer Malfunction. One additional section of coding may be included in a program
using PRNTO1ZZ. This is coding to be executed if a printer malfunction occurs. The
coding is assigned a permanent tag, to which transfer of control can be initiated by the
console operator through a type-in message. The tag of this recovery coding must

be specified in the calling statement for the routine when such coding is included in
the source program. The format of this coding and the conditions under which it can be
executed are described under the heading Recovery Coding, in Appendix M.



SECTION:

5-H

PAGE:

uP-

UNIVAC III SALT

2558

2. Calling Statement

The calling statement for this routine is shown below.

The parameters P, through Po may take as many lines as required. All lines after the first
are hyphenated. The SLCT line, although a part of the calling statement, is not hyphenated.

The item number field contains a two level item number as indicated; the lower levels are
reserved for use by the subroutine coding. marker is a permanent tag making the coding
produced by PRNTO1ZZ unique.

The PRNTO1ZZ designation is the fixed routine name.

P defines the location in memory of the first segment of the PRNTOI1ZZ coding, by defin-
ing its predecessor. If the predecessor segment is part of the source program, this
parameter is of the form SEGn, where n is the segment number of the predecessor. If the
predecessor segment is part of a routine produced from the SALT library, this parameter

is of the form m*SEGn, where m is the marker used in calling the routine, and n is the
number of the last segment in the routine. If more than one predecessor is needed to define
the location of the PRNTO1ZZ coding, Pyisa A (space). In this case, a SGRT line naming
the predecessors is to be included elsewhere in the source program. (Refer to heading A-2

of this section.)

P, defines the successor load, if any, thatis to be chained to the PRNTO1ZZ load. If a

load is to be chained to the PRNTO1ZZ load, P, is a permanent tag naming the load
definition line of the chained load. If no load is to be chained to the PRNTO1ZZ load, Py

is A (space) and the terminating comma must be retained.

P, is the numeric file designation for the printer file, and is a unique number in the range
of 1 through 41.

P, is an input-output channel designator for the file. When the assignment of the channel
is to be left to the routine, P, is A (space). When the programmer wishes to control this
assignment, P4 is a number, 3 through 10, designating a general purpose channel.

P, specifies the size of the print form in terms of the number of lines that it can
contain. (See Appendix M for additional options in paper advance and new page

coding.)

ITEM NO. TAG c[ Form CONTENT\
["1" nn |AAAAL lerxkel L | SUBRIPRNT OV ZZ ,py Py-P3rPyr| | L¢J]
1 | ! | oo o4t IPsePgeiPac PPy o g
) N B S IR RN e SLCTIPRAGPIPPIE 1 0 0
L~ */_\-——-“k/



SECTION:
5—-H

UNIVAC III SALT

UP- PAGE:
2558

P, specifies the size of the upper margin of the print form in terms of the number of print
line s that it must contain. If no upper margin is required, Pg is 0.

Py specifies the size of the lower margin of the print form in terms of the number of print
lines that it must contain, If no lower margin is required, Py is 0.

Pg is a permanent tag naming the first line of the new page subroutine supplied by the
programmer. If such a subroutine is not supplied, P8 is A (space).

Pg is a permanent tag naming the first line of the recovery coding supplied by the pro-
grammer. If such codingis not supplied, Pg is A (space).

PR Pyg Pyy P12 P13’ is a configuration name used internally by the routine. Note that
these parameters are not separated by commas.

P1o is N if the program uses the advance n lines option of m*PRINT,. If this option is not
used, PIO is omitted,

P11y is L if the program uses the advance to line | option of m*PRINT. If this option is
not used, P11 is omitted.

P-|2 is § if a new page subroutine is included in the program. In this case, P, must be
a permanent tag and Pyg must be N. If a new page subroutine is not included, Pyp is
omitted.

Py3 specifies the number, 1 through 5, of item storage areas that are to be used by the
routine.

If the SLCT line is omitted, a routine providing for both modes of printing, end of page
determination, and five printer storage areas will be furnished. It will be as though
PRNLS5 were specified.

. Integrating the Printer Control Routine with the Source Program

A few SALT Assembly System directives must be provided in the source program to effect
the proper integration of the Printer Control program load.

a. Positioning the Load.

The Printer Control program load is identified by the name, m*$NAM]1,. Using this name
it may be read in as an overlay. More frequently it will be chained to a load of the
source program and be read into memory along with it. This is accomplished by writing
a LOAD statement in the source program as follows:

\ TAG C| FORM CONTENT\

L (ANY TAG | LOAD|s , m*$NAMT, |

———




SECTION:

5-H

PAGE:

UNIVAC III SALT

2558

ANYTAG names a load of the source program whose first segment is s. The Printer
Control program load m*$NAM]1, is a successor to the load ANYTAG and will be read
into memory when ANYTAG is read.

Positioning Segments
The first segment of the Printer Control program load is always m*SEG1,.

The user may establish a single predecessor to this segment by simply specifying
SEGn, or m*SEGn, as a parameter (p,) of the subroutine call. Where n is the number
of the predecessor segment. The form m*SEGn, is used when the predecessor segment
belongs to another subroutine called into the soutce program. The first segment of

the Printer Control routine will be assembled relative to the last line of the specified
predecessor,

The user may establish more than one predecessor segment by specifying parameter p
as A,. This in effect defers specification to a statement that must appear in the source
program as follows:

Ic| FORM CONTENT \

) SGRT|m*SEGT, SEGN,SEGP,. . - l{

) I —

m*SEG1, names the first segment of the Printer Control, routine and SEGn, and SEGp,
are its predecessors.

In this case m*SEG1, will be assembled relative to the last line of the longest of its
predecessor segments.

The last segment of the Printer Control program load is always, m*SEG2,.

This segment may be named as the predecessor of a segment of the source program. If
required, this is done simply by specifying m*SEG2, in the appropriate SGMT or SGRT
line of the source program.



SECTION:
5—-H

UNIVAC III SALT

' PAGE:
2558 |

|
|

The macro-instructions provided by PRNTO1ZZ are described below. The content field,
parameters, entrance requirements, and exit conditions are given for each macro-instruc-
tion. Each macro-instruction results in four lines of object code in the assembled program.

m*INIT,
\c] FORM CONTENT\
) MCROfm* INVEVTy )y 1y 1{
L

Entrance

Conditions: None.

Results: m*INIT, opens the Printer routine by setting all initial conditions.

Discussion: m*INIT, must be executed once, and only once, prior to the execution of any
other printer macro-instruction.

m*SELECT,
\c| FORM CONTENT\
2 MCROfm* SELECT ,Pyoy | | 11 | | 1| |]
\-’\.—/

Entrance

Conditions: Parameters: (p,) is a number 1-15 designating the communicating index register
for this macro-instruction. This macro-instruction is executed only when the
number of current items being retained is less than the number of item storage
areas specified in the calling statement.

Results: m*SELECT, selects the next 32-word printer storage area and makes it the
current storage area. It places the address of the first word of the storage area
in the specified index register (Py), and in AR1, and in a memory location tagged
m*AREA,. It also places the address of the third word of a print packet associated
with the printer storage area in AR3,

Discussion: A print line is assembled in the current printer storage area which is accessed

using the specified Index Register. The address of the print packet as
supplied in AR3 must be saved. This address must be passed on when the
content of the printer storage area is to be printed.



SECTION:
5—-H

UNIVAC II1 SALT

PAGE: UP-
g | 2558

m*PRINT,
\c] FORM CONTENT\
)MICIRIO m*PRUNT ) vy 1?
/\

Entrance

Conditions: The address of a Print Packet obtained from the execution of m*SELECT,
must be in AR3. An XLST word, specifying the printing mode, must be provided
by the source program and be stored in AR4.

The format of the XLST coding line is explained below.

\c| FORM CONTENT\
)lelslT 64 Pl ™ b !J]
L,\/\/—*\/—A

Where: 64, is always present
p is a printer control specification

® MR tec advance to line | and print

m R to advance n lines and print
(See New Page Condition in Appendix M)

m MRS to advance to line |, print, and
retain the printer storage area.

®m RS to advance n lines, print and
retain the printer storage area.
(See New Page Condition in Appendix M)

n is a decimal number in the range of 1-1023
setting the number of lines for the action
controlled by p.

Results: m*PRINT, causes printing of the contents of the storage area, whose print
packet address has been submitted in AR3. If the source program provides new
page coding and printing of this line would cause an advance to a new page,
printing may be deferred until the source program is executed, (See New Page
Condition in Appendix M.)



SECTION:
S—-H

UNIVAC III SALT

UP- PAGE:
2558 9

Discussion:

m*PADN,

Parameters:

Entrance

Conditions:

Results:

Discussion:

Normal Printing.

If the content of the printer storage area is not retained, the area is returned
after printing to the pool of areas maintained by the print routine.

Retained Printer Storage Areas.

If the content of the printer storage area is retained, access to the storage area
must be kept in the source program. In order to provide this access, the address
of the third word of the print packet and also the address of the first word of
the printer storage should be stored in the source program,

A retained printer storage area may be resubmitted for printing via m*PRINT,.
It may also be altered before it is resubmitted. Neither additional printing nor
alteration should be attempted before the retained area is free. The status of a
retained area is maintained by the printer routine. Status is indicated by the sign
of the first word of the print packet associated with the retained printer
storage area. When the sign is positive, the area is free and may be submitted
for printing or altered. When the sign is negative, the area may not be sub-
mitted for printing nor be altered. Access to the first word of the print packet
may be obtained by executing the two instructions given below. For example,
while the address of the print packet is still in AR3, as a result of executing
m*SELECT, the source program executes the instruction ST, 3, PACKET,,

Access to the packet’s first word may now be obtained by executing

IA,, L, 123, PACKET,.
After execution of the second instruction, the first word of the packet is in AR]1.

The retained printer storage area may be released by submitting it
for printing with the p designation of the XLST word equal to MR or R.

FORM CONTENT\

MCRO|m* PADN ,in;,| | | 1?

|

U T——17]

n = the number of lines (0<n<1023) the paper is to advance.

None.
m*PADN, causes the advancing of paper n lines (0<n<1023)
(See Aliternaie Method Paper Advance) in Appendix M.)



SECTION: j
5-H |
| UNIVAC III SALT
PAGE: UP-
10 2558
m*PADTOL,
\c] FoRM CONTENT\
\MICIR!O m*PADTOL by g 1Z
—\/'
Parameters: | = the line number to which the paper will advance.
Entrance

Conditions: None.

Results: m*PADTOL, causes the advancing of paper to line l. If current line position
>l, the advance will be to line | of the next page.

Discussion: (See Alternate Method of Paper Advance in Appendix M.)

5. General Considerations when using Printer Macro-Instructions

a. All of the input-output macro-instructions produced are subject to the same basic
considerations with regard to use.

(1) Program Requirements.

Each macro-instruction must be assigned an item number in the range encompassed
by both code and pool segment definitions (SGMT). An index register mapping state-
ment (MAPS) for both the code and pool segments is made before any macro-instruc-
tion is included in the program.

(2) Program Restriction.

No macro-instruction may be included in a segment whose pool is mapped with Index
Register 1.

(3) General Exit Conditions,

(a) Index Registers

Except for the case where a specified index register is to contain the address of
a current item, no other index registers are altered by the execution of a macro-
instruction.

(b) Arithmetic Registers

The contents of the arithmetic registers are altered by the execution of the macro-
instructions. Arithmetic Registers 1 and 3, when pertinent, will contain useful
information,

(c) Indicators

The status of the Low, High, and Equal indicators may be altered by the execu-
tion of the macro-instructions.



 SECTION:

UNIVAC III SALT i | oA

UP- PAGE:

2558 | 1

6. TAPE ROUTINES

A. UNISERVO IIA TAPE UNIT CONTROL SUBROUTINE

A control system for the transfer of data between the UNIVAC III memory and magnetic tape
mounted on UNISERVO IIA tape transports is available through a routine of the SALT Data

Processing Library. This routine, SERV02ZZ, is called from the library into the scurce
program. The call includes a parameter set which modifies the control routine to conform to
and provide options as required by the source program. The modified control routine is

assembled with and becomes an integral part of the user’s program.

The control system represents a single program load and thus will occupy a unit of the memory
area required by the assembled program. This load includes the UNISERVO IIA control subroutines
and storage areas into which the data is read or assembled for writing. In addition, a single set

of macro-instructions is defined by the subroutine.

Macro-instructions provide complete control over the UNISERVO IIA magnetic tape file pro-
cessing subroutines, The programmer will use these instructions within the source routine at
the points where their specified functions are needed. Macro-instructions of the routine are
assigned names in the form m* function. The UNISERVO IIA routines are made unique by
assigning a marker, m, to each call on SERVYO2ZZ. The marker is in the form of a SALT Tag.
The function of each macro-instruction is as defined by the subroutine.

1. General
a. Reading or Writing Magnetic Tape

The SERV02ZZ control routine has been designed to fit into the coding patterns and
conventions presently established for magnetic tape files maintained by UNIVAC
customers. In order to provide a maximum of flexibility in the use of this control system,
the subroutine has been restricted to the control of UNISERVO IIA functions. It is called
into the source program through the use of separate calling lines for each file read or
written by UNISERVO II tape units. SERVO2ZZ reads or writes magnetic tape records
through the control of the SALT Executive Routine.

SERVO02ZZ tests for the existence of parity error or hardware fault during each read or
write operation. The calling program is thereby assured that the data read or written are
accurate to the extent of the error detection capability of the hardware.

The calling program must provide for program housekeeping functions such as label
checking, end-of-reel, end-of-file, sequence checking, etc. The programmer of the call-
ing routine has been provided with access to the five-word control packets required for
each UNISERVO IIA tape file. Therefore, the information normally stored in this packet
can be used in housekeeping instruction statements. Pertinent data can be stored in
the packet through source program coding lines.

In the case of an output file, the source program must contain coding for assembly of
data in the work area defined by the subroutine, prior to writing that information on
magnetic tape. If a file is being used for input, any information left in the storage area



SECTION:

6—-A

PAGE:

uP-

UNIVAC 111 SALT

2558

defined by the subroutine will be destroyed when a subsequent read instruction causes

a new record to be read into that area. If any of the data from the original record is
needed for latter processing, coding is required to move the needed data from the storage
area into an area of the calling program.

The Storage Area

SERVO02ZZ defines a single storage area for processing input-output tape records.

(One area for each call on the subroutine). The address of the first word of the storage
area is loaded by the subroutine into an index register designated by the calling routine,
A word in a storage area is accessed by using its relative address within the area as

a decimal address and designating the index register specified in parameter Pqpas the
index register address modifier.

The size of the storage area is always the same for record blocks read or written by
UNISERVO IIA. The pulse density or the fact that records can be read or written in
blockettes have no bearing on storage requirements. The storage area is always 720
alphanumeric characters or 180 memory words in length.

The 180 words within a work area may be addressed by source program instructions using
the SALT decimal address, The valid address of a word within the storage area is
developed by modifying the decimal address with the contents of the designated index
register. For example, assume that Index Register 4 has been loaded with a number
representing the starting address of the current storage area. Assume also that a pro-
grammer wishes to store four words of data in the last four words of the storage area.
These words have already been loaded into the arithmetic registers. The instruction

will be written as follows:

M CONTENT\

\ 4,87 .,1234, 1479, IJ!

Another way to address words within a storage area is by tags through the use of the
SALT form EQDX. A tag naming a particular storage area word is equated with an index
register and the decimal designation of the storage area’s relative address. Noting that
the first word of the storage area has a relative address of zero, the following is an
example of the EQDX form equating tags to the first and tenth words of the storage area:

\c| FORM CONTENT \

EQD X4, =CASH, | |\ | | | 11 L/

o WP A L\

———\v,




{ SECTION;
6—A

UNIVAC III SALT

UP- PAGE:
2558 3

An instruction to store the contents of AR in the first word position of the storage area could

then be written as:

M CONTENT\
HI STV CASHL |/

An instruction to store the contents of AR2 into the tenth word position of the storage
area could be written as:

M CONTENT\
/1 ST 2 PAY 1(

Both instructions will produce the same result.

c. Opening the Magnetic Tape File

The magnetic tape file is opened when the user program executes a macro-instruction
m*INIT,. The magnetic tape file must be opened before any other macro-instruction can

be used. The source program must be constructed in such a way as to permit the execution of
this macro-instruction at the start or restart of a program. This action makes the work

area available for editing tape data prior to writing a record. The first record will be

read into the current storage area if the parameters given by the programmer specify an

input file.

d. Input File Records

A record block is read into the input storage area at the outset of the processing by the
execution of the m*INIT, macro-instruction. Subsequent record blocks are read by exe-
cuting m*READ, macro-instructions. SERVO2ZZ delivers record blocks of 180

UNIVAC Il computer words to the storage area defined in the subroutine. The address
of the first word of the storage area is supplied in the specified index register by the
subroutine.

e, Output File Records

The contents of the output storage area are written on magnetic tape and the area is

made available for reuse by the execution of either of two macro-instructions. The
execution of a m*BWRITE, macro-instruction will cause the records to be written on
magnetic tape at a density of 250 pulses per inch with an inter-record gap size of 1.5
inches. The execution of a m*SWRITE, macro-instruction writes the storage area to magnetic
tape in six blockettes at a density of 125 pulses per inch. The size of the gaps between
blockettes is 1.5 inches; the inter-record gap is 2.4 inches. The storage areais equally



SECTION:

6-A

UNIVAC IIT SALT

PAGE:

“UP-

2558

subdivided so that 30 UNIVAC III words are written in each blockette. Normally this tape
writing mode is selected when the data written on the tapes is to be printed using an off-
line buffered printer, The calling program must arrange information in the storage area in
the desired print line format.

Rewinding Magnetic Tapes
There are two modes of tape rewind available to the programmer:
(1) Rewind with interlock is accomplished by executing m*RWI macro-instruction.

(2) Rewind without interlock is accomplished by executing m*RWO macro-instruction.

Tape Control Packet

A five-word control packet is developed during assembly for each magnetic tape file.
This packet is stored in the tape control area of the calling program and contains informa-
tion to be used in routine processing of magnetic tape files. The SERV02ZZ Data Pro-
cessing Library subroutine causes certain information to be placed in this control

packet, as a result of the parameters specified by the programmer when calling the sub-
routine, Generally, it will be necessary for the calling program to provide coding to
supplement that information. All the information in the five-word tape file packet is
available to the calling program for use in program housekeeping.

Servo Swap

When needed, the calling routine must provide coding to accomplish Servo swap. In order
to accomplish this, the address of the area in memory in which the specific servo numbers
will be stored must be available. The designation of the file number is made by the calling
program in a parameter specification at the time of calling the SERVO2ZZsubroutine. The
location of this information along with a set of sample coding which may be used to
accomplish servo swap is explained in Subsection 6-A-7,



SECTION:
UNIVAC III SALT -
UP- PAGE:
2558
2. SERVO2ZZ Calling Statement
The general form of the calling statement for this routine is:
. ITEM NO. TAG Ccl Form CONTENT/|
/ marker )
P
[ IninininlAAAA S T WO S N Sil.liBiR SRE;R_;V,‘QiZiZJZi” eri:ip&f% N R B
P, Pz P Pg P (
)) | 1 [ D S S IR Bl B 'ﬂ'l5|'i6|'|p71'18:'19up|q'?”1u1J |
I ND XP.
\ ! i A TRTEN AY 7 5 S S R N N H A A N B S N B B R B
SLCTINTPSpot ,
[ T B SR | Lo b 8 l
- — | — —————

The item number field contains a two-level item number as indicated; the entire range of
numbers through its two-level Dewey successor is restricted to use by coding produced by
SERYO02ZZ, marker is a permanent tag making the coding produced by SERVO2ZZ unique.

Parameters P, through Py, may take as many lines as required; all lines after the first are
hyphenated. The INDX and SLCT lines, although part of the calling statement,are not
hyphenated.

The designation SERYO2ZZ is the fixed routine name.

Py defines the location in memory of the first segment of the SERVO2ZZ coding by speci-
fying its predecessor. If the predecessor segment is part of the source program, this
parameter is of the form SEGn, where n is the segment number of the predecessor. If the
predecessor segment is part of a SALT routine, this parameter is of the form m*SEGn ,
where m is the marker used in calling the SALT routine, and n is the number of the last
segment in the routine. If more than one predecessor is needed to define the location of
the SERVO2ZZ coding, P, is A (space). In this case, a SGRT line naming the pre-
decessors is included elsewhere in the program. (Refer to heading A-2 in this section.)

Py defines the successor load, if any, which is to be chained to the SERVO2ZZ load. If a
load is to be chained to the SERVO2ZZ load, P, is a permanent tag naming the load-
definition line of the chained load. If no load is to be chained to the SERVO2ZZ load, P,
is a space.

P3 is the numeric file designation for the file, and is a unique number, 1 through 41.

P4 is a four-character alphanumeric label used to identify the file. This designation must be
preceded by a period.



SECTION:

6-A

UNIVAC III SALT

PAGE:

2558

Pg designates the input or output status of the file. If the file is an input file, Pg is .READ,
if the file is an output file, P5 is .WRITE,.

Pg is a four-character alphanumeric field to be inserted in the DATE form associated with
this file. This designation must be preceded by a period.

P is a permanent tag naming the first line of the recovery coding supplied by the source
program. If no recovery coding is supplied, Py may be a space but the limiting comma must
be present.

Pg specifies the number of tape units to be assigned to the file. It is 1, if the file requires
one tape unit; 2 if the file requires two tape units; or 3, if the file requires three tape units,

Pg is the servo number to be assigned to this file if absolute designation is (0-5) required.
Leave blank if allocation is to be left to the Executive Routine but include the terminal
comma. If only one servo is to be assigned to this file, parameters Pjg and Pyj may be
omitted, but the commas must be present.

P,n is the servo number to be assigned to this file, if a second servo is to be given an
absolute designation (0-5). If less than two servos are required, or if allocation is to be
left to the Executive Routine, P10 through Py May be omitted, but the comma must be
present.

P,, is the servo number to be assigned to this file if a third servo is to be given absolute
designation (0-5). If less than three servos are required, orif allocation is to be left to the
Executive Routine, Pyq may be omitted, but the comma must be present.

P12is a number, 2 through 15, specifying the communication index register to be used by
the routine.

In the final designation, NTPSPgt, t designates the input or output status of the file. It is
R, if the file is an input file, or W, if the file is an output file. This designation and the
parameter Pg, without its terminal comma, are combined with the letters NTPS to form a
name used internally by the routine. For example, if Pg has been specified as 2, and the
file is an input file, this designation is NTPS2R.

- Integrating The UNISERVO IIA Magnetic Tape Control Routine With The Source Program

A few SALT Assembly System directives must be provided in the source program to effect
the proper integration of the SERVO2ZZ magnetic tape control program load.

a. Positioning the Load

The SERVO2ZZ magnetic tape control program load is identified by the name, m*$NAMI,.



| SECTION:
6—A

UNIVAC III SALT

2558

|

UP- | PAGE:
| 7
I

b

.

Using this name, it may be read in as an overlay. More frequently it will be chained to a
load of the source program and be read into memory along with it. This is accomplished
by writing a LOAD statement in the source program as follows:

\ TAG C| FORM CONTENT\
S‘NN;Y;T;A;G; ; LOAD)s , m* S NAMT .\, | | | | (g zZ

ANYTAG names a load of the source program whose first segment is s. The
SERV02ZZ magnetic tape control program load m*$NAM]1, is a successor to the load
ANYTAG and will be read into memory when ANYTAG is read.

Positioning Segments

The first segment of the SERV02ZZ magnetic tape control program load is always
m*SEGI,.

The user may establish a single predecessor to this segment by simply specifying
SEGn, or m*SEGn, as a parameter (p_) of the subroutine call, where n is the number
of the predecessor segment. The form m*SEGn, is used when the predecessor segment
belongs to another subroutine called into the source program. The first segment of the
magnetic tape routine will be assembled relative to the last line of the specified
predecessor.

The user may establish more than one predecessor segment by specifying parameter P
as A. This in effect defers specification to a statement that must appear somewhere in
the source program as follows:

£l FORM CONTENT({

[5161'37 mﬁ*xstrGL]:'is;EnG/"r'JstlGﬁf'Jg't'J 1?

| R

m*SEG1 names the first segment of the SERVO2ZZ control routine and SEGn and
SEGp are its predecessors,

In this case m*SEG1 will be assembled relative to the last line of the longest of its
predecessor segments.

The last segment of the SERYO2ZZ magnetic tape control program load is always,
m*SEG2,.

This segment may be named as the predecessor of a segment of the source program
or another subroutine. If required, segment definition is accomplished by specifying



SECTION:

oA UNIVAC III SALT

PAGE: UP-
8 2558

4. UNISERVO IIA Macro-Instruction Set

SERVO02ZZ defines macro-instructions in two sets, one set for each file according to
the specification of parameters at the time of call. The two sets are as follows:

INPUT OUTPUT
Macro Action Macro Action
m*INIT, Initialize, read 1st record | m*INIT, Initialize
m*READ, Read a record m*BWRITE, Write 720 character block
m*RWI, Rewind with interlock m*SWRITE, Write six 120-character
m*RWO, Rewind without interlock blockettes
m*RWI, Rewind with interlock
m*RWO, Rewind without interlock

Detailed explanation of these macro-instructions will be found in the following text.

a. Input Macro-instructions.

m*INIT,

The use of this macro-instruction results in the placement of four coding lines in the source
program. The macro-instruction line may be coded as follows:

| FORM CONTENT
]MlciRlo'"l*lliNlllTlll Cl bbb
N/W

Entrance
Conditions: None,

Results: m*INIT, opens the tape file processing routine by setting up the starting condi-
tions. The first record is read into the storage area from tape.

Discussion: m*INIT, must be executed once and only once prior to the execution of any of
the other macro-instructions defined by the SERV0O2ZZ subroutine. The address
of the storage area is loaded into a specified index register. This index
register is indicated in the coding lines of the calling program to process
data read into the storage area. The record is read forward and at normal gain.
It will have been checked for parity error and tape fault. All program housekeep-
ing functions are the responsibility of the calling program.



SECTION:

6-A
UNIVAC IIT SALT 5 P AGE.

2558

m*READ,

The use of this macro-instruction results in the placement of four coding lines in the source
program. The macro-instruction line may be coded as follows:

\c| FORM CONTENT \
MCROIm* READ, | | | |\ | | (1 11141 L/
/\

Entrance

Conditions: None.

Results: m*READ, causes the reading of one record block, 180 UNIVAC III words in
length, from a specified UNISERVO IIA tape file. The tape record block is
read into the storage area defined by the SERVO2ZZ subroutine. Data in the
storage area from the previous record are destroyed by the execution of each
new m*READ, macro-instruction.

Discussion: The m*READ, macro-instruction reads magnetic tape records forward at normal

gain. The subroutine will automatically perform the rocking of tape and change
of gain when it is necessary to reread records. Program housekeeping functions
such as testing for end-of-file, label checking, sequence checking, etc., are left
to the source program in order that practices and conventions used in existing
files can be continued. When servo swap is desired for input files, the soutrce
program is to provide the coding for it.



SECTION:

6—A

UNIVAC IIT SALT

PAGE:

10

uP-
2558

m*RWO,

The use of this macro-instruction results in the placement of four coding lines in the source

program. The

Entrance
Conditions:

Results:

Discussion:

m*RWI,

macro-instruction line may be coded as follows:

] Form CONTENT\

) MCRO|m* RWO,,

None.

The specified UNISERVO IIA tape transport will rewind the magnetic tape
mounted on it. The tape will be rewound without interlock.

The reel of tape mounted on the specified tape transport will be rewound with-
out interlock and, therefore, can be read or written upon without operator inter-
vention. This type of rewind can be used for input tape files when the file is

to be reread without a change of tape reel or UNISERVO designation.

The use of this macro-instruction results in the placement of four coding lines in the source
program. The macro-instruction line may be written as follows:

Entrance
Conditions:

Results:

Discussion:

FORM CONTENT\

*
LMnclRlomHlei'f:|11111||1||||11]
— -

None.

The specified UNISERVO IIA tape transport will rewind the magnetic tape
mounted upon it. The tape will be rewound with interlock.

m*RWI, is normally used in those instances where a change of tape reels is
expected before processing is to continue. After this instruction has been exe-
cuted, the tape mounted on the specified tape transport cannot be read until
the operator goes through the tape reel change procedure.

If the source program attempts to execute a read instruction before the inter-
lock has been manually released, an indication of fault will be received.



UNIVAC IIT SALT

SECTION:
6—A

UP- PAGE:
2558 11

b. Output Macro-instructions

m*INIT,

The use of this macro-instruction results in the placement of four coding lines in the source
program. The macro-instruction line may be coded as follows:

Entrance
Conditions:

Results:

Discussion:

\c| FORM CONTENT\
] MCROIm* INENT Wy ) Y
LP\

None.

m*INIT, opens the tape file processing routine by setting up the starting condi-
tions. If the parameters inserted by the calling program specify an output file,
the storage area is made available for the assembly of tape record blocks.

m*INIT, may be executed once and only once prior to the execution of any of
the other macro-instructions defined by the SERVO2ZZ subroutine. The

address of the storage area is loaded into a specified index register. This index
register is to be indicated in the coding lines of the calling program when
assembling data in the storage area in preparation for writing on magnetic tape.
All program housekeeping functions are the responsibility of the calling

program.



SECTION:

6—-A

UNIVAC IIT SALT

PAGE:

12

UP-

2558

m*BWRITE,

The use of this macro-instruction results in the placement of four coding lines in the source
program. This instruction may be coded in the following manner:

Entrance
Conditions:

Results:

Discussion:

] Form CONTENT\
MCRO|m* BWR\I TE, | | | | | | | {1 1]
——" —
None.

m*BWRITE, causes the storage area defined by SERVO2ZZ subroutine to be
written on a magnetic tape mounted on a specified UNISERVO IIA tape unit. One
block of records containing 180 UNIVAC III words is written on tape at a density
of 250 pulses per inch. An interrecord gap of 1.5 inches is placed between
record blocks.

m*BWRITE, macro-instruction causes the contents of the output storage area to
be written on magnetic tape. The calling program is assumed to have provided
the coding to assemble blocks of data in the storage area prior to writing.

All program housekeeping routines are to be provided by the calling program. If
the number of records to be written on an output file can exceed the capacity of
a single reel of tape, the source program should provide for end-of-reel detection
and processing. The programming for servo-swap is to be coded by the calling
program if it is desired. (see Subsection 6-A-7.)

No special provisions are needed to write the last record out of storage when
end-of-job is reached. Only one storage area is used by the subroutine and it is
written on tape each time m*BWRITE, is executed. However, it will be the
responsibility of the calling program to assemble any information for editing a
sentinel block in the storage atea prior to writing it on tape.



SECTION:

UNIVAC III SALT oA

UP- PAGE:
2558 13

m*SWRITE,

The use of this macro-instruction results in the placement of four coding lines in the source
program. The macro-instruction line may be coded as follows:

Entrance
Conditions:

Results:

Discussion:

| FORM CONTENT\
) MCROIm*SWRIVTE, | | | | | | | ||} JJZ

None.

m*SWRITE, causes the storage area defined by SERVO2ZZ subroutine to be
written on a magnetic tape that has been mounted on a UNISERVO IIA tape unit.
Six blockettes each of which contain 30 UNIVAC III words, are written on tape
at a density of 125 pulses per inch. The interrecord gaps are 1.5 inches between
each blockette and 2.4 inches between record blocks.

m*SWRITE, is normally used to edit tape records for subsequent off-line print-
ing. The 720 alphanumeric character storage area is written out in uniform
length records of 120 characters each. The calling routine must provide coding
to construct each blockette in the desired print line format.

All program housekeeping routines are to be provided by the calling program.
When the number of records to be written on an output file can exceed the
capacity of a single reel of tape, the source program should provide for end-of-
reel detection and processing., The programming for servo-swap is to be provided
by the calling program if it is desired.

No special provisions are needed to write the last record from storage when end
of job is reached. A single storage area is used by the subroutine, and it is
written on tape each time m*SWRITE, is executed. However, the calling program
must provide coding for the assembly of a sentinel block in the storage area if
it is to be the last record written on a particular reel of tape.



SECTION:
6-A |

UNIVAC IIT SALT

PAGE: "UP-
14 2558

m*RWO,

The use of this macro-instruction results in the placement of four coding lines in the source
program. The macro-instruction line may be coded as follows:

Entrance
Conditions:

Results:

Discussion:

m*RWI,

cl FORM CONTENT\
MCROIm*RWO, ., | | | | | | 110111 J(

None.

The specified UNISERVO IIA tape transport will rewind the magnetic tape
mounted on it, The tape will be rewound without interlock.

The reel of tape mounted on the specified UNISERVO IIA will be rewound with~
out interlock and, therefore, can be written upon without operator intervention.
This type of rewind is normally used for ‘“scratch tape’’ operations where the
data written on output tapes are no longer significant.

The use of this macro-instruction results in the placement of four coding lines in the source
program. The macro-instruction line may be written as follows:

Entrance
Conditions:

Results:

Discussion:

\c| FORM CONTENT\
)M1C1R|° mRWL L L 1[
L\/ i s

None.

The specified UNISERVO IIA tape transport will rewind the magnetic tape
mounted upon it. The tape will be rewound with interlock.

m*RWI, is normally used in those instances where a change of tape reels is
expected before processing is to continue. After this instruction has been
executed, the tape mounted on the specified UNISERVO IIA can neither be
written upon nor read until the operator goes through the tape reel change
procedure.

If the source program attempts to execute a write instruction before the interlock
has been manually released, an indication of fault will be received.



SECTION:
6-A

UNIVAC IIT SALT

2558

PAGE:
15

=

5. General Considerations when using UNISERVO IIA

a. Basic Considerations

All of the input-output macro-instructions are subject to the same basic considerations

with regard to use.

(1) Program Requirements

The item number assigned to a macro-instruction must be within a range which is

assigned to either a pool or coding segment.

Macro-instructions produce coding lines that become an integral part of the pro-
grammer’s own program. The call on these instructions must be provided by the pro-
grammer in his own program lines. Index registers are unspecified in the lines of

agnetic Tape Control Routine Macro-instructions

coding resulting from macro-instructions. When brought into a program, the index register

mapping of the segments into which they are inserted must apply to them also.

Therefore, a MAPS statement for both code and pool segments must be present in the

calling program prior to the insertion of the macro-instruction coding,

(2) Program Restriction

No macro-instruction may be included in a segment whose pool is mapped with Index

Register 1.

(3) General Exit Conditions

(a) Index Registers

Except for the case where a specified index register is to contain the address of
a current item, no other index registers are altered by the execution of a macro-

instruction.

(b) Arithmetic Registers

The contents of the arithmetic registers are altered by the execution of the macro-

instructions.

(c) Indicators

The status of the Low, High, and Equal indicators may be altered by the execu-

tion of the macro-instructions.



SECTION:

6—-A

UNIVAC III SALT

PAGE:

16

2558

. Explanation of the Tape Control Packet,

The subroutine includes a line of coding using the TAPE form, obviating the need for
the inclusion of such a line in the calling routine. The calling program will address the
words within the packet using the permanent tag form of address. The first word of the
tape packet has been named TAPE by a permanent tag. The calling program can, there-
fore, access this word using the designation m*TAPE.

where:

m the unique marker or permanent tag used in the SUBR line when the program

was called

is always used.

TAPE is the specified tag to be used by the calling program to access the proper
tape packet. It is assigned by SERY02ZZ.

*

The tape control packet appears in five consecutive words of memory in the following
format;

#66f,dddd, txOrrr, y-y b-b, 0-0,

which is explained in detail below.

Designation Explanation Word #| # bits Inserted By

ffff  a four-character alphanumeric file iden~ 1 24 SERV027Z
tifier, to be supplied as a parameter at
the time of the call on the subroutine.
(It can be accessed through the tag

m*TAPE).
dddddd a six-character numeric config- 2 24 calling
uration to be used in combination with program

a DATE form. The configuration
assigned here must be unique in

order that it can be identified and
replaced with a date during the Object
Code Service Run (O C S). O C S pre-
pares master instruction tapes for
operational use. (The word may be
accessed using the tag and address
modifier m*TAPE+1).




UNIVAC III SALT

SECTION:

6—-A

2558

PAGE:

17

Designation

Explanation

Word #

# bits

Inserted By

t

rrr

y-y

a one-character decimal number
(2) meaning UNISERVO IIA tape
units.

a one-character decimal number
designation developed by interpre-
tation of a parameter supplied at the
time of the call on the subroutine; a
(0) will be supplied when write is
specified; a (1) results from the
specification of read.

a one-character decimal zero, having
no specific use.

a three-character decimal number
serving as a counter to indicate the
number of reels used for a particular
file at any point in the processing.
This information can be used for
checking or writing tape file label
records. It will also serve to
identify the specific reel in
messages edited for typeouts on
the console typewriter. (The word
may be accessed using the tag and
address modifier m*TAPE+2).

the internal file number assigned
as one of the parameters at the time
of call on the subroutine. The spe-
cified decimal number is inter-
preted by the Executive Routine
and converted to a six-bit binary
number,

12

SERVO02zZ

SERVO022Z

SERVO02ZZ

calling
program

SERVO02Zz




SECTION:
6—-A

UNIVAC III SALT

PAGE: UP-
18 2558

Designation Explanation Word # | # bits Inserted By

b-b an 18 binary position counter indi- 4 18 SERVO022Z
cating the number of 720 character
blocks read or written at any point
in the execution of the program.
This counter is increased by one
for each record successfully
brought into memory by execution of
the m*READ macro-instruction, or
for each record written from memory
by executing either m*BWRITE or
m*SWRITE macro-instructions. Note
that this counter does not count
the number of blockettes read or
written. The counter will be reset
to zero after the execution of each
m*RWO or m*RW| rewind macro-
instruction. This counter provides
the calling program with information
needed for determining the point at
which to institute end-of-reel pro-
cessing for output tapes. It can
also provide data for control of the
number of records read from an in-
put file.

0-0 24 binary zeroes to reserve an area 5 24 SERVO02Z2
in memory for optional use by
UNIVAC III customers who have
additional tape file control re-
quirements. If an error log tape is to
be incorporated into the system,
this area can be used to accumulate
data to be written on the log tape.




UNIVAC III SALT

SECTION:
6—A

2558

PAGE:
19

7. Servo-Swap for UNISERVO IIA Units

The servo control word of the UNISERVO IIA tape control packets provides for 1 — 3
separate servo numbers. The servo numbers are retained in the word as binary coded

decimal numbers, with different configurations depending on the number of servos specified

for use by a given file. The chart below illustrates the three separate configurations on a

relative basis. (Any servo number from 0 — 5 may be used).

CONDITION BIT POSITIONS
No.Of 21 17} 13| 9| 5| 1
Files Cur-
rent
No. Relative position
BEFORE SERVO SWAP 1 1 1 1 1111 of servo numbers
AFTER SERVO SWAP 1 1 1 111 Q1 trol word changes
BEFORE SERVO SWAP 2 1 2 1 2 11 |2 as indicated,
AFTER SERVO SWAP 2 1 2 1 211
BEFORE SERVO SWAP 3 1 2 3 1 12 |3
AFTER SERVO SWAP 2 3 1 2 13 1

The Servo number stored in bit positions 21 — 24 of the servo control word represents the
current servo. All of the binary coded decimal numbers in the word are shifted four bit
positions to the left to accomplish a servo swap; the old number is brought back into the
word in the least significant position,



SECTION:
6—A

UNIVAC III SALT

PAGE: UP-
20 | 2558

Sample Coding:

An indirect address control word containing the address of the servo control word has been
given the tag SERVOWD. Therefore the calling program can access the servo control word
by means of the tag m*SERVOWD,

where: .
m the unique marker or permanent tag used for the SUBR call line

* is always used.

SERVOWD  the specified tag given the INAD control word by SERVO2ZZ to make
the servo word accessible to the calling program,

Y TAG c| FORM CONTENT |
) LA X L 4 (I NAD:I A, , m*S ERVOWD), Pick up word \
S O O S Pl e A ot A el A T T O Y N S Y N T N e N O O A T |
\ containing the servo numbers
I T T Y o S T Y Y Y T O S B
Justify current servo numbers
L L ISBC 42000
/ Store servo control word temporarily
1 Ll L %S T4 T Y
\ Position the most significant 20 bits
[ Pt | S\B\cl'l4l'11l’|:| | N I A U [ [ I O T S S O
\ to compensate for pass through the sign position
I N O S S | i LLI A S T T T N T T e O B ‘\
\ Buff on four least significant bits (
Ll o PSS X E X T 4 FSELWD ey
/ Remove sign >
Ll Lo (% ERS 4, SPATTERN: | | | |}y bbby

I S I 11| i

. Sign pattern word
SPATTERN*IOTOBIZ7,7,7,7,7,7 .1y | oy ¢ 0 | 4y 10 101 L4 Ll 111141}

. Field select control word j
FSELWD . FSEBLIX 4V TV ey ) v 0 b

| i

I NAD:1 A, , *SERVY OWD), Replace servo o:}
IlAl’ixl'El’I4l'l(‘ I S N N W N ‘.m\ S T S N | \)i | IPI | 'lelri/

r——




SECTION:
6—B

UNIVAC III SALT

uP- PAGE:
2558

B. UNISERVO IIIA TAPE UNIT CONTROL SUBROUTINE

Complete input-output control systems for files using UNISERVO III Tape Units are provided
by a routine of the SALT Data Processing Library. This routine, —SER3ZZ, is called from the
library into the source program. The call includes a parameter set to be used to describe the
tape files to be controlled. This system is assembled with and becomes an integral part of
the user’s program.

The generated input-output system represents a single program load and thus will occupy a
single consecutive portion of the total memory area required by the assembled program. This
load includes tape handling subroutines and storage areas for processing input and output
files. In addition, a set of item handling macro-instructions is defined for each file.

Macro-instructions provide complete control over the input-output system. The programmer
will use these instructions within the source program at the points where their specified
functions ate needed. The macro-instructions are assigned names in the form m* function f.

Both m and f are variable designations to be supplied by the user. The coding brought into a
program by an input-output subroutine is made unique by assigning a marker, m, to the call
on —SER3ZZ,. This marker is in the form of a SALT tag. The function is as defined in the
subroutine., Each file to be controlled is to be assigned a unique one- or two-character
alphabetic designation. This designation is used in the macro-instruction in place of f.

1. File Description

-SER3ZZ, recognizes data files as three separate categories; input files, delivered output
files, and copied output files. Extra memory areas, independent of those used for data
files, will be provided by the routine on request. The item sizes of input, internal and
delivered output files may range from 1 to 4093 words. Copied output files may have items
ranging from 1 to 511 words. All items of a single file need not have the same item size.
Each type of file and the routine functions available for it are described separately below.
A single call on the routine can control from one to forty-one data files.

a. Input File.

—-SER3ZZ, will supply one item at a time from a UNISERVO IIIA input file for
processing. The first item of each input file is supplied by the macro-instruction

m*START f,.



SECTION:
6-B

PAGE: (UP-
2 ; 2558

UNIVAC III SALT

This macro-instruction is executed once for each input file, and must be the first macro-
instruction executed for the file. It will make available the address of the first item of

the file to the processing program. Subsequent items are accessable to the program through
the macro-instruction m*ADV f,.

This macro-instruction is executed each time a new input item is required, and will
supply the address of the new item.

If, in the execution of either of the above macro-instructions, the input-output routine
discovers an end-of-file sentinel (refer to the conventions in Appendix F), ~-SER3ZZ
will transfer control unconditionally to the end-of-file routine provided by the source
program for any processing required by the program when the file has been exhausted.
No further macro-instructions may be executed for the file after control has been trans-
ferred to the end-of-file tag.

When the processing of an input file is to be terminated before the end-of-file sentinel
is encountered; this termination is effected by the execution of the macro-instruction

m*END f,.

This macro-instruction may be executed only once for an input file. No further macro-
instructions may be executed for the file after it has been executed,

b. Delivered Qutput File,

A delivered output file is file made up of items which are placed in an output item
area by the processing program. These items may then be delivered, one at a time,
to =SER3ZZ, for writing them on tape. The memory area in which the first such item
is to be placed is supplied by the macro-instruction m*START ¢§,.

This macro-instruction is executed once for each delivered output file, and must be the
first macro-instruction to be executed for the file. After each item is assembled in the

work area by the source program, it is delivered to ~=SER3ZZ, by the macro-instruction
m*ADYV §,.

In addition to accepting one item for output, this macro-instruction will supply the
source program with the address at which the next item is to be placed.

Termination of reels of a multireel delivered output file can be controlled by the macro-
instruction m*END R f,.



SECTION:
| 6—B

UNIVAC IIT SALT |

UP- PAGE:
2558 i 3

|

The use of this macro-instruction is optional; if it is not used, ~SER3ZZ, will auto-
matically terminate intermediate reels of the file as they become full.

When used, this macro-instruction does not accept the delivery of an item, it merely
terminates the current output reel and prepares to place the next item on a new reel. It
should be executed after all items for the first reel have been advanced and before an
item for the next reel is assembled. This macro-instruction supplies the current item
address for the placement of the first item on the succeeding reel.

After all the items of a delivered output file have been delivered to =SER3ZZ, the file
is terminated by the macro-instruction m*END f,.

This macro-instruction is executed once for each delivered output file. It does not accept
the delivery of an item, and no further macro-instructions may be executed for the file
after it has been executed.

Copied Output File,

A copied output file is one that is created by delivering to —~SER3ZZ, the addresses
of the items to be written on the output file, (No actual movement of items from the
input area[s] to the output area occurs in producing a copied output file.) One or more
input files may supply items to a single copied output file. Also, a single input file
may be a source of several different copied output files. The source files for a copied
output file are listed in the parameters of the calling statement.

The macro-instructions m*START §, and m*ADYV {, of an input file designated as the
source of a copied output file develop an Area Descriptor word, The address of this control
word as well as the item address are available to the source program after the execution

of these macro-instructions.

A copied output file is initiated by the execution of the macro-instruction m*START f,.

This macro-instruction is executed once for each copied output file, and must be the
first macro-instruction executed for the file.

Items to be copied from an input area onto the output file are made available to

-SER3ZZ, by one of two macro-instructions. If all items to be copied are of the same

size, the macro-instruction m*COPY f{, is used. After an item has been copied for one output
file, it may be copied to other output files but may not be changed.



SECTION:

65—-B

UNIVAC III SALT

PAGE:

2558

If the items to be copied onto the output file vary in size, the macro-instruction
m*COPY V f, is used.

The programmer may institute end-of-reel processing of a multireel copied output file by
the macro-instruction m*END R f,. As in the case of a delivered output file, the use of
this macro-instruction is optional; if it is not used, —=SER3ZZ, will perform end-of-reel

processing of intermediate reels automatically.

After all items of a copied output file have been released to ~SER3ZZ, the processing
of that file is terminated by the macro-instruction m*END f,. This macro-instruction is
executed once for each copied output file.

2. Program Logic

a.

1)

Addressing Words of Items.

Successive items of the same file occupy different positions in memory. As each item is
advanced, the address of the first word of the current item area is obtained. This is a
function of the generated input-output system.

A single set of coding designed to process one item of the file is supplied by the pro-
grammer, This coding addresses words of the item relatively. The valid address of a word

in the current item is derived by modifying its area relative address using an index
register containing the current item atea’s starting address obtained from the inpute
output system,

The n words of an item, from first to last, are numbered relatively from 0 through n-1.
Instructions coded to access words of the item use these numbers as a SALT decimal
address. These instructions are modified by an index register (IR) loaded with the
address of the first word of the current item area.

For example, with the address of the first word of any current item area for FILE AA
loaded in IR4, to load the contents of the item’s first word in AR 1, use the instruction:

4,L,1,0,.

To store the contents of AR1 into the item’s fifth word, use the instruction: 4,ST,1,4,.



SECTION:
6-B

UNIVAC III SALT

UP- PAGE:
2558 5

(2) Another way to construct item processing coding is available through use of the
SALT form EQDX. A tag, naming a particular word of the item, is equated with an
index register number combined with the word number (0 through n-1). For example,
to equate tags for the first and fifth words of an item with IR4, use,

C| FORM CONTENT \
EQDX|4, , = AMOUNT, | | | ¢ ¢gf
o A4 CASHG

The two instructions shown in (1) above could now be written as follows:

L,1, AMOUNT,
ST, 1,CASH,

or
L, 1, AMOUNT,
ST, 1, AMOUNT + 4,

b. The Current Input Item Area.

Only one input item area for each file is curreat at any time, The words of an input item
are available for processing when its area is current.

c. The Current Output Item Area,

Only one output item area for each file is current at any time. An output item is
assembled word by word in the current output area, For example, a current input item is
moved into a current output area.

d. Advancing Item Areas.

The address of the first area for either an input or an output file, f, is obtained by exe-
cuting the macro-instruction m*START f,. The address of the next item area for file fis
always obtained by supplying the previous item address to and executing the macro-
instruction m*ADYV f{,. By each execution of this macro-instruction, the following item
of the file is advanced and becomes the current item. The address of the first word of
the area is made available.

e. Copying Input Item Areas.

A current input item can be copied to an output file directly from its area. No movement
of the item to an output area is required. An input file processed in this manner is listed



SECTION:
6—-B

UNIVAC III SALT

PAGE: uP-
6 2558

as a source for an output file f specified in the parameter statement, COPY. An input
file may be a source for more than one such output file. One such output file can have
more than one input source.

The m*START f, and m*ADYV f, macro-instructions provide two words of information for
each current input item of a file named as a source for output. They are the address of
the first word of the item area and the address of an Area Descriptor.

The Area Descriptor is used internally by the input-output system to keep track of
items which take on dual status. For example, in the case of an input item being
copied to an output file or files the system must prevent the contents of the current
item area from being altered after the next item of the file is advanced (m*ADYV f{,)
until the first item is actually copied to all specified output files. The programmer
is concerned only with passing the Area Descriptor address on from one part of the
input-output system to another when necessary.

If the current input item is to be copied, the necessary addresses are loaded into the
appropriate registers and the macro-instruction m*COPY {, is executed. Before submitting
the first item for copying, the output file is opened by executing the macro-instruction
m*START f,. Once an item is submitted for copying, no further alteration of the item is
possible.

f. Item Storage Areas.

Items copied to an output file via m*COPY f, need not belongto an input file source. On
occasion additional items may be developed through processing. A working storage area,
f, can be established to accommodate an item of a specified size. The storage area f is

listed as a source for an output file.

Access to the storage area, f, is obtained by executing the macro-instruction m*ADY ¥,.
Both the address of the first word of the area and the address of an Area Descriptor
are available to the source program after m*ADYV f, is executed.

To have the item area copied, supply both addresses in the appropriate registers and
execute the macro-instruction m*COPY f,.

g. Retaining Item Access.

Input file items are not always processed successively. Certain items govern the pro-
cessing of succeeding items of the file. Access to these items must be retained while
successive items are advanced. This could be done by moving the item word by word
from the input area to a separate area. For larger items, this might be costly in both
time and memory space. The system outlined below requires only the transfer of two
words and space for storing these words.

Input files to be processed in this manner may be listed as a source in the parameter
statement, HOLD. The input file is started (m*START f,) and advanced (m*ADV ¥,).
(The current item area is identified both by the address of the first word of the area
and also by the address of an Area Descriptor.)



SECTION:

UNIVAC III SALT 6B

UP- PAGE:
2558 7

To prevent the current input item area from being overlaid when the file is advanced,

the address of the Area Descriptor is loaded into the appropriate register and the
macro-instruction m*HOLD, is executed. The addresses of both the first word of the
area and Area Descriptor must be stored some where in the source program prior to
advancing the next item of the file. These addresses constitute the link to the held item.

When the held item is no longer required, it must be released. This is accomplished by

supplying the address of its Area Descriptor to and executing the macro-instruction
m*FREE,.

If the input file is also a source for output, a held item of the file may be submitted
for copying to an output file (m*COPY f,) any time before it is released.

h. Accessing Memory Areas Within The Subroutine.

Information concerning a particular item of a file may be present in two locations in the
body of the control system. The locations are taggedin the form m*f., and m*fz,. Where
m and f are respectively the marker and file identifier. These words occupy consecutive
memory locations. Their contents are addressed indirectly by the source program using
a LOCA of the tag. For example, the instruction:

I CONTENT\

S| WAL Y2 L /A Tm A2, ) 1(

will load the contents of these consecutive locations into Arithmetic Registers 1 and 2.



SECTION:

PAGE:

UNIVAC IIT SALT

3. System Parameters

The parameters for —=SER3ZZ, are submitted in the form of a group of statements. These

statements set forth information concerning the tape files to be controlled by the generated

input-output system. Each file is described both in respect to its external block and
internal item formats and to the internal item handling required.

There is always a single statement which effects the call on =SER3ZZ,. This precedes all

other statements.

The remaining statements follow a rigid order which is outlined below (only statement
headers are illustrated):

Number of Statements
Group Name Per Group General Description
-SER3ZZ One Header, and information locating the
routine in object program memory.
ADY One for each input, External file characteristics, and
delivered output, and general information about the file
internal file. concerning the overall routine
processing.
SORTLP One if method 2 has Size of sorted items.
been selected for
-SORTZZ.
MERGE LP One if method 2 has Size of merged items.
been selected for
-MERGEZZ.
SORT FP One if method 2 has Size of items to be sorted and the
been selected for source designations for these items.
-SORTZZ.
COPY One for each copied- External file characteristics and
output file. source designations.
HOLD Variable Maximum number of areas to be
(See below) retained, and their sources.
PRESELECT One for each set of two Identification of files that may be
or more input files, preselected in each set.
defined in the ADV
group which may be
preselected.
One for each input file Internal file characteristics and
FILE . . . . .
and delivered output file general information of concern in
defined in the ADY the processing of the specific
group, and one for each file.
copied output file de-
fined in the COPY group.




SECTION:
6—-B

UNIVAC III SALT

UP- PAGE:
2558 9

a. General Rules for Writing Statements

Classes of statements may be omitted when not pertinent.
For example, a system defining a single input file might include only the following:

(1) =SER3ZZ, Group Call Statement

ny

n\
L) AV Y,

A
(3) FILE,

7~

A system defining one input file which is a source for two output files might include only
the following:

(1) -SER3ZZ,

(2) ADY,

(3) COPY,

(4) COPY,

(5) FILE,

(6) FILE,

(7) FILE,

Every statement includes a group of parameter designations each of which is terminated

by a comma., When, within a given —-SER3ZZ statement, a consecutive group of parameters, includ-

including the last, are satisfied by a space code, the entire group including the commas

may be omitted.

For example each ADV, statement has seven parameters numbered Py through Py.
Parameters Pg through Py may be satisfied by spaces. In the event that Pg through Py
are to be spaces, the ADY statement may be written as, ADV, p_, p,, P,, P4, OF

172" 73" 74
ADV,p]r P21 P3: p4un

The ~SER3ZZ Group Call Statement

This group appears once for each calling statement and contains one statement per
form.

ITEM NO. TAG c| FORM CONTENT \

n,nA,AAl !

marker

S,UBR —LSQE\R‘13!ZJZI,!P]! ,;pz»_.g Gl [7

-

i I

The item number field contains a two-level item number as indicated; the entire range
of numbers through its two-level Dewey successor is restricted to use by the coding
produced by -SER3ZZ,. marker is a SALT tag making the coding produced by this
call on —=SER3ZZ, unique.



SECTION:

6-B

PAGE:

10

uP-

2558

UNIVAC III SALT

The —-SER3ZZ, designation is the fixed routine name.

Py defines the location of the first segment of the ~SER3ZZ,coding in memory by
specifying its predecessor. If the precedessor segment is part of the source program,
this parameter is of the form SEGn, where n is the segment number of the prede-
cessor. If the predecessor segment is part of a routine produced by the SALT system
this parameter is of the form m*SEGn, where m is the marker usedin calling the
routine, and n is the number of the last segment in the routine. If more than one

predecessor is needed to define the location of ~SER3ZZ, Py is a space, and a SGRT
line naming the predecessors is included elsewhere in the source program. (Refer to
heading A-2 of Section 5.)

P, defines the successor load, if any, which is to be chained to the -SER3Z1Z, load. If
a load is to be chained to the ~-SER3ZZ, load, Py is a permanent tag naming the load
definition line of the chained load. If no load is to be chained to the —SER3ZZ, load, P9

is A (space).

The ADY Group Call Statement

This statement is written for each input file, assembled output file and independent
working storage area source.

FORM

CONTENT

|~

ADV , p,, : ,
M 1A101v4 IFl'ILiE 'DENTJQ1¢1 ( f) |

—

pzl,:|NPUT(l)/OUTPUT(O)/AREA(A),
T T o Tt S Y Y Y MR e T

-

h':MACRo SET TYPE [ T O I B O A B B |

,ps,:WORDS/iTEM ITEMS /BL OCK ,
4 Lot T S S T OO T S S

:CONTROL WORDS(ONE/MAX/VAR),

’
6 A T S S DU T B | I AN O TN NN N S N U A

e —

7: : DEMAND OPTION
I [ Y T Y

c—«__——~_a—~\~,f’-—s,dr‘\_f’
1

P is the one- or two-character alphabetic designation, f, assigned to the file.

P2 specifies the type of file: it is | for an input file, O for a delivered output file, or A
for an internal file.

P3 specifies the method to be used in communicating with the macro-instructions for
this file: IR or space specifies the index register method, AR specifies the arithmetic
register method,



SECTION:
6-B

UNIVAC III SALT

UP- PAGE:
2558 u

P4 specifies the item size of the file, and is a decimal number, 1 through 4093, If the
item size is fixed, P4 is the number of words in an item. If the item size is variable,
p4 is the maximum number of words in an item.

P, specifies the block size of an external file in terms of the number of items per block,
and is a decimal number, 1 through 4093. For most files, the number of items per block
is fixed, and Pg is this number. Input files that were created as copied output files may
have a variable number of items per block. (Refer to the parameters for the COPY group,
paragraph ¢ below.) For this type of file, P5 is the maximum number of items in a
block. For internal files, Ps is a space.,

Pg indicates the manner in which scatter-read/gather-write control words are to be used
in reading or writing the file, An input file may be read into memory usingone of two
modes: it may be read by items (scatter-read) or by blocks (block-read). For output
files, the comparable modes are gather-write by items and gather-write by blocks. In
gather-writing by items, data is transferred to tape in terms of items. There is a SCAT
control word for each item and the maximum item size is 511 words.

In gather-writing by blocks, data is transferred to tape in blocks, that is, in terms of a
given number of words, regardless of the item structure. Thus, there is not necessarily
a one-to-one correspondence between the SCAT control words and the items placed on
tape, The maximum item size, and the maximum block size, is 4093 words.

If the item size is 511 words or less, the choice of a writing mode for an output file may
be left entirely to the routine by specifying in P6 that one item will be written for each con-
trol word, The selection of this option is recommended for all files which have an item size

of less than 512 words,

For output files, 96 is ONE, or a space, when one item is to be written with each con-
trol word. This designation allows the routine the choice of writing mode for the file,
since either mode may be used.

P, is MAX, when a maximum number of data words are to be written with each control
word, regardless of item units. This file will be block-written and must be later block-
tead when used as an input file.

For input files, P6 is ONE, or a space, when the file was written with one item for each
control word. Such a file may be either block-read or scatter-read and the routine will
control the choice of mode.

P, is MAX, when the file was written with a maximum number of data words for each
control word. The file will be block-read.

P6 is YAR, when the file was created as a copied output file with variable item sizes.
(Refer to the parameters for the COPY group, paragraph c below.) The file will be

scatter-read.

Ps is always a space for internal files.



SECTION:

sl UNIVAC III SALT
PAGE: | UP-
12 | 2558
i
P7 allows the programmer to apply a space or time priority with regard to the amount of
memoty storage space that is to be allocated for the file. It is D when the amount of
space is to be scaled down toward the minimum, possibly at some cost in processing
time. It is a space when the amount of storage to be allocated is left to the determina-
tion of ~-SER3ZZ,. Ingeneral, this designation is used when the speed of processing is
to take priority over the use of memory space.
d. The SORT LP, Group Call Statement
One of these statements is required if ~SER3ZZ, is called into the last pass of ~-SORTZZ,
routine in which method 2 has been selected. The statement line appears in the
following format.
C{ FORM CONTENT
- SORTLP,p],:SORT LP, wWDS PER ITEM,‘
L1 lJllllIII4IIJlllillllLllllllliI\‘
V—
where:
Py is the item size of the data being sorted. It is a decimal number in the range of
1 through 511.
e. The MERGE LP, Group Call Statement
One of these statements is required if =SER3ZZ is called into the last pass of ~MERGEZZ,
routine in which method 2 has been selected. The statement line appears in the follow-
ing format:
C| FORM CONTENT
- IMERGL P, . *MERGE LP, WD PER
o rEReE ek MERGE LP.¥DS PER VTEM.
~ — _
where:
Py is the item size of the data being merged. It is a decimal number in the range of
1 through 511.
f. The SORT FP, Group Call Statement
One of these statements is required if ~SER3ZZ is calledinto the first pass of ~-SORTZZ,
routine in which method 2 has been used. The statement line appears in the following
format:
C| FORM CONTENT
i SIOJRlTl IFlPl'lP]l'L:lslolRlTl IFIPI'IwIDISI IPJ_ELRI lllTlELMl'l
i t‘,2'1: IFJ|JL1EI II IDlElNlTll IFII lElRlsl(l{ I)J'l I O T O I O O }
e ar s — \A—_/_J




SECTION:
6-B

UNIVAC III SALT

UP- PAGE:
2558 13

where:

P, is the item size of the data being sorted. It is a decimal number in the range of

1 through 511,

p. is one or more file identifiers each followed by a comma. These identifiers are specified
through the use of a unique one or two-character alphabetic designation (f) which has been
assigned to the file. These designations represent the input or internal files defined in ADYV,
statements, and with which method 2 is used. These files cannot have item sizes larger than
Py and Ps of the ADV, statement must have been ONE, A, or VAR.

g. The COPY, Group Call Statement

One of these statements is required for each output file to be written from a specified
source or sources. This group, if needed, immediately follows the ADV, group.

\ic] FoORrRM CONTENT

{ oo [€OPY Py COPY FILE VOENTHFIERCE )l'l
/ -1 PPy ’1w1°|R|D|S I/il lT‘EiM] | T E M S / B L 0 C K J
/ Lo Par e 1M|' |N1||M1U1M1 1' |T| E‘MIS I/LBLLIOICIKI D EM A NIDL'

lp,, : ONE/ VAR,
A o S R I T (NN T S S N N S

—

N IDESI G|N|A1T1||°1N|s| IO|Fl S OURCES |
"/‘\’—-\’/\_/\—/—\-/\/\"'—J

Py is the one- or two-character alphabetic file designation, f, assigned to the file being
described by this statement.

Py specifies the item size of the file, and is a decimal number, 1 through 511. For files
with a fixed item size, it is the number of words in each item. For files with a variable
item size, it is the maximum number of words an item may contain.

and P determine the maximum and minimum block sizes that the file may contain. As
s%ated previously, a copied output file always is written and read using one control word
per item., The control coding for this mode of writing operates independently of the
number of words in a block. Therefore, for these files, the block size may be allowed to
vary., —SER3ZZ, sometimes can use this flexibility to effect a saving of memory space
in the storage areas for these files.

P3 specifies the maximum block size. It is a decimal number, 1 through 4093, and
specifies the maximum number of items per block.

P4 specifies the minimum block size.as a decimal number in the range of 1 through
4093,



SECTION:

PAGE:

|
| UNIVAC III SALT
|

P4 may specify that the choice of minimum block size is to be left to ~SER3ZZ, This
option (the recommended practice) is specified by a space.

p. allows the calculation of memory storage space that is to be allocated for the file.

It is D when the amount of space is to be scaled down toward the minimum, possibly

at some cost in processing time. It is a space when the amount of storage to be allocated
is left to the determination of =SER3ZZ,. In general, a space indicates that the speed

of processing is to take precedence over minimization of memory allocated.

P6 specifies the variability of item size of the file, and is ONE, or a space, when all
items of the file are the same size, as specified in Py above. When this designation is
chosen, the macro-instruction m*COPY f{, applies to the file.

This parameter is VAR, when the items of the file vary in size. When the VAR,
designation is chosen, the macro-instruction m*COPY V {, applies to the file, When
this parameter is VAR, the m*COPY f macro-instruction may be used to copy items
of the length specified in parameter Py-

Py specifies one or more source files from which the items of this file are copied. It is
a series of one or more alphabetic file identifiers, each terminated by a comma. If
SORT LP or MERGE LP, statement has been made, this parameter may be SORT, or
MERGE, if their last passis a source for copied items. The source files may be any
input of internal files defined in the ADV, group.

h. The HOLD, Group Call Statement

This statement relates directly either to input files or temporary storage areas desig-
nated under ADV,, It will be written when processing dictates that a given item area
or temporary storage area be used after the source of that area is advanced. An
example of such a situation is the case where a file has header items which contain
rates to be applied to a group of successive trailer items.

The form of a HOLD, statement is:

C FORM CONTENT
- HOLD, : HOLD ,
L1 | T I T O I O L B R A N N N e e e e
- P'I' MAXI MUM NUMBER OF AREAS,
{1 | I N VO N NS RS N S A (U s N N O O N A O
- p,, : DESI GNATION OF SOURCES,
L L1 q [ T O S T N NSO T U U S O U O T A v |
0 i
where:

HOLD, is a statement header that always appears for each HOLD statement submitted.

Py, is a decimal number to specify the number of areas that may be retained
from the files described in Pos ... > 1.



SECTION:
6—B

UNIVAC III SALT

2558

PAGE:
15

Py is one or more file identifiers, each in the form of a one or two-character
alpha-numeric file identifier. Each file identifier designation is terminated
by a comma. These sources ate always defined in the ADV, statement as
input files (I) or area sources (A).

If a SORT LP, or MERGE LP, statement has been made; this parameter
may be SORT, or MERGE, if their last pass is a source for copied items.

-y

Each HOLD statement will cause ~SER3ZZ, to create additional storage areas for the
sources specified. The minimum number of storage areas so created is equal to the sum

of the areas specified in each statement. The maximum number of storage areas so created

is equal to the sum of the products obtained by multiplying the number of areas specified

by the number of sources in each statement.

For example, given the sources A and B it is known that a maximum of two areas may
be held for each at any one time. In addition, it is known that for both A and B together

no more than three areas will be held at one time. The HOLD, statements could be sub-

mitted in one of three ways:

HOLD
STATEMENT MINIMUM AREAS MAXIMUM AREAS

(1) =HOLD,
-2, 2+2=4 (2x1) + (2x1)=4
-A,
-HOLD,
-2,

-B,

(2) -HOLD,
-3, 3 =3 (3x2) =6
_AIBI

(3) -HOLD,
-1, 1+1+1=3 (Ix1) + (Ix1) + (2x1) = 4
~A,
-HOLD,
-1,

-B,
-HOLD,
-1,
—AIBI

Case 3 is the desirable since it combines the smallest minimum and maximum

and therefore, approximates most closely the real requirements for the situation
described.

PRESELECT, Group Call Statement

This group contains one statement for each set of input files (described in the ADY,
group) that is to be processed using the preselection technique. Each statement has the
format :



SECTION:

PAGE:
2558

UNIVAC III SALT

\lc| Form CONTENT \
)' 1 PRESELECT, Pyoy | 110y J
-

P1 specifies the alphabetic file designations of two or more input files, each termin-
ated by a comma. A priority among the files is established by specifying the file

designations in the order of precedence. This priority is used to ‘‘break ties’’ when
two or more current items in the set have identical keys. The definition of the key for

each file is specified in the statement for the file in the FILE, group.

j. FILE, Group Call Statement

This group of statements is the last group in the —=SER3ZZ, calling statement and con-
tains one statement for each file that has been named in the ADV, and COPY,groups.
Each statement has the format:

c] ForM CONTENT
\ L i [FYLE Py ey FIVLE,ALPHA,NUMERIC, | ¥
| . P3Py LABEL,DATE, | | | g
(‘ ... ps-:END OF DATA REWIND , | | | |11
l" L et L ABELCTAG) vy
}- Ll Pyt UNPUT (SENTINEL (OPT HON, | | 1 )|
[" o |FACHLY TS e
/' L gyt S YNCHRONDZER ) ) ) )
\ 1 i gyt READ OR MWRUVTE . i
.. Po s NYMBER OF SERVOS o |\ | 1100y
1o oM SERYVOS OR FILE Ji v v i

kK&Y.:PRESELECTION KEY FORMAT,

2« 2PN R N I I T A |

—~— T T~

-—N;\_,——/"‘*—

m The first subgroup is preceded by the header FILE,.

Py is the alphabetic file designation of the file being described by this statement.

Py is the numeric file designation for this file, and is a unique number, 1 through 41.




SECTION:

UNIVAC III SALT °-B

UP- PAGE:
2558

P3 is a one- to four-character alphabetic file label. If the file is an input file, this
label will be compared with the label appearing in the label block of each reel read in.
If the file is an output file, this label will be placed in the label block of each reel
written. (Refer to Tape File Conventions in Appendix F.)

P4 is a one- to four-character alphabetic dating constant for the file. This constant will
be replaced in the program by an actual date at the time the Master Instruction Tape is
prepared by the OCS run (refer to Section 9). If the file is an output file, this date

will be written in the label block of each reel written, If the file is an input file, the
date will be compared with the date in the label block of each reel read in.

Pg specifies the disposition to be made of the final reel of the file. It is RW, when the
final reel is to be rewound without interlock, RWI, when the final reel is to be rewound
with interlock, and NONE, when the final reel is not to be rewound. The NONE, designa-
tion may not be used for input files which will be processed with the macro-instruction
m*END f,. It should be noted that intermediate reels of a multireel file will be
rewound with interlock, regardless of the option specified in Pg-

Pg specifies the kind of label checking that is to apply to the file. It is a space when
conventional label handling is to apply. (Refer toTape File Conventions in Appendix F.)
It is a permanent tag when coding for label handling has been included in the source
program. The specified tag names the first line of the coding to be executed for check-
ing input labels or writing output labels. The designation of a permanent tag for this
parameter automatically overrides the label-handling coding normally supplied by
~-SER3ZZ,. Further information concerning the coding for label handlifig can be found in
Appendix L, Own Code Label Routines.

Py specifies the type of control that is to be exercised over input file sentinels. For an
input file, it is a space when the detection and interpretation of sentinels is to be
handled automatically by—SER3ZZ,. Itis MAN,when the computer operator must control
the treatment of end-of-file and end-of-reel sentinels. In this case, -SER3ZZ, will re-
quest direction from the operator each time a sentinel is encountered. It is PROG, when
the control of the above is left to the program. The operator must respond with a type-
in, indicating whether the sentinel is to be treated as an end-of-file sentinel or as an
end-of-reel sentinel, When the third option is selected, ~SER3ZZ, will treat all sentin-
els as if they were end-of-reel sentinels. It is necessary for the program to decide from
the input data, when the file is to be terminated. Termination is effected by use of
macro-instruction m*END,. This parameter is a space for all output files.

The second subgroup is preceded by the header FACILITIES,. For most files, each
parameter in this subgroup may be satisfied by a space. If this is the case, the entire sub-
group, including the header, may be omitted.

Pg specifies a synchronizer, It is 1, or a space, for the basic UNISERVO IIIA synchron-
izer, or 2, for the additional UNISERVO IIIA synchronizer.

Po Specifies channel usage. It is a space when the read channel is to be selected for
an input file or when the write channel is to be selected for an output file. It is
WRITE, when an input file is to be read through the write channel.

P10 specifies the number of UNISERVO tape units to be assigned to the file. It is 1, or
a space, if the file requires one tape unit; 2, if the file requires two tape units; or 3, if
the file requires three tape units.



SECTION:

PAGE:

18

UNIVAC III SALT

2558

P11 specifies the assignment of UNISERVO IIIA tape units to the file. It is a space when
this assignment is to be made by —=SER3ZZ,. When this assignment is made by the program-
mer, P11 consists of from one to three tape unit designations, depending on parameter

P10. Each designation is a decimal number, 0 through 15, followed by a comma. When

the tape units assigned to some other file in the program are to be reassigned to the file
being described, Py is FILE f, where f is the numeric file designation of the refer-

enced file. The facilities statement of file f may not contains a FILE f designation

for Py. This statement is the only one within a =SER3ZZ call which is defined beyond
the limits of the call.

The third subgroup is preceded by the header KEY,. This subgroup must appear for an
input file that is to be read using the preselection technique, as specified in the PRE-
SELECT, group. (see subsection 12. Preselect File Groups, for additional information).

P12 either explicitly defines the key by which the file will be preselected or names
another input file with an identical key for which the key is explicitly defined. The key
is defined beginning with its most significant bit through to its least significant bit.

It may be composed of whole words, partial words, or any combination of these., Seven
formats are provided for defining the fields which make up the key; these formats may
be used singly or in any combination. The formats are:

(a) FROM, w, bb, THRU, w, bb, g,
(b) FROM, w, bb, THRU, w, q,

(c) FROM, w, THRU, w, bb, q,

(d) FROM, w, THRU, w, q,

(e) FROM, w, THRU, w, q, s,

(f) WORD, w, q,

(2) WORD, w, q, s,

In these formats, w is a number designating a word in the item. The words in the item

are numbered O through n—1, where n is the item size. Designation bb is a number, 1
through 24, designating a bit position in a word, where bit 1 is the least significant bit
position. In formats (c) through (e), where bb is omitted after FROM, w, the bit position is
assumed to be 24. Similarly, in formats (b), (d), and (e), where bb is omitted after THRU, w,

the bit position is assumed to be 1. Formats (f) and (g) are used to describe one word
fields.

The ordering sequence of the field is designated by q,. It is A, or a space, when the
field sequence is ascending, and is D, when the field sequence is descending.

Designation s is a sign indicator. It is S when the sign of the least significant word of
the field is to be considered in testing the field. Only a field composed of four or

less full computer words may be considered signed. When the sign of the field is not to
be considered in testing the field, s is a space.

When parameter P19 names another file, the alphabetic file designation assigned to the
other file is given, where the key of the specified file is identical to the key of this
file. The key must be explicitly defined.



SECTION:
6—-B

UNIVAC III SALT

UP- PAGE:
2558 19

4. Input-Output Macro-Instructions

—SER3ZZ, defines macro-instructions of the form m*function f in sets, one set for each
file or area source. The seven sets are:
for input (two types): m*START f, m*ADV f, m*END f,.
for output (two types): m*START f, m*ADV {, m*ENDR f, m*END f,.
for output: m*START f, m*COPY §, m*COPYV {, m*END R f, m*END, f.
for area source (two types): m*ABDY ¥, .
For example, the marker m is assigned to the call on —SER3ZZ, for a system controlling
input file A, -SER3ZZ,will define the following macro-instructions for the programmer’s
use:
m*START A
m*ADV A
m*END A

The text is arranged such that macro-instructions of a set are described together in a
single section. Thus, for any given file or area source, one section of the text can
furnish the reference material.

For any input file, any area source, and any output file for which the ADV function is used,
there is a choice between two types of macro-instruction sets. Type one supplies the address
of the next item area in an index register. Type two supplies the address of the next item
area in memory location m*f_, and Arithmetic Register 1. The choice of type is indicated to
-SER3ZZ, in p,of the ADV statement. The type used must be consistant as pertains to any
single file.

The macro-instructions m*HOLD and m*FREE are defined if the patameters for ~SER3ZZ,
include any HOLD statement. They are generally applicable as described above and are
not particularized to any single file or area source.

a. All of the input-output macro-instructions are subject to the same basic considerations
with regard to use.
(1) Program Requirements.

Each macro-instruction must be assigned an item number in a range encompassed by
both code and pool segment definitions (SGMT). An index register mapping statement
(MAPS) for both the code and pool segments must appear in the source program be-
fore any macro-instruction is included in the program.

{2) Program Restriction.

The pool segment must not be mapped with Index Register 1.

(3) General Exit Conditioans.
(a) Index Registers

Except for the case where a specified index register is to contain the address of
a current item, no other index registers are altered by the execution of a macro-
instruction.



SECTION:
6-B

UNIVAC III SALT

PAGE:
20

uP-

2558

(b) Arithmetic Registers

The contents of the arithmetic registers are altered by the execution of the macro-
instructions. Arithmetic Register 1, when pertinent, will contain useful information.

(c) Indicators

The status of the Low, High and Equal indicators are altered by the execution of
the macro-instructions.

b. The input macro-instructions, m*START f, and m*ADV {, require one additional con-
sideration. A special exit to a tag of the source program is made from the macro-instruc-
tions when the input file is exhausted. This exit is in the form, TUN, tag,.

Thus the tag specified must be located in a segment for which a mapping statement is
provided. That segment’s starting address must be present in the appropriate index
register at the time either of the two macro-instructions is executed.



SECTION:

6-B

UNIVAC IIT SALT

2558

PAGE:

21

5. Input Macro-Instruction Set — Type One — Index Register Communication

m*START §,

File Type: Input

\c] Form CONTENT \
Y 7

( MCROIm* S TARTf Py P2 | | | | | I(
N

Communication Method: Index Register

Parameters:

Entrance

Requirements:

Exit
Conditions:

Discussion:

Purpose:

Plis a permanent tag naming the line to which control is to be transferred
when an end-of-file sentinel is encountered.

P, is a number, 1 through 15, designating the communication index register
for this macro-instruction.

Tag pq is located in a segment of the program that is under the control of a
MAPS statement. The index register mapping the segment is loaded with the
starting address of the segment.

This macro-instruction is executed once for the file and must be executed
prior to the execution of any other macro-instructions for the file.
The label of the first reel of the file is read and checked.

If an end-of-file sentinel is not encountered, Index Register p2 contains the
address of the first item of the file.

If the file is a source file for a copied output file or for retained items, the
address of the Area Descriptor wordis in memory location m* f2'

If the first item of the file is an end-of-file sentinel, control is uncondition-
ally transferred to tag Py and no further macro-instructions may be executed
for the file.

m*START §, must be executed once, and only once, prior to the execution of
any other macro-instruction involving file f. No macro-instruction involving

file f can be executed after control has been transferred to the end-of-file tag.

m*START f, reads and checks the label on the first reel-of-file f (see Appendix L,

Own Code Label Routines).



SECTION:
6-B

UNIVAC IIT SALT

PAGE: uP-
22 2558

m*ADYV f, File Type: Input

\c] FORM CONTENT\
?MlciRto m* ADV f Py Pore l(
A

Communication Method: Index Register.

Parameters: P, is a permanent tag naming the line to which control is to be transferred when
an end-of-file sentinel is encountered.

Py is a number, 1 through 15, designating the communication index register for
this macro-instruction.

Entrance

Requirements: Tag p, is located in a segment of the program that is under the control of a
MAPS statement. The index register mapping the segment is loaded with the
starting address of the segment.

Index Register P contains the current item address of the file.

Exit
Conditions: If an end-of-file sentinel is not encountered, Index Register Py contains the
address of the next item of the file.
If the file is a source file for a copied output file or for retained items, the
address of the Area Descriptor is in memory location m*fz.
When an end-of-file sentinel is encountered, control is unconditionally trans-
ferred to tag Py and no further macro-instructions may be executed for the file.
Discussion: None.

Purpose: m*ADV f Pqr Py advances the next input item into current status.



SECTION:
6-B

UNIVAC III SALT

UP- PAGE:
2558 23

lm*END f, [

File Type: Input

cl FORM CONTENT \
MCROIm* END f/, Py, o | 1 1 i 0 i 1] (
Lv_‘_\/—w

Communication Method: Index Register.

Parameters:

Entrance
Requirements:

Exit
Conditions:

Discussion:

Purpose:

P] is a number, 1 through 15, designating the communication index register
for this macro-instruction.
Index Register P contains the current item address of the file.

Parameter ps of the file statement for this file cannot be NONE.

No further macro-instructions may be executed for the file.

The current reel of the file is rewound according to the specification in
parameter Ps of the FILE statement for this file.

No macro-instruction involving file f can be executed after m*END f{,
is executed.

m*END f{, is used, when appropriate, to terminate a file before all data has
been read. m*END f, rewinds the current reel of file f. m*END §, can be
used only when RW or RWI is specified for parameter P of the file f

FILE statement.



SECTION:
6-B

UNIVAC IIT SALT

PAGE: uP-
24 2558

6. Output Macro-Instruction Set — Type One — Index Register Communication

m*START f,

File Type: Delivered Output

\c| ForRM CONTENT\
(LMlclRIO mrCSTARTE WPy LR

T ———

Communication Method: Index Register.

Parameters: Py is a number, 1 through 15, designating the communication index register
for this macro-instruction

Entrance
Requirements: None.

Exit

Conditions: The label of the first reel of the file is written.
Index Register P, contains the address at which the first item of the file is to be
assembled.

Discussion: m*START f, must be executed once, and only once, prior to the execution
of any other macro-instruction involving file f.

Purpose: m*START f, writes thelabel on the first reel of file f (see Appendix L, Own Code

Label Routines).

M*ADY ¢, File Type: Delivered Output

c| Form CONTENT\
( MCRO[m* ADVE Py ) 0 00 I(
L\/\-

Communication Method: Index Register.

Parameters: P is a number, 1 through 15, designating the communication index register for
this macro-instruction.

Entrance
Requirements: Index Register p,l must contain the current item address of the file.

Exit
Conditions: The current item of the file is written.

Index Register p,; contains the address at which the next item of the file is
to be assembled.

Discussion: None.

Purpose: m* ADV {, p1 advances the next delivered output area into current status,



SECTION:
6—B

UNIVAC III SALT

UP- PAGE:
2558

m*ENDRf,I

File Type: Delivered Output

FORM CONTENT\
) MCRO[m* END R f\, Py, | | | | | | | IJT(

Communication Method: Index Register

Parameters:

Entrance
Requirements:

Exit
Conditions:

Discussion:

Purpose:

Py is a number, 1 through 15, designating the communication index register
for this macro-instruction.

Index Register P,contains the current-item address of the file, and no new
item has been placedin this address.

Index Register P.I contains the same current item address.
No item is written by the macro-instruction.

The block count and end-of-reel sentinel are both written on the current reel which
is then rewound with interlock.

The file label is written on the next reel.

m*END R f, does not cause the writing of an item of file f. Thus the item
current prior to the execution of m*END R, is not and cannot be written.

m*END R {, is used, when appropriate, to terminate the current reel of file f
and to write the label on the next reel of file f. The next execution of the
macro-instruction m*ADY f, will cause the current item of file f to be the
first item written on the new reel.



SECTION:

6-B

UNIVAC III SALT

PAGE:

26

UP-

2558

File Type: Delivered Output

FORM CONTENT \
l\MlclRloi'“l*lElNIDIfl'lpll'I Llb Ll g l/
SN — T M —

Communication Method: Index Register

Parameters:

Entrance

Requirements:

Exit

Conditions:

Discussion:

Purpose:

P is a number, 1 through 15, designating the communication index register
for this macro-instruction.

Index Register Py must contain the current item address of the file, and
no new item has been placed in this address.

The block count and sentinel for the file are written, and the last reel is
rewound according to the specification in parameter Pg of the FILE
statement for this file.

m*END {, does not cause the writing of an item of file f. No macro-
instruction involving file f can be executed after m*END f, is executed.
m*END f, must be executed once.

m*END f, is used to terminate file f. Termination includes the writing of
control information (block count and sentinel) and the rewind (optional see
Pgs of FILE statement) of the last reel of file f.



SECTION:
UNIVAC III SALT o8
UP- PAGE:
2558 27
7. Area Source Macro-Instruction Set-Type One — Index Register Communication
m*ADV f,
File Type: Internal
c| FORM CONTENT\
)
MCR Om * {
CROm “ADY Py
e
Communication Method: Index Register.
Parameters: P, is a number, 1 through 15, designating the communication index register
for this macro-instruction.
Entrance
Requirements: None.
Exit
Conditions: Index Register P'I contains the current item address of the file.

If the file is a source file for a copied output file or for retained items, the
address of the Area Descriptor for the current item is in memory location m*f

2

Discussion: None.

Purpose: m*ADV f, P advances the next input item into current status.



SECTION:

6-B

PAGE:

28

2558

UNIVAC III SALT

8. Output Macro-Instruction Set — Copy — Arithmetic Register Communication

m*START f,

File Type: Copied Output

\c| FORM CONTENT\
?LMICLRIO m* STARTF | | | 11 (
N—""
Entrance
Requirements: None.
Exit
Conditions: The label of the first reel of the file is written.
Discussion: m*START f, must be executed once and only once, prior to the execution
of any other macro-instruction involving file f.
Purpose: m*START f, writes the label on the first reel of file f (see Appendix L,

Own Code Label Routines).

File Type: Copied Output

Entrance
Requirements:

Exit
Conditions:

Discussion:

Purpose:

FORM CONTENT\
[M1&R|° m*COPY ., | ol ll
L—'\//—\_/

Arithmetic Register 1 must contain the address of the item to be copied.

Arithmetic Register 2 must contain the address of the Area Descriptor
word for the item to be copied.

The size of the item to be copied is as specified in parameter P2 of the
copy statement.

None.

The copied item must not be changed after the execution of this macro-
instruction

m*copy f copies the current item onto the output file,



UNIVAC III SALT

SECTION:
6-B

UP- PAGE:
2558 29

[m*COPY V £,
= == " )

Entrance
Requirements:

Exit
Conditions:

Discussion:

Purpose:

File Type: Copied Output

\c] FORM CONTENT\

MCROIm* COP Y Vify, | | | L J(

L

o

The address of the item to be copiedis loaded into Arithmetic Register 1
and the instruction SUP, 1, (SCAT: i,,), is executed. Designation i is the
number of words in the item to be copied.

Arithmetic Register 2 contains the address of the Area Descriptor word for
the item to be copied.

Parameter P6 of the COPY statement for this file is specified as YAR,.

The copied item must not be changed after the execution of this macro-instruction.
m*COPY V f, copies the item addressed in Arithmetic Register 1 onto file f.

If the address of the item to be copied is in Arithmetic Register 1, the control
word can be fabricated by executing the instruction SUP, 1, (SCAT: i,,),
where i is the number of words to be copied.

~SER3ZZ, defines the macro-instruction m*COPY V f, if, and only if,
parameter p,, of the COPY statement is specified as YAR. The item to
be copied must not be changed after m*COPY V {, is executed.

m*COPY V {, is used if the items to be copied onto file f are of varying sizes.
m*COPY f, may be used for those items of file f which are of maximum size
(See parameter Py of the COPY statement.)



SECTION:

PAGE:

30

UNIVAC 111 SALT

File Type: Copied Output

€T Form CONTENT\
*

} MCROJm* ENDRf .\ | | | ) | | 1 1(

LM
Entrance
Requirements: None.
Exit . .
Conditions: The block count and end-of-reel sentinels are written on the current reel, which is

then rewound with interlock. The file label is written on the next reel.

Discussion: None.
Purpose: m*END R f, is used, when appropriate, to terminate the current reel of file f

and to write the label on the next reel of file f. The next execution of the macro-
instruction m*COPY, or m*COPY V {, will cause the writing of the first item
of the new reel.

File Type: Copied Output

\c]| FoORM CONTENT\
MCGROIm* ENDFf , | | | | | | | | | | J
Entrance
Requirements: None.
Exit
Conditions: The block count and sentinel for this file are written and the last reel is
rewound according to the specification in parameter Pg, of the FILE
statement for this file.
Discussion: No macro-instruction involving file f can be executed after m*END ¥, is
executed. m*END f, must be executed once.
Purpose: m*END f, is used to terminate file f. Termination includes the writing of

control information (block count and sentinel) and the rewind (optional,
see Pg, of FILE statement) of the last reel of file f.



UNIVAC III SALT

SECTION:
6-B

UP- PAGE:
2558 31

I m*HOLD,I
| I—

File Type: Not Applicable

| FORM CONTENT\
) MCROIm* HOLD, | y | | | | | 1 1 ¢+ (1 11 11/
LN/\/\_—/’\A
Entrance
Requirements: Arithmetic Register 2 contains the address of the Area Descriptor word
for the item to be retained.
Exit
Conditions: None.
*
Discussion: The address of the Area Descriptor is availablein location ™ fz: where
f is the designation of the input file or area source from which the item
address was obtained.
Purpose: m*HOLD prevents the item in the current area from being overlaid by

another item. It also furnishes the area’s location for storage in the
calling program,

File Type: Not Applicable

Entrance
Requirements:

Exit
Conditions:

Discussion:

Purpose:

FORM CONTENT\
]\MICLRIO m* FREE, | | | | | | |1 ;1[

Arithmetic Register 2 contains the address of the Area Descriptor word
for the item to be released.

None.

The area described by the Item Descriptor is returned to the pool of
available areas.

m*FREE, releases an area previously retained through execution of
m*HOLD,.



SECTION:
6-B

UNIVAC III SALT

PAGE: UpP-
32 2558

9. Input Macro-Instruction Set — Type Two — Arithmetic Register Communication
m*START f,

File Type: Input

| FORM CONTENT\

{MICIRIO m*S TARTE Py, | 0 1/
\/’\/’

Communication Method: Arithmetic Register

Parameters: Pysis a permanent tag naming the line to which control is to be transferred
when an end-of-file sentinel is encountered.

Entrance

Requirements: Tag Py’is locatedin a segment of the program that is under the control of a
MAPS statement. The index register mapping the segment is loaded with the
starting address of the segment.

Exit
Conditions: The label of the first reel of the file is read and checked.

If an end-of-file sentinel is not encountered, Arithmetic Register 1 and
memory location m* fl' contain the current item address.

If the file is a source file for a copied output-file or for retained items, the
address of an Area Descriptor is in memory location m * fz,.

If the first item of the file is an end-of-file sentinel, control isunconditionally
transferred to tag Py and no further macro-instructions may be executed for
the file.

Discussion: m*START f, must be executed once, and only once, prior to the execution of
any other macro-instruction involving file f. No macro-instruction involving file
f can be executed after control is transferred to the end-of-file tag.

Purpose: m*START f, reads and checks the label on the first reel of file f (see
Appendix L, Own Code Label Routines).



SECTION:
6

UNIVAC III SALT

UP- PAGE:
2558
lm*ADV f,l File Type: Input
\c| FORM CONTENT\

MCROIm* AD Y F, PYyy ) 1]

—
Communication Method: Arithmetic Register
Parameters: P] is a permanent tag naming the line to which control will be transferred

when an end-of-file sentinel is encountered.

Entrance

Requirements: Tag Py is located in a segment of the program that is under the control of
a MAPS statement. The index register mapping the segment is loaded with
the starting address of the segment.

Exit
Conditions: If an end-of-file sentinel isnot encountered, Arithmetic Register 1 and
memory location m* f'l' contain the address of the current item.

If the file is a source file for a copied output file or for retained items,
memory location m*fz, contains the address of the Area Descriptor,

When an end-of-file sentinel is encountered, control is unconditionally
transferred to tag Pyr and no further macro-instructions may be executed
for the file.

Discussion: None,

Purpose: m*ADYV f, Py advances the next item into current status,



SECTION:

PAGE:

UNIVAC III SALT

File Type: Input

\c] FoRrM CONTENT\
IMICIRIO m* END i, ¢ )b I(
/\\/ N ———

Communication Method: Arithmetic Register

Entrance
Requirements: Parameter Pg.of the FILE statement for the file cannot be NONE.

Exit
Conditions: The current reel of the file is rewound according to the specification
in parameter pg, of the FILE statement for this file.
Discussion: No macro-instruction involving file f can be executed after m*END f,
is executed.
Purpose: m*END §, is used when appropriate, to terminate a file before all data has

been read. m*END f, rewinds the current reel of file f. m*END f, can be
used only when RW or RWI is specified for parameter Pg: of the FILE
statement.



SECTION:
6-B

UNIVAC III SALT

UP- PAGE:
2558 35

10. Output Macro-Instruction Set — Type Two — Arithmetic Register Communication

liigﬁgﬁﬁiﬂl

File Type: Delivered Output

| Form CONTENT \
(IMCGRO[m* S TAR T/ f,| | | v ¢ 11t
L\/-

Communication Method: Arithmetic Register.

Entrance
Requirements: None.

Exit

Conditions: The label of the first reel of the file is written.
Arithmetic Register 1 and memory location m*f; contain the address at
which the first item of the file is to be delivered.

Discussion: m*START £, must be executed once, and only once, prior to the execution
of any other macro-instruction involving file f.

Purpose: m*START f, writes the label on the first reel of file f (see Appendix L,

Own Code Label Routines).

m*ADYV f,

File Type: Delivered Output

“ I

FORM CONTENT]
MCROIm* ADV ¥ ., | | | | d)

Communication Method: Arithmetic Register.

Entrance
Requirements: None.

Exit

Conditions: None.

Discussion: The current item of the file is written.

Purpose: m*ADV f, advances the next area to current status.

Arithmetic Register 1 and memory location m* f] contain the address to which
the next item of the file is to be delivered.



SECTION:

6-B

I S——

PAGE:

36

uP-
2558

UNIVAC IIT SALT

File Type: Delivered Output

FORM CONTENT\
MCROIm* ENDRF\,\ | | | | 01010 |1(
LP

Communication Method: Arithmetic Register

Entrance
Requirements:

Exit
Conditions:

Discussion:

Purpose:

None.

Arithmetic Register 1 and memory location m * f] contain the new current item
address.

No item is written by the macro-instruction.

The block count and end-of-reel statements are written on the current reel
which is then rewound with interlock. The file label is written on the next
reel.

m*END R f, doesnot cause the writing of an item of file f. Thus the item
which is current prior to the execution of m*END R, is not and cannot be
written.

m*END R f, is used, when appropriate, to terminate the current reel of file f
and to write the label on the next reel of file f. The next execution of the
macro-instruction m*ADV f, will cause the current item of file f to be the
first item written on the new reel.



SECTION:

UNIVAC III SALT i
UP- PAGE:
2558
[m*END f’l File Type: Delivered Output
| FORM CONTENT\
/ MCROIm™ENDf ., |\ | | | g 1/
kh
Communication Method: Arithmetic Register
Entrance
Requirements: None.
Exit
Conditions: The block count and sentinel for the file are written and thelast reel is rewound
according to the specification in parameter P of the FILE statement for this file.
Discussion: m*END f, does not cause the writing of an item of file f. No macro-instruction
involving file f can be executed after m*END f, is executed. m*END f, must be
executed once.
Purpose: m*END f, is used to terminate file f. Termination includes the writing of con-

trol information (block count and sentinel) and the rewind (optional, see Pge
of FILE statement) of the last reel of file f.

11. Area Source Macro-Instruction Set — Type Two — Arithmetic Register Communication

m*ADY f{, File Type: Internal

C| FORM CONTENT \
) MCRO|m* ADV ¢\, | | | |0 1(
L/——~/ R Sy /\/_g

Communication Method: Arithmetic Register

Entrance
Requirements: None.

Exit

Conditions: Arithmetic Register 1 and memory location m* f-l, contain the current item
address of the file.

Discussion: If the file is a source file for a copied output file or for retained items, the
address of the Area Descriptor word for the current item is in memory tocation
m*fz,.

Purpose: m*ADV f, advances the next area into current status.



SECTION:

6-B

UNIVAC III SALT

PAGE:

up-

2558

12. Preselect File Groups

a.

b.

Reason for Using the Preselect Statement

—-SER3ZZ, provides the facility for a group of two or more input files to be read into
computer memory using a preselection technique. The sequential characteristic of data

is used to anticipate the program’s demand for data from various inputs. A group of input
files is eligible for preselection if the items of each file are ordered in the same sequential
direction on equivalent keys.

The Constitution of a Preselect Group

Groups of input files which are to be processed in a preselection mode are specified in
the routine calling statement. More than one group may be specified, and each group is
composed of two or more input files. The keys on which the items of each file are ordered
may be composed of one or more fields. There must be corresponding fields in each file,
and the word-relative positions of the fields must be the same for items of all files. How-
ever, the item-relative position of the words containing these fields need not be the same
from file to file. The fields composing a key need not be sequenced in the same order:
ascending and descending fields may be combined. However, all keys in a group of files
being preselected together require identical sequencing. Any field consisting of one to four
whole computer words may be signed. If so, the corresponding field in the key for each file
in the group must be signed.

The example below illustrates a possible relationship of keys:

FILE A | FILE B
(wz)—(w]) = (wz)_(w])
bb - bb

q = q

S = S

Only the actual word numbers (wn, w., and w,) may vary. The number of bits bb, the field
sequence q, and the sign s, must be 1dentica12.

For example, the following KEY, specifications in FILE, statements for files A and B are
equivalent:
FILE A,
KEY, FROM, 1, THRU, 2,, FROM, 3, 10, THRU, 3,, WORD, 6,,
FILE B.
KEY, FROM, 4, THRU, 5,, FROM, 7, 10, THRU, 7,, WORD, 9,,



| SECTION:
6—-B

UNIVAC III SALT

UP- PAGE:
2558 39

C.

~

The Processing of Files of a Preselect Giou
P

The source program establishes the relationship governing the order of processing of the
current items from various files. This relationship determines the sequence in which new
current items must be advanced via m*ADYV {, macro-instructions.

For a group of preselectable input files, the sequence of replacement for current items of
rmined by the value relationship among their keys. This relation-

Ll k. cman e ewm ey
the group must be determined by the value rel

ship must be such that the key of the item to be replaced is either always higher in
value or always lower in value than the keys of all other current items.

Should the keys of any current items be equal in value, the current item being replaced
must belong to that file whose identifier (f) is specified, in the Preselect statement,
prior to the identifiers of its equals.

Safeguards in the Method Employed

Should the processing of files in a preselect group not always follow the logic described
above, the control system for the files may not operate at optimum speed. However, all
files will continue to be controlled properly. In order to maintain or retain optimum speed,
processing should follow the logic described.

—-SER3ZZ, Requirements

Each file of a preselect group must be started (m*START §£,) before any single file of
the group is advanced (m*ADYV f{,).For all files of the group, no current item may have
its key altered in the current item area.



SECTION:
7

UNIVAC III SALT

UP- PAGE:
2558

7. SORTING AND MERGING

The SALT system contains a sort routine which can be used in combination with the Programmer’s
own coding for ordering of data files. A merge routine for the consolidation of two or more
sequenced files into a single sequence is also available. Both of these routines are used in
combination with the UNISERVO IIIA control routine described in subsection 6—-B ,

This manual is being released prior to the completion of the detailed instructions for using the
sort and marge routines. The sorting and merging section of this manual will follow the current
release by approximately one month. When published, it will be forwarded to the holders of the
SALT Manual (UP 2558). The Programmer’s Reference Manual (SODA Sort/Merge, UP 2504)
as updated by Programming Information Exchange Bulletin 27, is suggested for use by the
Programmer during the interim period.



SECTION:
8-A

UNIVAC III SALT

UP- PAGE:
2558 1

8. MISCELLANEOUS ROUTINES

A, DIAGNOSTIC ROUTINES

A program must be capable of sharing the computer with other routines at the time of
testing as well as when it is being used to process data. Each individual program’s
allocated memotry area must be kept safe from infrigement by other programs. Program
testing should, therefore, include verification that each new program will access only
the memory areas assigned to it.

During the testing stages, it is often desirable to obtain a computer output that indicates the
processing path or sequence in which the instructions were executed. A program that can
produce such an output is called a tracing routine.

The execution of the entire program under control of a trace or memory guard routine can
verify that a program meets its environmental restrictions. Thus, the computer performs for
the programmer the task of analyzing each instruction under the varying conditions of
execution.

Since this type of program testing is considered essential for all programs, a diagnostic
subroutine has been placed on the Standard Super Library Tape. The diagnostic subroutine
can be called into a source program during assembly. The inclusion of the diagnostic
subroutine during assembly does not in itself impose the use of the routine when the program
becomes operational. The routine may be inactivated after testing has been completed.

1. General Concept

The diagnostic functions operate over a series of instructions in a processing path while
the program is being tested or is operational. When selecting the areas over which the
functions provided by DICON3ZZ, are to operate, the sequence in which the instructions
are performed is the prime consideration, rather than the memory area the instructions
occupy. It must also be recognized that the Executive Routine will be in control of the
computer at the time the program is being executed. The Executive Routine, DICON3ZZ,
and the worker program, will generally participate in the control of the computer, depending
on the functions being performed and the areas specified for diagnostic control.

The three diagnostic functions available to the user programmer are memory guard, trace,
and memory print. Detailed instructions for implementing these functions are covered in a
later section; this section explains the manner in which they operate.



SECTION:

8—-A

UNIVAC IIT SALT

PAGE:

uP-

2558

a.

C.

Memory Guard

Memory guard analyzes each instruction prior to its execution to determine whether the address
accessed by it, or to which control is to be given, lies within the range of the addresses
assigned to the program. If the address is within the assigned range, the instruction is executed.
If it is not in the assigned range, it is further analyzed and processed according to the foilowing
table:

Condition Action
Other than assigned range accessed (1) Message is typed out.
but contents of memory are not (2) Instruction is executed.
altered nor is control transferred (3) Processing continues.

outside of the assigned range.

Assigned memory range exceeded (1) Message is typed out .

and the contents of memory will be (2) Instruction not executed.

altered or control will be transferred (3) Further processing held up pending
outside of the program. typewriter response.

The memory guard function does not provide an output unless it encounters a probable error
condition.

Trace

Trace provides the memory guard function (described above),and also edits detailed in-
formation concerning the hardware conditions at the time of execution. This information is
written on an output tape provided for the exclusive use of the diagnostic routines. The
tape can be later re-edited and printed either in part or in its entirety according to the
specifications furnished to the Diagnostic Edit Run. The address occupied by an instruc-
tion, the contents of the instruction word, the contents of all of the index registers, the
contents of arithmetic registers, and the settings of the indicators are printed out as a
result of this function. The specific format is described in Appendix ]J.

Memory Print

The memory print function provides a ‘‘snapshot’’ of any area of memory assigned to the
program. This function causes the writing of the contents of memory on a consecutive
location basis rather than following a processing path as provided by the trace function.
When a program is terminated through instructions which are executed under the control of
either trace or memory guard functions, a memory print of most of the program’s memory
area will be executed. The area printed will start with program relative address zero and
end with the diagnostic subroutine area.

Processing Considerations

There are several points at which the use of the diagnostics subroutine must be considered
by the programmer. He must provide coding to call the subroutine into his program at the
time of assembly so that the routine will become an integral part of the assembled program.
When trace or memory print are desired, an additional output servo must be allocated to the
worker program during its execution. This tape must be submitted to a utility program for
further editing before it can be printed by the tape-to-print routine.



SECTION:
8-A

UNIVAC III SALT

UP- PAGE:
2558 3

e. Rules for Using the Diagnostic Routines.

Calls on DICON3ZZ, are limited to one per program.

The word at the end of a bypass (an area blocked out at the time of call) must neither be
modified by another instruction nor overlaid while the bypass is in effect.

Ten memory areas can be biocked out of the trace or memory guard functions through
parameter specification when the DICON3ZZ, subroutine is called. These areas can be of
any size, but the maximum number is ten.

DICON3ZZ, must be placed in a higher memory location than the instructions over which
the functions of trace or memory guard are to operate. An attempt to process instructions
stored in a higher order of memory will be treated as violation of the allowable memory
range.

Macro-instructions controlling input-output functions on the general purpose channels
must be excluded from the diagnostic routines.

The STRT line must be omitted from the source program (DICON3ZZ, contains one). The
tag of the starting line is given to DICON3ZZ, as a parameter. When DICON3ZZ, is
inactivated, a STRT word can be included in the reassembly.

Additional Area for Corrections

It is recommended that additional space be provided in the assembled program for
corrections resulting from the program test. The organization of the program must be
reviewed to determine whether this additional space will be provided in segments

which are always in memory or in each overlay. The segments to be used to provide

the additional space, the loads in which these segments are contained, and the position
that each load will occupy in memory must all be considered. When the position of the
additional areas has been determined, any coding lines that will produce words in the
assembled object code program can be used to provide the desired space.

Program Areas to be Covered and Excluded

Parameters Py through p_, of the DICON3ZZ, calling statement are tags which specify
ranges of program instructions which may be skipped by the trace and memory guard
functions. Each pair of tags defines the beginning of an excluded portion and the point at
which the function will resume. A total of ten sets of instructions may be so excluded.



SECTION:
8—-A

UNIVAC III SALT

PAGE:

2558

—

C\/--v——-\

The use of these parameters where applicable can increase the speed of the program
execution when it is in a diagnostic mode.

In selecting the portions of the program to be covered by or excluded from the diagnostic
functions, it is necessary to identify the processing paths over which the diagnostic
functions are to be performed. The specific points at which each function is to start

and stop, and the areas which are to be permanently excluded from the diagnostic
functions, must also be identified. It will be helpful to prepare a worksheet describing
the areas to be covered, and to record the tags namingthe source code lines that mark
the boundaries of the selected processing paths. The worksheet will provide information
which can later be used for specifying parameters of the DICON3ZZ, calling statement,
and in combination with the codedit listing output of the SALT assembly, to furnish
information that must be supplied to the OCS run.

2. DICON3ZZ Calling Statement

The subroutine DICON3ZZ, controls the execution of the program at the time the instructions
within the specified areas are being executed. The call on this routine does not in itself
cause any of the functions to be performed. It makes coding available for use by the specific
functions after they have been activated by block and word corrections when the MIT is
prepared.

DICON3ZZ, may be called into a program only once. The coding lines needed in the
source program to call the routine are:

ITEM NO. TAG C| FORrRM CONTENT [

nAlAAADIIIAIGINIOISI SUBR D1'|C1°1N13|Z|21' Pr-P2aeP3irp 1 ) 1 1 1&

1 | I JJ1Jf4’r5|"1'1'|'1pn1’rm'l1L1|1111,<

Where: line 1 ITEM NO The entry in the item number field may contain four characters

specifying the two higher levels of Dewey decimal. (The two
lower levels are reserved for use by the subroutine coding.)

TAG Tag is any valid permanent tag used as a marker to make the
subroutine coding unique when it has been brought into the
calling program. This entry is to be used in any designation
where m* appears and refers to DICON3ZZ, coding. In the
example, DIAGNOS has been used.

C Any valid entry.

FORM Always SUBR.



UNIVAC III SALT

SECTION:
8-A

UP- PAGE:
2558 5

CONTENT

DICON3Z1Z, is the name given the subroutine when it was
placed on the Standard Library Tape. It must always be
specified.

defines the location in memory of the first segment of the
diagnostic routine coding by specifying its predecessor, If
the predecessor segment is part of the source program, this
parameter is of the form SEGn, where n is the segment number
of the predecessor. If the predecessor is part of a SALT
routine, this parameteris of the form m*SEGn, where m is
the marker used in calling the routine and n is the number of
the last segment in the routine. If more than one predecessor
is needed to define the location of the DICON3ZZ coding,
P,, is a space. In this case,a SGRT line naming the predecessors
is included elsewhere in the source program.

The DICON3ZZ, coding must be in a higherorder of memory than
the instructions over which the trace and memory guard functions
are to operate. An attempt to process instructions in a higher
order of memory will be treated in the manner described above
under the heading, Memory Guard.

is a decimal number in the range of 1-41. This is the external
file designation of the diagnostic output file as assigned in the
SER3 line. (Refer to subsection 9-D-4.)

is the tag naming the line in the program at which processing

is to start. This is the tag that would normally be designated

in the program’s STRT line. The normal STRT line is eliminated
from the source program because DICON3ZZ contains it own
STRT line. When the diagnostic coding is eliminated from the
program, the normal STRT line can be included in the reassembly.

line 2 — ITEM NUMBER and TAG are disregarded.

Cc

Py

is a hyphen, to link this line to the SUBR line.

is a permanent tag that names the first instruction of any area
to be excluded from the trace and memory guard functions (See
note on next page).

is the permanent tag naming the instruction following p, at
which the diagnostic functions may be resumed (See note
on next page).

is the permanent tag naming the first line of the nth area to be
excluded from the trace and memory guard functions.



SECTION:

8—-A

UNIVAC IIT SALT

PAGE:

uP-

2558

P is the permanent tag naming the instruction following P, at
which the diagnostic functions may be resumed.

Note: Any numberof coding lines may be used to supply these parameters to the
subroutine, but they must be linked to the SUBR line by a hyphen in the C field.

A maximum of ten areas may be bypassed by means of these parameters. The
diagnostic function bypasses work areas in the following manner: when the address
of the next instruction to be executed is equal to a parameter specifying the start
of a bypass area, a control is set up to reactivate the function when the end of
that bypass is reached. Control is then released to the program by DICON3ZZ
until the instruction marking the end of the bypass area is encountered. When this
instruction is reached, it becomes the first instruction on which a reactivated
function is performed.

3. Integrating DICON3ZZ Routine with the Source Program

a.

A few SALT Assembly directives must be provided in the source program
to effect the proper integration of the DICON3ZZ program load.

Positioning the Load.

The DICON3ZZ program load is identified by the name, m*$NAMI,.

It should not be read in as an overlay. DICON3ZZ should be part of the first load of a
program or a load that is read into memory along with the first load. This is accomplished

by writing a LOAD statement in the source program as follows:

flo. TAG €] FORM CONTENT
*
}l ! AlNivlTLA!GI | LIOLAJD ™ ls 1N1AIMLII'1 D A O S OO O N N A 1 |(

ANYTAG names a load of the source program whose first segment is s. The Diagnostics
program load m*$NAM]1, is a successor to the load ANYTAG and will be read into memory

when ANYTAG is read.

Positioning Segments.

The first segment of the Diagnostics program load is always m*SEGI,.

The user may establish a single predecessor to this segment by simply specifying SEGn,

or m*SEGn, as a parameter (p.l) of the subroutine call, where n is the number of the

predecessor segment. The form m*SEGn is used when the predecessor segment belongs to
another subroutine called into the source program. The first segment of the Diagnostics

Routine will be assembled relative to the last line of the specified predecessor. The
diagnostic routine must follow in memory any of the instructions over which it is to
operate.



UNIVAC IIT SALT

SECTION:
8-A

UP- PAGE:
2558

The user may establish more than one predecessor segment by specifying parameter p]

as A,. This in effect defers specification to a SGRT statement that must appear some-

where in the source program.

A line of the SGRT form is illustrated below:

C{ FORM

CONTENT \

S6RTm*SEGT, SEGn, SEGP, -+ o) |

S S
el

—_—

ITEM NUMBER, TAG, and C are distegarded

FORM

CONTENT m*SEGI

is always SGRT.

is the tag naming the segment in the subroutine for
which the specification of the preceeding segment
has been deferred to the calling routine, where m

is the marker used in the tag field of the SUBR line.
(In the example, this designation would be

DIAGNOS*SEG1.)

m*SEG], names the first segment of the Diagnostics routine and SEGn, and SEGp,
are its predecessors. In this case m*SEG1, will be assembled relative to the last
line of the longest of its predecessor segments.

SEGn,
SEGp

is a segment number or series of numbers (with
terminating commas) indicating the segments that
are to immediately precede the first segment of
DICON3ZZ, in memory. If the program contains
overlays, these must be taken into account when
writing this line, The programmer has the option of
indicating the segment which will occupy the highest
order in memory under any possible configuration of
loads. If that specific segment is unknown, he may
specify all of the possible predecessor segments. In
the latter case, the SALT Assembler will make the
analysis for him,

The last segment of the Diagnostics program load is always m*SEG2.

This segment may be named as the predecessor of a segment of the source program or
another subroutine. If required, segment definition is accomplished by specifying
m*SEG2, in the appropriate SGMT or SGRT line of the source program or parameter in

a successor subroutine.



SECTION:

UNIVAC III SALT

2558

4. Diagnostic Output Tape Unit

If the trace and memory print functions are to be used, provision must be made for a
UNISERVO IIIA tape unit to be added to the normal output facilities of the program. The
use of this tape unit is restricted to the diagnostic functions, and it will not function
under the direct control of the ~SER3ZZ routine. Because of this, a SER3 coding line
must be placed somewhere in the program. If it does not appear, the trace and memory
print functions will produce no tape output.

The SER3 line has the following format:

C] FORM CONTENT |
| |ISERS3|F, WRVTE V) v 11}
! . j— |

Where: item number, tag, and C are not meaningful.
FORM must always be SER3

CONTENT is a decimal number in the range of 1-41. The number selected
is to be reserved for the external designation of this file.

WRITE, signifies that an output channel is needed.

1, signifies thatone tape unit is needed.



SECTION:
9-A

—

UNIVAC III SALT

2558 1

lup- PAGE:

9. SYSTEM PROCEDURES

A. SOURCE CODE SERVICE

Source Code Service Runs I and II prepare and service the input magnetic tapes for the
Assembly System. Source Code Service Run I is most significant to the Programmer from the
viewpoint of preparation of his original program for assembly.

Figure 9-1 illustrates the procedural flow for preparation of the SALT Master Instruction Tape.

1. Library File

Source programs in the SALT system are stored and maintained on UNISERVO IIIA tape
files called library files. Each library is preceded by a header, which gives the library a
name. The libraries appear on tape in alphabetic order by name, and the routines and
programs within each library are in alphabetic order by label. The lines of each program
remain in the sequence in which they were when originally converted from cards to tape.
The general format of a library file is shown in Figure 9-2.

A source program must be written on a library tape before it is assembled. The program is
then copied from this library onto a control tape which, in tum, serves as input to the
assembly process. In general, this control tape is discarded after each assembly; the
source program is retained on the library tape. When the source program is copied onto a
control tape, lines of coding may be changed, added, or deleted as required, and the library
file containing it may be updated.

The copying and updating functions are performed by a service program, Source Code Service
I (SCSI). The primary function of SCSI is to select from a library a source program to be
assembled, correct it as directed, and to prepare a SALT Assembly control tape.

While the library file may be updated at the same time a control tape is being prepared, this
updating function also may be performed independently. A second service program, Source
Code Service II (SCSII), is provided for this purpose. Upon request, both SCSI and SCSII
can produce output tapes listing the programs in a library file. These output tapes can be
printed subsequently by use of the standard tape-to-print program, TPTOPRO1, provided as
part of the SALT system package.

The SALT programming package supplied to each user includes a library file. It is called the
Standard Library and contains the input-output, sort, merge, and other system routines. The
routines which it contains are brought into the calling program during the assembly process.
The various roles of the library files in the operating system are indicated in the procedure
chart shown in Figure 9-1,



SECTION:
9-A
hae: UNIVAC III SALT
2558
/o SOURCE / scs 1l
PROGRAM DECK CONTROL DECK
]
CARD-TO-TAPE CARD-TO-TAPE
LIBRARY SOURCE TANDARD LIBRARY
\ FILE PROGRAM \ LIBRARY FILE
I I FILE
1 |
I 1
I i
: scs ! scs 1l
I 1
] |
] ]
I | \
; LIBRARY ASSEMBLY : TANDARD
FILE CONTROL LIBRARY
FILE
CODEDIT
TPTOPRO1 ASSEMBLY FILE TPTOPROT
1
SCS |
INDE X TPTOPROT SCs 11
INDEX

OCS CONTROL
DECK

|

CARD-TO-TAPE

CONTROL

CODE SERVICE

OBJECT

Figure 9-1.

UNIVAC 111
SYSTEM

SALT System Procedure Chart

CODEDIT

LISTING




' SECTION:

UNIVAC III SALT oA

I

UP- PAGE:
2558 ‘ 3

2. Punched Card Preparation

Card punched from lines of coding written on SALT coding forms are converted to tape to
become input to the SALT Assembly System. All input is in the SALT source code format.
The input sequence of punched cards must be the same as that of libraries and routines
as they appear on the library input tape. Cards containing coding for any new routines to
be placed on tape must be read in the sequence in which they are to be written on tapes.
Tape records converted from punched cards by the card-to-tape run serve three separate
functions.

a. Tapes prepared from punched cards are used to control the scope of SCSI. They bring
in commands to direct its processing. These control commands appear at three levels.

(1) Correction commands to adjust lines within a given routine as they are written on
an assembly control tape.

(2) Routine commands to designate the name of the routine within a given library to be
processed.

(3) Library commands to indicate the specific library on a given tape to be processed.

b. Another use made of tapes prepared from punched cards is that of directing assembly
processing. The assembly directing cards must enter SCSI following a library command
(see a. 3 above). There must be at least one assembly directing control card for each
library to be processed. Up to sixassembly cards can beused in each run.

c. A third function of the tapes prepared from punched card input is to supply new routines
to be included on the tapes for both SALT Assembly and updating the library tape.



SECTION: ;
9-A |
T UNIVAC III SALT
4 2558
|
[. ITEM NO. TAG C FORM CONTENT
\ lib-name 1
LJIBIRAIRYIIIIIIII 1 N T T N N N (N v N S O I O |
prog-name 1
{LL\AsaELl | AN S N N N P4 lkikllillllL*llJlli\J
_‘W
Coding for prog-name 1
| | | I T U T R A JJ\r\ s e W R T T S O S T O I
B prog-name 2 1
\LIAIELl O T O O A OO S T T T U A N U AN DO A
L A
Coding for prog-name 2
e ———
———T] 3 —_—— J]
prog-name
LIABJELllIll[[iI |- O SR N N U N s O O N N A O A |
L_“___,__.— —— Coding for prog-name 3,...¥'Z
macro-name 1 T y
LABEIL, | b1 11111 MCODWFL |\ vy
h—L’——’__‘
T Coding for macro-name 1
e
{ I macro-name 2
LlA BIE Ll | | N N O N O | MICIDIF N N S N T |
U ' s S
S Coding for macro-name 2, . . .
lib-name 2 Begin new library
FLIIBIRAIRYI A S N N N | L1 [N N N N N (N (N O U N T N A O N
prog-name a E
LAB E|L; | | | § ;"1 111y TR U T T T e T T O S T A A O O
e ——— J
Coding for prog-name a, b, . . .
Coding for macro-name a, b, . . .
lib-name 3 — —)
LIBRARY | 700 1 o b
y
prog-name a &
{LIABIELi | S T T T I A | 0 R I S (N T s T O S
- ——— ] S E——— —

YLI

AR|Y

Coding for all other libraries

Library file sentinel

SILJIIIIIlI\]lllLlI!IJ

L I

NOTES

1. Library names appear in alphanumeric order.
2. Within library, program names appear in alphanumeric ordetr.
3. Within library, following all programs, macro-instruction definitions appear in alphanumeric

order by macro-names.

Figure 9-2.

Library File — General Format



| SECTION:
9_A

UNIVAC III SALT

::UP- PAGE:
2558

3. Card-to-Tape Conversion

The punched deck is converted to tape by one of two standard (80-column or 90-column)
Card-to-Tape conversion routines provided with the SALT package. Card decks to be
converted by these routines require the first card to be a header-parameter card, describing
the deck to be converted; the last card must be a sentinel card. Six blank cards must
follow the sentinel card when the last of the deck is in the Card Reader input hopper. The
header-parameter cards for each of the three types of SALT system input decks have the
formats shown below.

a. SCSI
/{;BEL DATE
SCS1 |mmddyy 6 1777 00000000
1 4ls 10 6 414~ 73 80
—— N
L'\_,
b. SCSII

/{ABEL DATE

SCS2 |mmddyy 6 777 00000000
1 45 10 14 41 44 73 80
L r—N |

The information is always as shown, except for the date field in columns 5-10.

The sentinel card for all decks is the same and has the form:

/
(

ENDAINPUT




SECTION:

- UNIVAC III SALT

PAGE: UP-
6 2558

The functions of SCSI are specified on the source program input tape by a set of control
items. These control items, are written on the standard SALT coding form, and are
punched directly from it.

4, SCSI Functions
The functions provided by SCSI fall into three categories, according to their use:

m The creation of a new library file from new source program tapes and
the preparation of these programs for assembly.

m The addition of new source programs to an existing library file and
the preparation for assembly of one or more programs from this file .

m The preparation of programs from an existing library file for assembly.

In all cases, only one program may be selected from any given library to be prepared for assembly.
The following paragraphs describe the control items for each category.

as Creating a New Library File

The source code lines for new library definition are written as follows:

CARD NO. ITEM NO. TAG C| FORM \
W, INOAINPUT | L 1(
1 I Y Y s | I
31 ,,,  |AS/SEMB|LY]|aaaaa05a [ (
41 | |[LABE|L, | |9j¢@@0aaia L1 | L\

other source program coding

L1 T Ty~~~ T1T 1T T
5 I Lll BIR AIR Yl A R N N [ L1 )
/\—_‘k ——— I ____——‘Q

Line 1 always appears as shown, and indicates that a new library file is to be created.

In line 2, the item number entry is fixed. The entry library name in the tag field is a one-
to eight-character alphabetic name assigned to the library being created.



SECTION:
9-A

UNIVAC III SALT

UP- PAGE:
2558

In line 3, the item number field entry is fixed, and indicates that a program is to be
prepared for assembly. The tag field entry aaaaaaaa, is the name of this program as
named by the tag field of its initial label line.

Line 4 is the label line of the source program, and the source coding lines for the re-
mainder of the program.

Line 5 follows the last line of the final source program and indicates the end of the
control tape.

Several programs may .be included in a library, but only one of these programs can be
ptepared for assembly. Lines 1, 2, and 3, of the source program tape appear in the
format shown above. The initial label line of a given program signals the end of the
preceding program.

If more than one library is to be included in the library file, each library line has the
form described in the preceding paragraphs, but there is only one end-of-library line.

A diagram of this SCSI process is shown below.

SOURCE
PROGRAM

SCSI

LIBRARY
FILE

ASSEMBLY
CONTROL

N

Figure 9-3. 'SCSt Diagram foi Creating a
New Library File



SECTION:

9-A

UNIVAC IIT SALT

PAGE:

|
i
| UP-
|
L

2558

b. Adding to an Existing Library File

SCSI generally uses two input tapes, a source program tape and a library file tape from
a previous run with which the source programs are to be combined. The source program
tape items are arranged as follows:

CARD NO. ITEM NO. TAG c] A
library name ]

", |LYIBRARY N N N s
2l ,,,, [ASSEMBLY|aa aaaaaga l \
3l 1 l.)tB[E L, | |9/9/9/9,9/aa;a | (/

‘——.\’
f_,,\ other source program coding - —
B | ] | | T I oy | L1\
4 g Y VBRIARY g 111
L ——

The Library entry illustrated in line 1 either defines the name to be applied to a new
library to be added to the library file, or names a library already existing in the
library file. In either case, SCSI will merge the named source programs in alphabetic
order on its library file output.

The Assembly entry illustrated in line 2 names the program (within the library named
by line 1) which is to be prepared for assembly. This program may be selected from
the source program tape or the previous library file tape. Only one program within
the library may be prepared for assembly.

Line 3 illustrates the Label line required for each source program to be added to the
library named in line 1. Source code lines for the remainder of the program immediately
follow the label line.

Line 4 follows the last of the source program lines and indicates the end of the final
library.

When two or more source programs are to be added to the library they must be read in
alphabetic order by program name (@aaaaaaa).

One source program for each referenced library must be prepared for assembly.



SECTION:
9-A

UNIVAC III SALT

UP- PAGE:
2558 9

A diagram of this SCSI process is shown below.

LIBRARY
FILE

SOURCE
PROGRAM

LIBRARY
FILE

ASSEMBLY
CONTROL

Figure 9-4. SCS| Diagram for Adding to or Correcting
an Existing Library File

c. Correcting Programs and Assembly from an Existing Library File.

SCSI provides a means for changing programs stored on a library without rerunning the
entire source code card deck to tape. Corrections are applied to both the updated
library file and the corresponding control tape. If one is prepared. This procedure is
similar to that shown for adding programs to an existing library file. In the present
case, the source program tape contains CORR lines instead of label lines to name the
program followed by specific directives to SCSI. The items are arranged on the source
program tape as follows:

CARD NO. ITEM NO. TAG cl /
library name \
W, L I[BRIAR}Y, [ N S S
2 , ,, | ASISEMBIL Y]a0aaaaaa |
3l . CORR| | |  |a@aaajaaa !
o
. correction commonds\’—‘\l
oI T e e e B s B o e |
4] | |CORR g0 49,%,9,9,9,9 t)
correcfion commands o
s D oo et S B o e ~——
50y LV BRIARIY, | v It(
S [ i i p—



SECTION:
9-A

PAGE:
10

UP-

2558

UNIVAC IIT SALT

The Library entry on line 1 names the library containing the program to be assembled.

The Assembly entry on line 2 names the program in this library that is to be assembled.

The CORR entries on line 3, 4, and so on, name the programs to be corrected. Following each
CORR line are the lines indicating the actual corrections to be made to the source program
named in the CORR line. The last line of the source program tape is a final end-of-library
line, as shown in line 5.

The CORR line has one additional function. It can direct SCSI to place an edited copy of a
program which is being corrected onto the index file output tape for later printing. This
references the program, as shown below:

\ ITEM NO. TAG c| FORM CONTENT
(C|°R1R 1| |oe@@,0/0,a)a P L IPRENT b IJJ(
1 N D {

A listing of all the programs contained in any one of the libraries being processed will be
edited and placed on the index file output tape for later printing whenever the designation
INDEX, appears in the content field of its LIBRARY line, as shown below:

fo. ITEM NO. TAG c[ FORM CONTENT\
library name (
)1 LIBRARIY | |} 11101 L IINDE X G o

The following correction commands can be used in SCSI:

1. Reference (REFR)

tNo. ITEM NO. TAG C| FORM

CJREFR 199 L1l 1111’

(IIIIIILIIIII [
——

This line names a permanent tag which is to be used as a reference point in the program
being corrected. It must name the first line to be corrected, or must be encountered in the

program before the first line to be corrected.



SECTION:

9-A
UNIVAC III SALT
UP- PAGE:
2558 11
2. Replace (REPL)

0. ITEM NO. TAG c| FORM CONTENT\
ZRJEP&II[ILI‘I| D O L T T S T S T O O
r - any source-code line >
{4 T T N N N O N N Y I Y O [ A S N O SN NS U TN VO AN NN NSNS SO SO NN SO NN NN SN S SN N A

n is a decimal number.

The source code line following the REPL line will be substituted for the nth line following
the line named by the tag entry in the most recent REFR line.

3. Erase (ERAS)

{NO. ITEM NO. TAG Cc| FORM CONTENT\
L [ERIAS| | O B T I 111"m'“mli|11|||1|||11117
or
IEJRAJS | | O O S I I IJJnI’IElNJDI'lllllllllLllIIII

_— e
n is a decimal number.
In both lines, the n + 1 line following the line named by the tag entry in the most recent
REFR line is erased. In the first line of the example m, lines are erased. In the second line
shown, all lines in the program which follow line n, will be erased.
4. Patch (PTCH)

o. ITEM NO. TAG c| FORM CONTENT\
ZPITCIHLI 1oLl IJ_I“lll"‘l'llllLLJLL[lJL[illl?
g - any source-code Iine—»‘» i ‘

i B N A B R R Pl a™tmes ol

( - any source-code line ) source code (
| T U T (U N N N S AN I I S I s (s (S Ty |
C1 P — =




SECTION:
9-A

UNIVAC III SALT

PAGE: uP-
12 2558

n, is a decimal number indicating a number of lines beyond a reference point.

m, is a decimal number indicating the number of source code lines following the PTCH
line that are to be insertedinto the program following line n.

As many correction commands as are desited may be included for a given source program.
Successive CORR lines follow the same sequence as the library tags they reference. The
CORR lines may be used to reference any number of the programs appearing in the library.
Lines 1 through 4 (as shown in the general form) are required for each successive library
referenced. Programs are to be referenced in alphabetic order by program name within a
library; libraries are referenced in alphabetic sequence by library name.

SCSI also provides the facility for deleting programs from an existing library. A deletion
line is included on the input source program tape. This line is written as illustrated below:

\o. ITEM NO. TAG c|] fFd

/| DELE| , | | Jajojajajajajaja] |}

The program identified by aaacaaaa in the tag field of its initial label line will not be
copied to the updated library file. This line must be preceded by a LIBRARY line referencing
the library containing the program. The DELE line must appear on the source code tape in
combination with other lines in alphabetic order by program name.

A REPL, ERAS, or PTCH line may contain an additional designation in its content field.
This designation specifies, in parenthesis, the content field of the source program line n
being referenced. When this designation is used, SCSI compares the actual content of line n
with the specified content. Any discrepancies will be recorded on the index file output (if
such has been specified) for later programmer reference; the correction will not be made.

The following lines illustrate such coding:

Yo. ITEM NO. TAG c] FoRrM CONTENT\

ZJRIEFIRllTIAIGIAiIll Ili11111Jll|||l|1]\l]l]l)

?l RIEPIL ] | S Y N [ 2l4l'l(lll’ll‘l'llIzl'IFl'lElLIDt IAI'I)I'I

1 | | | l Ll 10 co e v 2 FLVELD AT

l’——\\/ ———



SECTION:

UNIVAC III SALT

9-A

UP- PAGE:
2558

13

5. SCSII Functions

SCSII provides for the maintenance of library files independently of the assembly process.
As shown in Figure 9-1, SCSII can accept one to three separate library files as inputs.

These files are corrected and consolidated, resulting in a single updated library file. An
edited index output tape file can be produced, which subsequently will be printed by use

of the standard Tape-to-Printer routine. SCSII is directed in its activities by a control

tape. The control commands are written on the SALT coding form, and keypunched. The
information from the resulting cards is placed on the control tape by the standard Card-to-
Tape program. The format of the input control tape is in, essentially, the same format as

that of source program file of SCSI. The following paragraphs describe the control commands.

a. Servo Summary Order (SERVOSUM)

The first item of the control tape is a servo summary order which lists the UNISERVO
IITA tape unit requirements for this running of SCSII. This line has the format:

Y. ITEM NO. TAG C| FORM CONTENT\
sC_,scC

]5|ER9V015U|M1||1111 lillll'l?'\sc‘i'l'l'l'[llll||lfllll(

L _

An entry in the content field is required for each tape unit to be assigned to the run. s
is a decimal number, 1 through 39. A separate number must be used to reference each
tape unit. ¢ is a channel designator. It is R if the unit will be used only for reading, W
if the unit will be used only for writing, and RW if the unit will be used for both reading
and writing.

b. Servo Command (SERS)

This command must immediately follow the servo summary order. It is used to desig-
nate two of the tape units specified in the SERVOSUM line as the input and output
units for the commands to follow. These assignments remain in effect until a new
servo command order is given. (Auxiliary input tape units may be named by certain
commands, described below. However, these commands are limited in function to the
copying of particular libraries or programs onto the output tape unit named in this line,
Corrections may not be applied to programs coming from an input tape unit other than

the unit specified as the current input tape unit by a SERS line.) This line has the form:

\o. ITEM NO. TAG c| ForM CONTENT\
Z SEIRS| | Ll ISURTINN b T2 UL N U S N N S N Y N SO N A B 1]
L —— e —— \_/A

Designation sy indicates the tape unit to be used for input. This tape unit must be one
which was specified as a read (R) or read-and-write (RW) unit by the SERVOSUM line.
Designation s, indicates the tape unit to be used for output. This tape unit must be
one which was specified as a write (W) or read-and-write (RW) by the SERYOSUM line.

c. Library Commands

Four library commands are available which provide maintenance functions that operate
on the library as a unit. Any of these may follow a SERS line.



SECTION:

PAGE:

UNIVAC III SALT

EDIT Command

. ITEM NO. TAG cl A\

library name /
}EID!ITIillliiiJ |
L—\\/—\'~

All libraries on the input tape up to, but not including, the library specified, are copied
onto the output tape. If coirections are to be made to particular programs, the library
containing these programs must be named in an EDIT line prior to any program correction
commands (described below). Any other library command may also follow this command.

OMIT Command

\ ITEM NO. TAG c] R
library name /

/°|M'1T1111|11t|

Ll i P—

All libraries on the input tape up to, but not including, the library specified, are copied
onto the output tape. The specified library is read but is not copied. Any library com-
mand may follow this line.

AND Command

\O. ITEM NO. TAG c] FO\
/ ANID library name (
] | 1S i [ T Y !
L‘\\// V \A

All libraries on the input tape whose names are alphabetically less than the name spec-
ified are copied onto the output tape. The library specified then is copied from the
auxiliary input tape unit specified by s onto the output tape. The auxiliary tape unit
must be one which was specified as a read (R) or read-and-write (RW) unit by the
SERVOSUM line. Any library command may follow.

New Library Command

. ITEM NO. TAG cl fQ
library name (
L VBRIARIY, | L




SECTION:
9-A

UNIVAC II1I SALT

UP- PAGE:
2558 1s

A new library, which has been included on the control tape, is added to the output file.
All libraries on the input tape whose names are alphabetically less than the name
specified are copied onto the output tape. The library specified is then copied from the
control tape onto the output tape. Copying from the control tape is terminated by the
next control command.

In each of the library commands except OMIT, the designation INDEX in the content
field will cause an index of all the program names in the specified library to be
placed on the index file,

When a SERScommand follows any liBrary command, the remainder of the current input
tape is copied onto the output tape. When this is accomplished, the new tape unit
assignments specified by the SERS line become effective.

d. Program Commands

Four program commands are available which provide maintenance functions that operate

at the program level. Any of these may follow an EDIT command that has named the

library containing the program to be affected.

CORR Command
\oO. ITEM NO. TAG c] R\

program name )

}ICIORLRI N L

All programs in this library up to, but not including, the program specified are copied

onto the output tape. Correction commands to be applied to the program following the

CORR line.

ADD Command
\o. ITEM NO. TAG C| FORM CONTENT\
) program name library name, , old program name ,

L JAPIDys| | L o b1 N T T T O T Y B S S A

L——\‘N' \\/\'/\

All programs in this library whose names are alphabetically less than the program name
specified in the tag field are copied from the input tape onto the output tape. The spec-
ified program then is copied from the auxiliary input tape unit specified by s onto the
output tape. The auxiliary tape unit must be one which was specified as a read(R)or
read-and-write(RW)unit by the SERVOSUM line. The libraty name specified in the con-

tent field of this line is the name of the library containing the program to be copied.



SECTION:

9-A

PAGE:

UNIVAC IIT SALT

The old program name shown in the content field is an optional designation to be used
when the name of the program is to be changed on the output file. The extra comma

preceding this designation is necessary because of the PRINT option (which also may
be designated by this line). Any libraty or program command may follow this line.

DELETE Command

\o. ITEM NO. TAG [

program name

]1D|E|-151 N R

=\
B

All programs in this library up to, but not including the program specified are copied
onto the output tape. The specified program is read but is not copied. Any library or
program command may follow this line.

New Program Command

\o. ITEM NO. TAG cl FO
] progrom name ]
L LABEIL | L

A new program, which has been included on the control tape, is added to the output
file. All programs on the input tape whose names are alphabetically less than the name
specified are copied onto the output tape. The specified program then is copied from
the control tape onto the output tape. Copying from the control tape is terminated by
the presence of another control command.

In the CORR and ADD commands, the designation PRINT, in the content field will
cause a copy of the program named in the line to be placed on the index tape. In an
ADD command, the PRINT, designation, if used, is the second designation in the con-
tent field.

When a SERS or library command follows any program command, the remainder of the
current library is copied onto the output tape before the new command is acted upon.

. Correction Commands

These commands operate on a program named in the CORR line. As many correction
commands as are requited may be included for any one program. The functions avail-
able, REFR, REPL, ERAS, and PTCH, are identical to those provided by SCSI. These
functions have been described previously in this section under subsection A-4-c.



UNIVAC II1I SALT

SECTION:
9-A

UP- PAGE:
2558 17

When a SERS, library, or program command follows any correction command, the re-
mainder of the current program is copied onto the output tape before the new command

is acted upon.

Sentinel Command

The final line of any control tape is a sentinel command of the form:

Q.

ITEM NO.

\

)SlT

OP| |

L]

S

\
-/

This line has the same effect as a SERS command in terms of the completion of the
copying currently in process. In addition, the control tape is rewound and SCSII is

terminated.



 SECTION:
| 9-B

UNIVAC IIT SALT

I
UP- PAGE:
2558 ; 1

|

B. ASSEMBLY

The assembly process converts programs from source code to object code (see Figure 9-1).
SCSI produces a control tape containing the source programs to be assembled. This tape and
the standard library file are the inputs to the assembly process. Programs for which
ASSEMBLY lines were prepared as input to SCSI will be assembled in the order in which their

ASSEMBLY lines were submitted. The assembly process produces two output files: an object
rada fila and a2 cadedit file

The object code output tape contains the assembled porgrams in a form acceptable for further
processing by the Object Code Service run. Basically, object code is a program relative, binary
representation of the final program, with a line of object code for every word that will appear
in the final absolute program.

The codedit output is an edited version of the information appearing in the object code file.
It is ready for printing by the standard Tape-to-Printer Program.

The printed copy of this file, called the codedit listing, is needed by the programmer to direct
the processing of the object code file by Object Code Service. It provides the programmer

with a cross reference between the source and object code of a program. A sample codedit
listing and a description of the entries it contains is given in Appendix I. The listing provides
the following information.

m The source code as originally punched from the coding form.

s For each line of source code, two representations of the resulting object code, one in
octal and one in a mixed-number base form, which facilitates reading of the coding.

m A form key used to decode the characters shown in the mixed-base form of the line. ( A
legend describing each form key is given in Appendix I.)

m The program relative address of each object code word in octal.

m A modification key indicating the type of modification that will be made to the object code
word in its transformation to absolute code. (A legend describing each modification key is
given in Appendix I.)

m The block-and-word location of each object program word in the object code file.

w An error key indicating error conditions encountered during the assembly process which
were associated with the line. (A legend describing each error key is given in Appendix
I. This legend is also printed as part of the codedit for each assembled program.)

Every fifth line of the codedit is a form-key summaty line, indicating the form keys
applicable to the four preceding lines. The keys are written on the object code output tape,
but they do not appear in memory when the program is being executed.

The codedit listing contains three tables which may be used for debugging reference: an
alphabetic index of the permanent tags and local reference points used in the program, and
a list of the octal addresses containing references to these lines; an index of the mapping
applied to each segment; and, an index of the markers used in the program.



UNIVAC III SALT |
|

C. OBJECT CODE SERVICE

The object code produced by the assembly system requires further processing before the
program is ready for execution. Part of this processing is performed by a SALT system service
program called the Object Code Service (OCS), which places the object code of a program into
an instruction tape format. This tape is used as input to the Executive Routine which finally
reduces the instructions to absolute machine code. In addition to producing an instruction tape,
OCS also provides functions which may be used for the general maintenance of object programs.

Object programs in the SALT system are stored and maintained on tape files called Master
Reference Files (MRF). The format of an MRF file is essentially the same as that of the object
code file produced by the assembly process. The only difference is that programs are arranged
on the MRF in alphanumeric order by program identification. Object programs produced by the
assembly process are filed on an MRF by OCS. Programs may be altered during the OCS run

by certain control tape inputs described below.

~0CS CONTROL _
DECK i
|

w z
0CS |

|

|

|

|

|

|

1

Figure 9-5. Object Code Service Run



SECTION:
9-C

UNIVAC III SALT

PAGE: uP-
2 2558

The instruction tape to be used by the Executive Routine to load the program is produced by
OCS. It is called the Master Instruction Tape (MIT), and contains the series of programs that
are to be executed in the current cycle. In general, the programs which make up an MIT are

to be serially executed, that is, each program generally names another program on this MIT as
a successor until the final program is executed. It is not necessary that each program specify
a successot. It is possible for a run to be succeded by a program on a different MIT. The
naming of successor programs is normally accomplished during the operation of OCS.

Object programs can be accepted as input to OCS from two input sources: an object code file
and an MRF. (Refer to Figure 9-5). A control file resulting from input cards prepared by the
programmer specifies the particular OCS functions to be performed. These specifications
involve the selection and preparation of the object code programs to be included on the MIT,
and maintenance of the MRF. The original cards are converted to tape by means of the
standard card-to-tape program.

The cards must be ordered alphanumerically by the ID’s of the programs being referenced
before they are written on tape. A header card and a series of parameter cards must precede
the decks of cards referencing individual programs. Each group of cards pertaining to a
particular program is followed by a program sentinel card. The last card of the entire deck
must be a sentinel card. The following paragraphs describe the functions and formats of OCS
control cards,

OCS — Header Parameter Card for Card-to-Tape Conversion

XABEL DATE

001C | mmddyy 4 600160 (ZZZZ, 00000000

1 415 10 [ 35 40 |41 44 73 80
\ P ___ ge—




UNIVAC III SALT

0CS Header Card

// HEADER

]

IN |OUT DATE

OACASARUNAAS S Ma0| o mmddyy

12 2123 24! 29 34

This card is the first card of the entire OCS control deck. It follows the header parameter
card required for the card-to-tape conversion.

Columns 1 through 11

Column 12

Columns 21 and 22
Column 21

Column 22

Column 23

Column 24

Columns 29 through 34

1. OCS Parameter Card

are fixed.

s, contains the number, 0 through 9, of the tape unit on which the
resultant MIT is to be mounted. This is an absolute assignment.

describe the input configuration for this OCS run.
must contain an M.

a, contains a D if an object code file is used as input; it must be
zero if the object code file is not used.

must always be zero.

o, describes the output configuration for this OCS run. It is 1, if only
an MRF is to be produced; 2, if only an MIT is to be produced; or 3,
if both an MRF and an MIT are to be produced.

give the date to be applied to the label blocks of the output files in
the form month (mm), day (dd), and year (yy).

All other columns of the OCS header card are left blank.

A DATE form line is initially prepared with a four-character alphanumeric symbol in its
content field. This symbol may be replaced with anew value each time the program is
placed on an MIT. Fifty DATE symbols can be replaced during a single OCS run from a
table in memory. This table of fifty values has been placed in the OCS program for the
purpose of replacing infermation fabricated by the original DATE coding lines. The
alphanumeric data resulting from the DATE lines used in any of the programs that are

to go on an MIT are compared to this table during the OCS run. A new value is written on
the Master Instruction Tape replacing the original DATE line data if so specified by the
table. The contents of this table may be changed when OCS itself is placed on a Master

Instruction Tape.



SECTION:

UNIVAC III SALT

PAGE: !
4 ; 2558

The OCS parameter cards can be used to supplement the table providing values for DATE
symbols that cannot be included in it. There may be a maximum of 25 cards in any single
OCS control deck. Each card can define two equivalences, as shown below.

%5 REPLACE-
SYMBOL| |p|l| MENT
glN| VALUE
A===A xxxx AA|lm(s aaaa
dddddd
00000000 same as columns
29-44 for next
equivalence
1 28129 32 3536

TN Y
Columns 29 through 32 contain the original symbol (xxxx) as it appears in the source code
DATE-form line.

Column 35 specifies the mode (m) of the replacement value. It contains an A,
if the replacement is alphanumeric; D, if the replacement value is
decimal; or B, if the replacement value is binary.

Column 36 specifies the sign (s) of the replacement value. It contains a space,

if the replacement value is positive, or N, if the replacement value
is negative.

Columns 37 through 44  contain the replacement value.

If the replacement value is alphanumeric, Cols. 37-44 contain four
alphanumeric characters and four spaces (aaaaAAAA).

If the replacement value is decimal, Cols. 37—44 contain six decimal
digits and two spaces (ddddddAA).

If the replacement value is binary, Cols. 37—44 contain eight octal
digits (00000000).

Columns 45 through 60 are arranged in a like manner, and describe the next symbol and its
replacement value.

2. OCS Program Call Card

A program call card is required for each program that is to be processed by OCS. It has
the form.



UNIVAC II1I SALT

\ SECTION:
9-C

\
|
luP. PAGE:
y 2558 5
|

/ PROGRAM ID 1/0 SE%LE;SRSAOMR J
aaaaaaaa0000 aaaaaaaa0000
1 12 21 24 |29 40

Columns 1 through 12

Column 21

Column 22

Columns 23 and 24

Columns 29 through 40

identify the program being called. The designation aaaaaaaa is the
name of the program, as defined in the tag field of its initial label
line.

specifies the input source of the program, It contains M, if the
program is to be taken from the MRF; or D, if the program is to be
taken from object code file.

specifies the output destination for this program. It contains 1, if
the program is to go only to the object code file; 2, if the program

is to go only to the MIT; 3, if the program is to go to both the object
code file and the MIT; and zero, if the program is not to be placed
on an output file, that is, if the program is to be deleted from the
MRF.

are usually zero. They are used if a run from the object code file is
to be substituted for a run on the MRF with the same program
identification. Columns 21 through 24 would in such a case be MoDo,
where o is 1, 2, or 3 as appropriate.

identify the successor program that is to be chained to this program,
where aaaaaaaa is the name of the successor program as defined by

its initial label line. The entire successor program field, columns 29
through 40, contains zeros if no successor program is to be named.

If the successor program is defined within the program and it is desired
to leave it unchanged, columns 29 through 40 should be spaces.

All other columns of the card are blank.



SECTION:

9-C

PAGE:

TuP-

2558

UNIVAC III SALT

3. OCS Correction Card

Any program going to either OCS output file may be corrected using this card. Furthermore,
when a program has been designated as going to both outputs, corrections to the program
may be applied to both outputs or restricted to one output. Object code corrections
(changes) are specified in terms of block-and-word locations in the object code file or the
MRF. The codedit listing furnishes the location of the words to be corrected. Corrections
for one to three consecutive words may be placed on a single card. The card format is

shown below.

/ PROGRAM ID  BLOCK|WORD|1/0| |TYPE| CONTENT |TYPE| CONTENT |[TYPE| CONTENT /
aaaaaaaa0000 |bbbb wwww|i [o| [nAms|aaaaAAAA|AAms AAms
ddddddAA
00000000
13 16]17 20{2122 [25 28|29 36|37 40{41 4849 52|53 60

Columns 1 through 12

Columns 13 through 20

Column 21

Column 22

Columns 25 through 28

Columns 29 through 36

identify the program being corrected, where aaaaaaaa is the name of
the program.

contain the block-and-word location of the line(s) to be corrected,
where bbbb is the block number, 0000 through 9998, and wwww is
the word number, 0001 through 0060. (Words 0 and 61 are data
descriptor wotds.)

specifies the input source of the program to be corrected. It contains
M, if the program is from the MRF; or D, if the program is from object
code file.

specifies the output destination of the corrections given on this
correction card. It contains 1, if the correction is to apply only to
the MRF; 2, if the correction is to apply only to the MIT; or 3, if the
correction is to apply to both outputs.

give the type of correction that is to be made, where n designates
the number of words, 1 through 3, being corrected by this card. The
designation m specifies the mode of the first correction word. It is
A, if the word is alphanumeric; D, if the word is decimal; or B, if
the word is binary. The designation s specifies the sign of the
first correction word. It is a space, if the word is positive, or N, if
the word is negative.

contain the content of the first correction word, justified left, If the
word is alphanumeric,



| SECTION:
| 9-C

UNIVAC III SALT

'uP i :
2558 .

contain four alphanumeric characters (aaaa}, and Cols. 33-36
contain spaces.

If the word is decimal, Cols. 29-34 contain six decimal digits,

and Cols. 35-36 contain spaces.

If the word is binary, Cols. 29—-36 contain eight octal digits.
Columns 39, 40 and 41 through 48

contain the mode, sign, and content of the second correction word.

Columns 51, 52 and 53 through 60
contain the corresponding information for the third correction word.

The format illustrated below may be used when the correction words on a card all have the
same mode and sign. (Columns 1 through 24 are as shown above.)

( TYPE 1‘ CONTENT /

In this case, the entire content of the number of words specified by n is placed continuously
on the card beginning in column 29. Column 26 contains the symbol C to indicate this
continuous mode.

When both outputs are designated in continuous mode corrections, the form key words on the
MRF will be ignored.

4. OCS Program Sentinel Card

A program sentinel card may be included in the control deck for each program being operated
on by a single OCS run. The format of this card is shown below.

‘ C
/ PROGRAM ID CanT (

(

aaaaaaaa0000 9999 icccc




SECTION:
9-C

UNIVAC IIT SALT

PAGE: UP-
8 2558

Columns 1 through 12 identify the program by giving its name (aaaaaaaa).
Columns 13 through 16 contain 9999, indicating that this is a sentinel card.

Columns 17 through 20 contain the card count, cccc, which is the total number of cards
submitted for the program, including the program sentinel card. All
other columns are blank.

5. OCS Sentinel Card

The next to the last card of the entire OCS deck is a sentinel card of the form shown
below.

f SENTINEL (

ENDAOCSARUNO

This card is followed by the card-to-tape conversion sentinel card which, in turn is followed
by six blank cards.



SECTION:
9-D

UNIVAC IIT SALT

uP- PAGE:
2558 1

D. ACTIVATING DIAGNOSTIC FUNCTIONS

Programs that are to be tested with the diagnostic functions are assembled in combination
with the diagnostic subroutine DICON3ZZ,. The actual implementation of the diagnostic
functions occurs during the OCS run at the time the program is placed on an MIT.

An MIT containing the utility run programs, as well as the worker programs to be tested,

must be prepared by object code service run prior to the time of the test.

There are, therefore, two considerations to be taken into account at the time of preparartion
of control cards for object code service run.

s The preparation of the control cards needed to implement the diagnostic functions.

m The preparation of control cards to instruct OCS run to copy the required utility routines
to the MIT, in order that they may ultimately produce the trace or memory print listing,

1. Rules for Activating the Diagnostic Functions

a. A diagnostic function cannot be started on an instruction word which is to be modified
by either the Executive Routine or the program itself. (The original instruction word
will have been moved to another location when the modification occurs.)

b. Tracing or memory guard functions must always start and end with instruction words.

c. Instructions which access the words resulting from INOP or OVER coding lines may
not be included in a trace or memory guard function.

d. The trace and memory print functions require the designation of an output UNISERVO
IIIA tape unit. When these functions are requested and no servo is available, the
printing function will be bypassed. (Trace will be changed to memory guard.) The use
of this servo is restricted to the trace and memory print functions.

e. A maximum of twenty diagnostic functions can be specified at any one time. These
functions can cover any size area, but the number is limited to twenty.

f. Functions must not be overlapped, i.e., if it is decided that a memory print is needed
while trace or memory guard are operating, the trace or memory guard must be terminated
for at least one instruction, in order that memory print function can be inserted.

g. When a diagnostic output servo is assigned, the coding to produce a jettison of the
program should be included in a trace or memory guard function. This is necessary in
order to get a terminal print of memory and to institute end-of-tape housekeeping for the
diagnostic output. If the program is jettisoned without the trace or memory guard
covering the jettison point, the end-of-tape sentinel will be missing from the output tape
and it will not be rewound. The missing sentinel may cause a runaway tape if an attempt
is made to process it for printout.

h. WAIT instructions must be excluded from trace or memory guard functions.



SECTION:
9-D

S —

UNIVAC III SALT

PAGE: UP-

2 2558

2. OCS Control Card Preparation

A codedit list from an assembly of the program must be available as a source for data to
prepare the function implementing inputs. The choice of functions, and the areas over which
they will operate, can be varied on a test-to-test basis by changing the OCS control deck.
Three cards must be included in the OCS control deck for each area of the program over
which a diagnostic function is to operate. These are standard OCS correction cards which
form a diagnostic functien packet. They direct OCS to apply certain block and word
corrections to the program and to the DICON3ZZ, coding. The first card applies to the
program coding and will cause a transfer of control to the DICON3ZZ, coding. It is called
a function card because the address to which control will be transferred determines the
specific diagnostic function to be performed. The next two cards apply to an area within
the object code produced by DICON3ZZ, and supply parameters required by the diagnostic
functions. These cards are described in this section under the heading of packet cards

(1 and 2).
BLOCK FIRST WORD SEC
CARD PROGRAM 1D i o IRST WOR OND WORD THIRD WORD
TYPE WORD
NPMS |INSTRUCTION | NPMS | INSTRUCTION| NPMS |INSTRUCTION
1 1713 1617 20021 24p5  28pp9 | 3637 40jaL 415 5253 60
[
|
FUNCTION |
CARD 00oo0lo 00 2AA1ABN0034:205
[
PACKET |
CARD 1 00000 00 2AA3ABA|00O : AAB AAB A
|
PACKET :
CARD 2 000010 oo 2AA ABA | AA
|
[
|

Figure 9-6. Format of OCS Cards for Activating Diagnostics

a, Function Card

This card specifies the program word at which a diagnostic function is to begin operating
and the particular function to be performed. The program word (which must be an instruc-
tion) is replaced by another instruction which will transfer control to the diagnostic
coding to start the desired function. The format of the function card is shown in Figure
9-6. It should be filled out as indicated on the following page.



UNIVAC III SALT

SECTION:
9-D

UP- PAGE:
2558 3

PROGRAM ID
(Columns 1 ~ 12)

BLOCK AND WORD
(Columns 13 — 20)

1-0
(Columns 21 — 24)

NPMS (FIRST WORD)
(Columns 25 ~ 28)

INSTRUCTION
(Columns 29 — 36)

b. Packet Cards

Enter the program name. The exact characters can be found in the
heading of each codedit page.

Locate on the codedit listing the object code for the instruction
at which the function is to start. (If the line is tagged, the tagedit
section of the codedit will indicate the address at which it may
be found. The column headed OCTAL indicates the address.

Enter zero plus three digits for the block and two zeros plus two
digits for the word.

Column 21 designates the input file from which OCS is to take
the program. Enter M, when the program is on the MRF, or D,
when the program is on a SALT assembly output file.

Column 22 indicates the output destination of the program. Enter
2, specifying the MIT.

Columns 23-24 are to be left blank.

Enter TABN.

Enter 0034205 in columns 29-35.

Column 36 specifies the diagnostic function to be performed.
Enter: 3 for trace,

4 for memory print, or

5 for memory guard.

Columns 37-80 are to be left blank.

These cards, contain six consecutive block and word corrections. They apply to six words
of a table area in the (DICON3ZZ) coding. The cards furnish data describing to the sub-
routine the area and conditions over which the diagnostic function is to operate.

s Packet Card 1

The first packet card used to establish a diagnostic function should be filled out as

follows:



SECTION:

PAGE:

UNIVAC III SALT

PROGRAM ID
(Columns 1 - 12)

BLOCK AND WORD
(Columns 13 — 20)

1-0
(Columns 21 - 24)

NPMS (FIRST WORD)
(Columns 25 — 28)

INSTRUCTION
(Columns 29 — 36)

NPMS (SECOND WORD)
(Columns 37 - 40)

INSTRUCTION
(Columns 41 — 48)

NPMS (THIRD WORD)
(Columns 49 — 52)

Enter the program name as it has been printed in the heading of
each codedit page.

Obtain the address for the tag PKAREA from the tagedit list of the
codedit. This gives the starting address for the six-word area to be
used for the first diagnostic fanction. Locate the object code at that
address and enter zero plus three digits for the block and two
zeros plus two digits for the word. The addresses of the areas

for the 19 possible succeeding functions will be found in the
tagedit section under the names BEGNO2 through BEGN20. The
block and word locations of these areas can then be found in

the object code section of the listing at the address given.

Column 21 designates the input file from which OCS is to take
the program. Enter M, when the program is on the MRF, or D,
when the program is on a SALT assembly output file,

Column 22 indicates the output destination of the program. Enter
2. specifying the MIT.

Columns'23-24 are to be left blank.

Enter 3ABA.

Columns 29-31 — Enter zeroes.

Columns 32-36 enter the five-digit octal program relative
address of the instruction at which the function is to start, (See
the codedit column headed (OCTAL.)

Columns 37-39 enter AAB.

Column 40 is N if the instruction to which it applies contains
1A, or FS,.

A if IA, or FS, are not used.

Enter the octal representation of the instruction at which this
function is to begin. The column headed OCTAL WD in the
object code side of the codedit contains the data to be entered.
(This is the instruction corresponding to the block and word
entry in columns 13-20 of the function card.)

Enter AABA,



UNIVAC II1I SALT

SECTION:

uP- " PAGE:
2558 | 5

INSTRUCTION
(Columns 53 — 60)

m Packet Card 2

Columns 56—60 enter five octal digits specifying the address
of the last instruction to be included in this function. This in-
formation will be determined by consulting the column headed
OCTAL in the object code section of the codedit listing.

The second packet card for a diagnostic function should be filled out as follows:

PROGRAM ID
(Columns 1 — 12)

BLOCK AND WORD
(Columns 13 — 20)

I1-0
(Columns 21 — 24)

NPMS (FIRST WORD)
(Columns 25 — 28)

Enter the program name as ithas been printed in the heading
of each codedit page.

The appropriate block and word designation will be found three
words down the list from the corresponding Table Card 1. The
key words are not to be included in the count. (Key words have
no entry in the OCTAL WD column.) Enter zero plus three
digits for the block and two zeroes plus two digits for the word.

Column 21 designates the input file from which OCS is to take
the program. Enter M, when the program is on the MRF, or D,

when the program is on a SALT assembly output file.

Column 22 indicates the output destination of the program. Enter
2, specifying the MIT.

Columns 23-24 are left blank.

Enter 2ABA if the function is trace or memory guard.

Enter 3ABA if the function is memory print.

NOTE: A function is conditional when its performance is contingent on a prescribed condi-
tion existing in computer memory at the time control is given to DICON3ZZ, . Words
4 and 5 of the six-word area set the parameters for this action. Packet card 2
specifies the necessary information.

INSTRUCTION
(Columns 29 — 36)

Enter eight zeroes when the function is to be performed
unconditionally.

When the function is to be performed on a conditional basis, a
word stored in the program at address (A) will be compared with
a value (B) contained in the six-word diagnostics function area.
in columns 29=31 enter:

GRA if the function is to start when (A) > B.
LEA if the function is to start when (A) < B.
EQA if the function is to start when (A) = B.



SECTION:

PAGE:

2558

UNIVAC III SALT

NPMS (SECOND WORD)
(Columns 37 — 40)

INSTRUCTION
(Columns 41 — 48)

NPMS (THIRD WORD)
(Columns 49 - 52)

INSTRUCTION
(Columns 53 - 60)

Enter the five octal digits of the address of A explained above
in columns 32-36.

Enter AABA when the function is to be performed unconditionally.

When the function is to be performed conditionally:

Columns 37 and 38 contain spaces.
Column 39 specifies the mode of the test value B; enter

A for alphanumeric
D for decimal
B for octal

Column 40 specifies the sign of the test value; enter

N for negative
A for positive

Enter eight zeroes when the function is to be performed
unconditionally.

Enter the test value B when the function is to be performed condi-
tionally. Enter the alphanumeric, decimal, or octal value as
specified by column 39. If less than a full word is entered, it

will be justified left in the resulting computer word.

Leave blank if the function is trace or memory guard.

Enter AABA if the function is memory print.

Leave blank if the function is trace or memory guard.

If the function is memory print, enter three zeroes, followed by
the five octal digits specifying the memory location of the first
word to be printed. The printing occurs on a consecutive
location basis, rather than proceeding along a processing path.
The information for this entry can be obtained from the object
code side of the codedit listing.

3. Processing Diagnostic Output Tapes

The output tape created by the trace and memory print functions must be submitted to a
diagnostic edit program for further editing before it can be printed by the standard
tape-to-print routine. An MIT containing programs to be tested with the diagnostic
function should, therefore, contain the diagnostic edit and tape-to-print routines, as well
as the programs to be tested. The formats of the diagnostic output tape and the edited
printer output are explained in Appendix J.



SECTION:
9-E

UNIVAC III SALT

UP- PAGE:
| 2558 1

=

""""""""" NIFLEX* III UTINE)

The OMNIFLEX III routine is a service routine intended to provide the user with the means of
creating, maintaining, and sampling data files recorded on UNISERVO IIIA Tape Units in
standard format.

The OMNIFLEX routine instructions, or commands, are prepared on the SALT coding form. The
routine control tape), by the standard card-to-tape routine. All commands to the OMNIFLEX

routine therefore, are submitted to the routine on a UNISERVO IIIA tape. A record of the
OMNIFLEX routine activity is written on the OMNIFLEX record tape. Additional tape unit require-
ments are specified in commands prepared by the user.

Files processed by the OMNIFLEX routine must conform to the UNIVAC III data tape conventions
as described in Appendix F. The OMNIFLEX routine will first verify the label of an input file,
and then process data blocks, excepting those blocks bracketed by bypass sentinels, until an
end-of-reel sentinel or end-of-file sentinel is detected.

No file processed by the OMNIFLEX routine may be more than one reel in length. A supplemen-
tary data tape convention has been established within the OMNIFLEX routine in order that more
than one file may be recorded on a single reel. This convention prescribes that two end-of-reel
sentinels are recorded after the last file of a multifile reel. The OMNIFLEX routine provides a
special command for producing these end-of-tape sentinels. Input tapes not conforming to this
convention may be processed by the OMNIFLEX routine, provided the user is familiar with the
files on the reel and does not misdirect the OMNIFLEX routine.

The OMNIFLEX routine processes files composed of blocks which contain no more than 502
words. In the absence of any overriding specifications in the OMNIFLEX routine commands,
the block and item size of an input file are determined from the block size and item size fields
in words four and five of its label block. If no overriding specifications are made for an output
file, its block and item size are similarly determined from those of its major input source.

The OMNIFLEX routine normally will create output files with one control word per item and an
additional control word for each of the data descriptor words. A block composed of n items,
therefore, normally will be written with n + 2 control words. The OMNIFLEX routine will, how-
ever, write the blocks of files which meet one of the following criteria using only three control
words per block (one control word for data, and two for data descriptor words).

1) If b is the maximum number of words in a block, and n is the maximum number of items in
a block, the remainder of 2=% does not equal zero.

2) There are more than 50 items in a block.

*
Tradémark of the Sperry Rand Corporafion



SECTION:

9-E

PAGE:

UNIVAC III SALT

uP-
2558

The OMNIFLEX routine commands have been classified into three levels: job, file, and
correction. Job commands indicate the total command sequence to be executed in a single
run and the tape unit allocation for the run. They also may be used to integrate independently
prepared command sequences and to indicate non-independent subsequences. File commands
are provided to allow the processing of an entire file. No recognition of the data content of

a file is made by a file command. Correction commands are provided to allow data-dependent
processing or the modification of the data content of a file.

1. Job Commands

OMNIFLEX Routine Command

lo. ITEM NO. TAG C| FORM CONTENT |
date job identification >
‘JOIMNJIFILEIXIIIIIII AN T N N I U I I Ty O O A 0
L\/\\/"J\V'—-\ ———
The OMNIFLEX routine command is used to indicate the beginning of a command sequence.
For purposes of documentation, a date may be entered in the tag field, and a job identification
entered in the content field; these entries are optional.
More than one OMNIFLEX routine command may exist in a command sequence. Subsequent
commands may be used by the programmer to provide record tape identification of
independently prepared sequences. If an error is detected in the execution of a command
sequence, the remaining commands are ignored, and processing is reinitiated at the next
OMNIFLEX routine command, if any.
SERVOSUM Command
Jo. ITEM NO. TAG c| FoRM CONTENT \
Iscy,s¢9 ,8¢cq, . . .
\ SERVIOSIYMI v 1w 11 L1 1‘L?’l3||1|1|l||||(|||7
Eh\/ -~ o

Only one SERVOSUM command may appear on an OMNIFLEX control tape, and must immedi-
ately follow the first OMNIFLEX command. This command is used to allocate required tape
units, other than the record and control tape units. Each entry in the content field (SCI,
sc¢y, scg3, .. .) describes a tape unit. No more than ten tape units may be so allocated. The
designation s is a symbolic number, O through 9, assigned to the tape unit. It will be used
to refer to the tape in all subsequent commands. Designation ¢ is a channel designator. It
is R, if the unit will be used only for reading, W, if the unit will be used only for writing,
or RW, if the unit will be used for both reading and writing.



| SECTION:
9_E
UNIVAC III SALT
UP- PAGE:
2558 3
SERVODEF Command

L. ITEM NO. TAG c| FORM CONTENT |
\1 SERVIODEF] | | | | | 1 I i lald [0 W R R R I I I R A 14)
| |_— e Uy A—l

The SERVODEF command has been provided so that command sequences can be independ-
ently prepared without requiring prior coordination in the assignment of symbolic tape unit
numbers. Each content field entry of the command equates a previously assigned symbolic
number with a new symbolic number. In each entry, $y is the symbolic number of a tape unit,
as defined in the SERVOSUM command or in a preceding SERVODEF command, andsy' is
the new symbolic number to be used in all ensuing commands. A maximum of ten entries is
allowed.

STOP Command

ITEM NO. TAG C| FORM CONTENT\

program ID,sy=s¢" ,sp=s9", . . . J
OP | | vl N T T T T T Y I O O A B B S B B B R

L~

The STOP command indicates termination of the OMNIFLE X routine job. This running of
OMNIFLEX routine may be integrated with a subsequent run by means of entries in the
content field of the STOP command.

Program ID is the name of the successor program, and is in the form aaaaiiccAAsn, where:

aaaaaaaa is an eight-character program name, s is the absolute number of the tape unit on which
the successor program will be found, and n is the copy number of the successor program.

The second and subsequent designations in the content field (sy = sl', sg = 52', . ..) carmy
tapes over to the successor program. In each designation, sjis the current symbolic tape-
unit number, as assigned by a SERVOSUM or SERVODEF command, and si' is the numeric
designation of a file in the successor program. Note that it is possible to carry the control
and record tapes over to the successor run by letting sy equal C or R, respectively. A
maximum of ten tape units may be carried over to the successor program.



SECTION:

9-E

UNIVAC III SALT

PAGE:

UP-

2558

. File Commands

File commands deal with complete data files. The commands are written in the first four
columns of the item number field, and the tape units to which they are to be applied are
specified in columns 5 and 6. Column 5 generally designates the major input tape unit, and
column 6 designates the major output tape unit of alternate input tape unit. Entries in the
content field specify the file or files to be processed. A detailed description of these entries
is given below, under the heading COPY Command.

COPY Command

ITEM NO. TAG C| FORM CONTENT |

c,0

P YIS1%2 | v [N U o (R N .S N N N NN I Y N S Y S A IR O

= .

Starting at the current positions of tapes sy and s, read forward 1. copying from sy to s9
all files preceding file xy. Copy file xy from sy onto s9, modifying it according to x9. Upon
completion of the copy procedure, tapes sy and s will be positioned immediately below
the end-of-file sentinels.

A single designation, END, in the content field will cause the copying of the remaining
files from sy onto s9. This option may be used only if there is an end-of-tape sentinel
following the last file on s1-

If an end-of-tape sentinel is detected before file x] is encountered, s] and sq are rewound,

an error is indicated on the record tape, and the control tape is advanced to the next job
command.

Detailed functioning of the COPY and other commands is controlled by the specified x

and s designations. The equal designations (=) indicates the presence of x4. Both xy

and x9 each comprise three or five file parameters and are of the form f, i, r, or f, i, r, b, n,,
where:

f is a four-character file identification,

i is a six-digit data (mmddyy),

r is a three-digit reel number,
b is the number of words in a block,
n is the number of items in a block.

The table on the opposite page shows the acceptable configurations of xy and x9 and
the origin of the file parameters in each case.



UNIVAC III SALT

SECTION:

9-E

2558

PAGE:

ORIGIN OF FILE PARAMETERS f,i, r, b, n

| $2
CONTENT FIELD
LABEL | BLOCK AND ITEM | LABEL BLOCK AND ITEM
(*, i, 1) SIZE (b, n) ¢, i, SIZE (b, n)
f,i,r, X1 words 4 & 5 of xq words 4 & 5 of
s label block sq label block
f, i, r, b, n, X1 X1 x'l x]
f,i,r,=§i,r, X1 words 4 & 5 of x9 words 4 & 5 of
s1 label block s1 label block
f,i,r,=,¢i,r1,b,n, x1 words 4 & 5 of X9 X9
1 label block
f,i,r,b,n,=1#,i,r, xq xq x9 xq
f: il r, bl n, =, fl Lr bl n, x'l XI X2 X2
DELE Command
fo. ITEM NO. TAG C| FORM CONTENT \
\DIELIESIFZI Ll Illﬂl’lilJllIIIILll!LI(Il_l(
(/\r —

Starting at the current position of tapes sy and s9, read forward sy, copying from sy onto
s9 all files preceding file x1. Read file X1, but do not copy it onto sy. For this command,

x) comprises f, i, and r,.

If an end-of-tape sentinel is detected before file x| is encountered, s

command.

and s

are rewound,
an error is indicated on the record tape, and the control tape is advanced to the next job



SECTION:
9-E
UNIVAC III SALT
6 2558
CORR Command
b. ITEM NO. TAG c] Form CONTENT)
LCJORIR5'||52I L1 L1 xl'I"'l"Z'[IIlllll!llllllll(

Starting at the current position of tapes sy and s,, if specified, read forward sy, copying
from s onto sy all files preceding file x1. Write the label block of file x1 on sy. Establish
the first item of file xy as the current item, and apply the correction commands that

follow.

Note that due to the nature of the correction commands provided, it is possible that only a
major input, or only a major output file will be required. This is indicated by leaving sy or

sy blank, as appropriate.

If an end-of-file sentinel is detected before file xy is encountered, or if the ensuing
correction commands require a tape (s-l or 52) that was not specified in the CORR command,

the tapes involved are rewound, an error is indicated on the record tape, and the control tape
is advance to the next OMNIFLEX command.

READ Command

».ﬂ“

ITEM NO.

CONTENT )

RE

AD

51 | L1

*I'1||L|111|111||||1|11l

T

e ———

Starting at the current position of tape sy, read sjin the direction indicated by d until file
X1is located. Position sy so that a forward read will read the label block of file xq.The
direction d is specified by the form field. If the form field contains all spaces, sy is read
forward; otherwise, s is read backwards. For this command, x| comprises f, i, and r,.

If, on a forwardread, an end-of-tape sentinel is detected before file x

is located, or, on a

backward read, the tape block count equals zero before file Xy is located, s1 is rewound,
an error is indicated on the record tape, and the control tape is advanced to the next job

command.



SECTION:
9_E
UNIVAC III SALT
uP- PAGE:
2558 7
COMP Command
p. ITEM NO. TAG C] FORM CONTENT \
MPlsyso L1 Lilﬂ"l'ﬁr"a'lnrllwluxuillx(
| e W\J

Starting at the current position of tapes s, and S read forward s, and So until files x
and x, are located. Compare files x; and x, on an item-by-item basis, placing unequal
items on the record tape, for printing in octal format. For this command, both x, and x4
are specified in full, that is, all five parameters must be specified for both files. In
addition, the number of items per block n must be the same for both files.

If end-of-tape sentinels are detected before file X; or x9 are encountered, *} and S, are
rewound, an error is indicated on the record tape, and the control tape is advanced to
the next job command.

REWI Command

b. ITEM NO. \

é RE W sy | | 1(

— 1

Rewind tape 5y without interlock.

REWO Command

0. ITEM NO. |

( RIE WlOs]l | J
L -

Rewind tape $1 without interlock.

SENT Command

ITEM NO.

\o.
L SE NLTLM | [
N N

— ,_//\J

Write two end-of-reel sentinels on tape s thus creating the end-of-tape sentinel used
on multifile reels.



SECTION: '
9-E
_— UNIVAC III SALT
8 2558
WAIT Command
NO. ITEM NO. TAG C| FORM CONTENT
messuge
(1‘”1“'17111111111 N R
l——\,/"\ L

Type out the message in the content field, and delay further OMNIFLEX routine processing
until the operator types in any one-character ‘‘go-ahead’’ message. Messages may be up to
80 characters in length. However, if more than 52 characters are to be typed, the programmer
must provide for the detection of the end of the first line and for the remainder of the
characters to be printed on a second line.

3. Correction Commands

All correction commands must be preceded by a CORR file command. A correction sequence

will be terminated upon the occurrence of an error or another file command. If correction

commands have not already caused the entire input and output files to be processed at this

time, the remainder of the input file will be copied onto the output tape and the tapes

positioned ready for the next file, if any.

REFR Command

\o. ITEM NO. TAG c| FORM CONTENT )
LRJEFIR [ R | m oy e w8k )y IllllJ(
LI L | 1 —

Starting at the current position of tapes sy and 52 (as specified by the preceding CORR
command) read s, forward, copying onto $7 all items preceding the item which contains a
field conforming to the criteria specified in the form and content fields. Establish this
item as the current item. (n equals 0 for this item).

If a single entry, END, is present in the content field, the remainder of the file will be
copied onto $2. Additional items then may be added to the file by use of the ADD or PTCH
commands described below.

If an end-of-tape or end-of-file sentinel is detected before an item satisfying the specified
criteria is located, the tapes involved are rewound, an error is indicated on the record
tape, and the control tape is advanced to the next job command.




SECTION:
9-E

UNIVAC II1I SALT

UP- PAGE:
2558 9

As indicated above, s, is copied onto ) until an item is encountered which contains a

field conforming to the criteria specified in the form and content fields of the REFR line.

The content field contains a constant (k). For each item, a field described by the m, w, p,

and v, entries is tested against the constant. When relation ¢, holds between the field and

the constant, the copying process is terminated. The following paragraphs not only describe in
detail the form and content field entries of the REFR line, but also apply to the other
correction commands.

The form field entry, m, specifies the form of both the field and the constant. It is ALPH,
DCML, OCTL, or OTOB, for alphanumeric, decimal, octal, or binary, respectively. Binary
fields must be contained within one word; alphanumeric, decimal, and octal fields may span
up to four words.

The first content field entry, ¢, specifies the relation that is to hold between the field and
the constant. it is TEQ (equal to), THI (greater than), TLO (less than), NEQ (not equal to),

NHI (not greater than), or NLO (not less than).

The second, third, and fourth content field entries, w, p, and v, locate the field within the
item. Entry w, is a number, 0 through n — 1 (where n is the item size), designating the word
in which the most significant unit (bit, digit, or character) of the field is located. Entry p
designates the position of the most significant unit of the field within word w,. This
designation varies with the form of the field, and is specified as shown in the table below.
Entry v, specifies the number of un its in the field. The minimum number of units is 1;
the maximum number is 24, 32, 24, or 16, depending on whether the field is binary, octal,
decimal, or alphanumeric, respectively.

POSITION (p) OF MOST SIGNIFICANT UNIT

Binary (BINY) S |112|3{4/5|6(7]89/10[111121131415/16/1718{192021122/23(24

Octal (OCTL) I 1 2 3 4 5 6 7 8

Decimal (DCML) G 1 2 3 4 5 6

Alphanumeric (ALPH) | N 1 2 3 4




SECTION:

PAGE:

10

UNIVAC III SALT

UP-
2558

The last content field entry, k, specifies the constant against which the field is to be
tested for relation c. It is in the form sv, where s indicates the sign (plus, minus, or, if
the field is unsigned, period), and v is the value of the constant.

SKIP Command

\o. ITEM NO. TAG c| FORM CONTENT \
Zl SKVPL vl b mo e e ke 1)1
\—/"\~ _L’— i m—r WJ

Starting at the current position ofsl, read s| forward until an item is found which conforms
to the criteria specified in the form and content fields. Establish this item as the current
item. No items are copied onto the output tape.

If a single entry, END, is present in the content field, the remainder of the file will be
skipped. Additional items then may be added to the file by use of the ADD or PTCH commands

described below.

REPL Command

\o. ITEM NO. TAG c| FORM CONTENT \
2 REPL| Ll m oo “l:lwirlplmul:lkl:lIllllilllll(
\’_'\/

Copy the current item (item 0) through item n — 1 from $; onto $2* Copy item n from $) onto
s9/ replacing the specified field with the specified constant (k).

Note that n is the item number, relative to the current item, as established by the last
REFR, SKIP, or CORR command.

ERAS Command

ITEM NO. TAG C|] FORM CONTENT\

’
ERAISIIIIIL:II Illnl'lnl'lllllIl!lIIIIIIIIJ{

TP




SECTION:
9_E

UNIVAC III SALT

UP- PAGE:
2558 11

Copy the current item (item 0) through item n — T from Sy onto s,. Read items n through n',
but do not copy them onto$3- Item n' + 1 is accessible to subsequent commands. If there
is not an n entry in the content field, only item n'is deleted. If n' is END, item n and all
succeeding items are deleted.

PTCH Command

No. ITEM NO. TAG c| FoRM CONTENT \
II PTICH L v b mo o Zaweegeye ke
—

L~ B N’—-

Generate an item from the fields described on this card and subsequent field description
cards. If Z is present, clear the output item area to binary 0’s prior to generating the item.
This symbol must be present in the first of any series of Patch Commands.

A single PTCH command will generate a single item. Additional fields of the item are
specified on cards which immediately follow the PTCH card, and which have blank item
number and tag fields. The generated item will be placed on the output file preceding the
current item from the input file, if any.

ADD Command

\o. ITEM NO.

\
{I ADDs3 | | | | (
]

—T ——l—

Copy all data items from the current file on auxiliary tape sq onto the output file.
The item size of the file on 53 must be the same as the input item size.

All items added will be placed on the output file preceding the current item of the input
file, if any.



SECTION:

SAGE: T UNIVAC III SALT

12 2558

SAMP Command

o. ITEM NO. ' TAG c| FORM CONTENT \
{J SAMP m { [T T T N m oo fe W P ek I{
—— —— T ——

Starting with the current input item, search the remainder of the file for items satisfying
the specified criteria, copying these items onto s_ or the record tape as indicated by m.

When m is ALPH, copy onto the record tape, for printing in alphanumeric format.
When m is DCML, copy onto the record tape, for printing in decimal format.
When m is OCTL, copy onto the record tape, for printing in octal format.

When m is AAAA copy onto 52.
The next command must be a file command.

CHNG Command

ITEM NO. TAG c] Form CONTENT\

’
CHING [ MWL S l(

T
l
|

Starting with the current item, copy all items onto output. When a field conforming to the
specified criteria m through k is encountered, replace it with constant k' before copying
the item onto output.

The next command must be a file command.



APPENDIX A. SAMPLE PROGRAM



SECTION:
Appendix A

UNIVAC III SALT

UP- PAGE:
2558

APPENDIX A. SAMPLE PROGRAM

PROGRAM: Two-Way Metrge

PURPOSE: The purpose of the merge is to take the inventory files of two warehouses
and merge them into one master file. The items on each input reel have
already been sorted into ascending order and both reels must be merged
into a single sequence.

PROGRAM In the following illustrative example, a sequenced file containing inventory

SPECIFICATIONS: information from warehouse A and a similar one from warehouse B is merged
into a single file called C. The file ID of warehouse A is W102, and that of
warehouse B is W103., The master file is to have a file ID of W100. The key
field upon whose relative value the merged tape will be sequenced is a two-
word alphanumeric value contained in the first two words of each item.

The third word of each item contains a decimal number specifying the amount

of a specific commodity in the particular warehouse. If items with identical keys
are encountered in both files, the amount in the file a item will be increased by
the amount contained in the file B item. The corresponding file B item will not
be placed on file C.

The input tapes contain blocks made up of ten 25 word items. The output tape
will be in the same format as the input tapes .

The following facts are assumed:

1) There will be no key of higher value than two words of Y’s.

2) The combined length of the input files will not exceed one full reel,

3) The output file will contain no duplicates.

4) The output file is to be written with one control word per item.

5) In no instance will the amount of a commodity exceed 999,999,



SECTION: |
Appendix & | UNIVAC III SALT
2 2558
PROGRAM: Two-Way Merge
INPUT WAREHOUSE WAREHOQUSE
A B
PROCESS MERGE
Y
OUTPUT MASTER
C

Figure A-.1, Two-Way Merge Process Chart

DESCRIPTION: Multifile Input: ten items per block, 25 words per item.
Item Key: First two words of each item, A/N format.
Single reel output: ten items per block, 25 words per item, to be written
with one control word per item.



LOAD IR2
WITH POOL
ADDRESS

COMP ARE ‘

D @

<

>

START A

INITIAL I

AN

Ve
// .
KEY A: KEY B)-—@

AN

\ .

SISO

TEM ADDRESS OF
ADDRESS ITEM
NE DESCRIPTOR
— WORD=—AR2
) ADDRESS OF
B ITEM B ITEM
ADDiIE5]5 DESCRIPTOR
—> AR WORD—>AR2
7' TO SET SWITCH
KEY A TO CLOSEOUT
Z's 7O
KEY B

Figure A-2.

START B > START C COMPARE
ADDRESS OF
ADD SUM B A ITEM ADDR. > AITEM > COPY C
TO SUM A — AR1 DESCRIPTOR
WORD—»AR2
ADVANCE
CLOSE C A
ADVANCE
B
» COPY C —»| ADVANCE A COMP ARE
COMPARE
- COPY C » ADVANCE B COMP ARE
COMPARE ‘
FROM EXEC.
ROUTINE
ERROR STOP WITH sTOP
DUMP

Two-Way Merge ~ Flow Chart

LAVvS 111 QVAINN

8SST

-dn

‘39vd

V xIpuaddy

‘NOI1D3S



SECTION:

PAGE:
2558

|
Appendix A | UNIVAC III SALT

Yo. ITEM NO. TAG Cl FORM CONTENT \
NOIWWNPUT, oy 1 G S T T S S Y N BB B A
L BRIARY |SAMPLE . IS T T T T S U Y 0 O B S

( AS|SEMB/LYMRGEL CO

Li1 § N T S S T A S O S U T N N N Y

LABE|L, | , MRGELCO]I oo SV MPLE TWO WAY MERGE US| INAG('l\

PRESEL ECTION AND-SER3ZZCOPY,
ot T T ot T Ot Tt

W R R A AN O BN RN = B
\ 1 | |€0D ING | | ISCMTIZERO ¥ ,y | |\ |y g gL
2, L |PooL, \ISOMTISEG Y, Ly g L]
| I I INOPIERROWR | | | | ¢ | | v b 111
| l‘;i L OVERIERROR,,| | | | | | 0\ i 11
[ I I P | IMAPSISEGT =1 SIEG2),=02 . | g1
; : ‘ L g EQDXI7,+ 1, =\ KEY A, v {1
1 i i | | | P || 8|+I]I’I:|KIElYIB{'I I N T OO O N NN N I Y N S T S N
1 IR A B AR AR Lo T2 = SIUMA L
\1 [ I AR Lo 1825 SIUMBL
Lo 1 i |toADt L OADIL T ENAMY L
[ 01"10100101 , |BEGIN | | W AL A L A A A A A
\ |  JMPEX | |EjLOCAPOOL., S B N U A B B O U N O B B B O

MCROIT*STARTA, ENDA, 7,
g St Y Tt Tl T W T T Tt el W

Y MCRO[T*STARTB, ENDB, 8 , |

1 | ) T I I | T T N TN NS SN Y U N (N (N (e A TS NN NN SN S O O |
MCRO|[T*STARTC, \

| | | I O O O I A L1 Ll S VR RN S T O O T N T O O O

Figure A-3. Two-Way Merge Sample Program



' SECTION:

UNIVAC III SALT Appendix A

up- PAGE:
2858
ITEM NO. TAG c] FORM CONTENT 1
)1 i | 1 |€OMPARE, vy ey 2 KEY VA g
IS BN RN AR L 1S N2 KEYB L
[l L] L IO AO T Wy
(L | ) S Y I N N ] J TIHIII'IBlolulTI'l I T N I 1Y S [ S (N N T T |
Yl L L ITO AL Ly INOP
[ A A B A A AN L BB SIYMAL g
N S AR B L A Y SIYMBY
I R L S Y SIUMAL
}1 ! L L IS X7, 8T COPYATIOG g
‘11 L1111 IO LYWPTL NV 0 L U T O T T O B B A A
A A co VAL ek 2 GENAD T A 20 ) ey g g g
[ NS IR MCROIT*COP\YC\\y | | 10 o i ]
/| c et P IMCROIT*ADYALENDALT L g
C I B R R MCROIT* ADYV B, ENNDB, 8, | | | | ¢ ( § i 1 (11111
I B A A L1 TIUINI'ICIO!MiplAIRlEIIIlIIILIIJI|Illl!ll)
| ( JA0UT | L STX T ST III_LIIIIA_LI
[ I S I N R I | SO WIPTR 0 T T T T T O A B
)1 Ll b Lt VAL b 2 GV NAD e, T AN2Y) g
C A TR N u I A A N
>| Cl b | MCROTFADYALENDA LT

Figure A-3. Two-Way Merge Sample Program (continued)



SECTION:

Aopend | UNIVAC III SALT
PAGE: uP- B
6 2558
[
\ITEM NO. TAG C| FORM CONTENT \
[ [ c L JTUNG,  COMPARE, [ 1o b g ln
Lo |Boyu T o L dSTX 8 S T |4111\
[ I T R R R R |11Ll’l]luleJLl’Llllelllllll!llillJIlIT{
i | i N S O g1 ILAI’I’\L\’lzl’[(l']NLAIDJ:I’ILLTX*JELZRLL'ILI I N I | LJ\
I N B O N MCROIT*COP Y Cvy v b v 0 g L1 1/
[ S MCRO|T*ADVB, (END B\, 8,1 | { 1 v 4 1 1 1 11111 i 14
N N B SRR L {T\UN, CGOMPARE,, | | | | | | vy
I il ! EJNIDIAI Ll [ L\XV i7i'1Ll/IZLK'E!Y1+t11'1 S G U W N N S T T Y |
L ]\4 [ [ LL1]|'15|WJ1T|£1H1liu1 T A Y YO U I M T OO
EOUT,
i J_SLF SlwIIIT\CIHl! € L1 1 TIUINI'\cILlolsl | I N S T N S N NN G Y A N S A N I
[ ‘ ST, 1, TOTAL,
llJ Ll T T T T T TN N S O W N N 1 O B O
\ ! | TUN, COMP ARE,
T T S OO S B I T Tt T T T T T I I U O O I OO A
! ENDB LX,8,L/ ZKEY+1,
S TS N N T S W O N T Ty ey OO S S S N I B O
: TUN, 1 B, \
i , R AT T T O W I T O A Y A O
| |
! T* NDC,
lsii!lclLloisLEo'*U MCROIT END
| i
L L,1,ENDING, 7
\;“'L»TzEerM! ! LLII!IILII¢1I!I!IIIIIIIIIIIIII‘I[
i *
LLL%MNIN\GI W U N N A I A A I I A A A
|
| LOC23,
);jk, [T B S A ill'JiL'i'\TIUJL'I'1$lk|llii U T Y T O A
LLLQH\L\; SR (O U N U U U T A A O
L‘EL“:\\HI L li!_Llllll{JlL1I4!LJIJiJILJIlIu\
Figure A-3. Two-Way Merge Sample Program (continued)



SECTION:

Figure A-3.

Two-Way Merge Sample Program (continued)

UNIVAC III SALT Appendix A
UP- PAGE:
2558

Yo. ITEM NO. TAG C| FORM CONTENT

X L1 XLOCIEP,, \ ¢ v v v v 1 v v b N

(Tlllllli\\ _XIFJA1031'|1|\lllllili\l|J|||Jlll|ll[l | I |

ERROR S GAD[ERROR ,
i [ I AR ! T S Tt U T U Y S S Y A Y Y M B B
L,12 ., $SHERE-1,

(. | T N S A Y | 1S T N R T T A T S N T T T (S v A I I (G N [N NS Y N B
[ T T T I S A Lo IhAL TN L8 L0C2030 L0 1 Ll
Ll b L IRKENY AMLPHIZZZ Z),, | | | | 0oy v 0 by L0 1
I T R B SR RN A et I NI AT 27T 218 N U N N SO Y N N NN YN N N O A A A A IO

!10»1'|°°\°°|°|‘H AREAITI00,, | 4 | 4 | b L]

\\ 0,200, | |  ITy 4 ¢ 4 | S UBR[-SER3/Z,Z,8SE G2, DD*SNAMIL | v 1)1

) [ B L1 =l 11 ADY A PR L25, V0 ONE Ly )

lx L Ll Lo AP B VR 25,10 ONE g

\ 1 | L i BN CaoxP\Y|’|c|'12|5ﬂ1110|'1’|’J’1A1’JB|’LJ T T T A O | [

’ Lo Ll =1 i IPRESELECT A, B, bbb bbb b
I

/N I Clg g - FVLELA LT W02, DATE L RWI g

( [ AR SRR S SR -l [KE Y FROM, 0, THIRIY, A g

\ [ N A A -l {FYLE B2, W03 DIATE L RWI g

IIIIII!I! oL KEY A b

( - FILE, C, 3, W100, XXXX, RWI ,

[ I RS AN N SN R O N 0 O S A S Y S S Y B B R N B B S O B B B A

\0300 DD SUBRDICON3ZZ,, 4, BEGIN,TOTAL+7, AOUT-1,

[l il NN SR b e RO TS Wy Tt T T e e T T N et U A I O O O

( - COMPARE, AOUT+3,BOUT-1, ENDA-1,CLOSEOUT,

IR B AT AR A T O T T T T O T O T O T O B N Y O S I T
- TERM,
AR NS N B R AR [ T T YU T T U N T O A N O O B A B O
* *
I NN SGRTOD*SEG, TYSEG2. )

10. ITEM NO. TAG c] ForMm CONTENT \

\ | | | SER3|4, WRI,TE, 1, |0 R

/ L\I B\RAIR Y: | | | ! | [ i s ] oL k

U A
e \/




SECTION:
W el S UNIVAC III SALT
8 2558
O
PAGE 007 TAG EDIT OF RTNe. MRGELCO1 12=16-62
O OCTAL  XR TAG REFERENCE
07110 002 » CIRCy 07223 000r 07263 000r 07345 Q0O
o 07261 000
07061 002 » CKINV 07055 000
O 07760 002 * CLOINV 07767 0600
00522 000 * CLOSEOUT (0531 000» 00720 001
R R P EEE LS B P -
O
PAGE 001  MAPPING LIST OF RTN. MRGELCO1 12=16=62
O MAP< SGMT XR
001  SEG) = 1
@ SEG2 = 2
002 CODE =
O POJL = 7
003 = 1
O
PAGE 001 MARKER LIST OF RTN, MRGELCO1 12-16=62
O MRK < PREDECESSOR MARKER
000 MRGELCO1
O 001 T
002 DD
@ 003 T * POOLUOL
004 T *  GW
O 005 T « TC
006 T * L
O 007 T * TA
008 T * T8
O 009 T * R - ]
<

Figure A-4. Tag Edit, Mapping List, and Marker List Exhibit



SECTION:

UNIVAC III SALT Appendix A

UP- PAGE:
2558 9

20000 (R¥) CHIEF READYx*
gogpe(@B> L

ggoee(2@) US SALT 02900.
@8266(@1> %A SALT 0203 29900 277117
T CH FE SER

1 04 91 21

1 g4 B2 2

1 g4 5 gz

i g3 04 B3

1 24 27 B4

{ 83 28 04

1 94 @9 25

1 B3 08 25

1 g4 11 @s

! g3 18 ge

1 B4 15 27

! 23 14 a7

b3
p8272(@1) SA 1.

P8273 (B1) DATEx
g1y 12-14-62.

28275 (21> NAMEx
(1> MRGELCZI1.

28290 (81> NAMEx

Q1) ++++++++.
28292(2%> /H TERM SALT eeeex
28293(AB> /H RUNS COMPx*

PP2E8 (82> CHIEF READY*

0000a (48> L

oveg@(ng> US TPTOPReglezeeg.

28318(@1) $A TPTOPRgloeee eeeee 22123

T CH FE SER
1 P4 w2 gl

4 @6 @1

*

P8326(@1> SA 1.

gez2z (1) /H MBC C22202%

28323 (21> $0 8 LPI 1! X !5 FORMx*
(g1> SO OK.

28325 (1> $0 EOF EOR«*
(p1) SO TR,

pR328(@28) /H TERM TPTOPR@!2000*
p8328(2@>) /H RUNS COMP*

Figure A-5. Typewriter Message Log



APPENDIX B. FORM FIELD SUMMARY



The Form Field with its fifty three possible entries is the heart of the Symbolic Assembly
Language Translator (SALT) system. The forms are grouped by usage and are illustrated
assuming the programmer is using both Data Processing Library and the Executive Routine.



4VvS III SVAINN

CLASSIFI- | FORM CONTENT FIELD OBJECT CODE COMMENTS
CATION FIELD
INSTRUCTION| AAAA i/a, x, op, ar/xo, m, See Appendix C INST in implied address.
DATA DCML s d d d d d d , s d d d d d d D in |mp||ed address
DESIGNATION abbreviation.
d d d d d d] Two object code words result.
DDML sdddddddddddd, s d d d d d d| DD in implied address
abbreviation.
. B in implied address
BINY |[sbbbbbbbbbbbbbbbbbbbbbbbb,sbbbbbbbbbbbbbbbbbbbbbbbb abbreviation.
DB in implied address
DTOB sddddddddd, sbbbbbbbbbbbbbbbbbbbbbbbb abbreviation.
Max d = 16,177,215
OB in implied addre
DTOB s0 0000000, sbbbbbbbbbbbbbbbbbbbbb bbb e viesion oo
A in implied address
ALPH saaaa, < a a a a abbreviation.
s{aaaa) , Use parentheses with
DATE saaaa, s a a a a May be replaced by OCS.
ADDRESS s ina Tine f . . . . . Address of first line in
R ING GAD tag naming line for which address is desired b<—IR(4 bits)=»bbbbb <——15-bit address —————| segment containing tag.
LOCA tag naming line for which address is desired b~=IR(4 bits)=» bbbbb«——15-bit addres s ——————p Address of tag.
MAPS SEGi, = j, . .. (see Section 2) none Assign index register,.
EQUL name = name none Equates tags.
Equates index register plus
E i =
QDX IR + relative address = tag 1, none decimal address to a tag.

s = sign

d = decimal number

b = binary number

o = octal number

a = alphanumeric character

Table B-1.

Form Field Summary

8SS¢T

-dn

‘39vd

g xtpuaddy

INOILD3S



T[> »n
>|lm m
213 9
my =
a O
[SR 4

o VI
w
c

D

N

[9))

wn

oo

CLASSIFI- | FORM CONTENT FIELD OBJECT CODE COMMENTS
CATION FIELD
Coding segment areas are
AREA AREA n, n words of memory reserved accessed by tag.
STORAGE Pool segment areas are
accessed by $Tn.
CONTROL . . Line addressing this word
WORD INAD i/a, x, tag, b=¢—IR(4 bits)—=bbbbb <=— 15-bit address—» requires i/a of IA.
. . . . Line addressing this word
FSEL x, Ibb, rbb, m, A=<—IR(4 bitsy»5 bits+»=5 bits+><*10 bit address requires i/a of FS.
Addressed by an ICX
XMOD comparison-amt, : increment, s<—]5-bit comp.amt. =9 bit inc. amt. - instruction.
S, Sn, 0, da,dso L, .
SGMT 17 °2 1" 72 none Defines segment.
OBJECT
PROGRAM N Defines location of library
LAYOUT SGRT m " Segn,  S4, Spre e none routine's segment.
LOAD n, successor, none Defines load.
Calling statement.
MACRO- MCRO macro-name, p1, Pore s Lines of coding defining the macro-instruction.| to bring associated object
INSTRUCTION code into the program.
Sentinel line starting a
MCDF none macro-instruction definition.
MCND none Sentinel line ending a
macro-instruction definition.
nee Coding f tandard lib di
ROUTINE SUBR routinesname, p,, py, . . ., ° |ngfor;:1r:m2r;e::rspelcil;cairc);fcilgﬁor ne Subroutine calling statement.
SLCT configuration name, none Selects parts of a subroutine.
Assigns index registers
DX Py Poree oy
IN 1" P2 none required by a subroutine
= number

= sign

= octal

n
s
x = not relevant
o
b = binary bit

Table B-1.

Form Field Summary (Cont.)

41VvS III SVAINN



1IVvS III DOVAINN

CLASSIFI- | FORM CONTENT FIELD OBJECT CODE COMMENTS
CATION FIELD
ROUTINE CONE Myr Ngrngee.n none Defines a specific configuration
(CONT.) (n= part numbers in order of occurrence) of coding from a subroutine
Assigns a part number to a
PART | part number assigned in tag field none section of a subroutine
Used for memory allocation
MAXM | boundary none by-SORTZZ.
Furriishes Program starting
283?28”‘ STRT | the tag of the program starting line none point for Executive Routine
L
Furnishes address of the first
OVER [ the tag of the first line of overflow coding none line of unexpected overflow
coding for Executive Routine
» . . Furnishes address of the first
INOP the tag zf ;he fllrs‘r I|I-'.:ie of coddln.g f; be hone line of invalid operator
executed if an invalid op-code is detected coding for Executive Routine
function. address Used in requesting overlays,
XLOC | (see Apl;endix N)' l«—9 bit function code—twe—15-bit address—| ferminations; and informational
memory dump.
L Closes a list of TCON
STOP only the sign is relevant statements
XFAD | f address, le—©6 bit file #—s-<——15-bit address—— Used in requesting
! memory dumps.
Ext | 3-bit Used in requesting
XLST f/TYPE, Status, tag, il | Status 15-bit address typewriter or input-
e Code output action,
h . . .
n, i/a, tag of third line of the packet ZC ulrlc_xcfe(r:sd OpTCZde bit add Requt:rse:i 'rihrere ll:k:id fines
nre
TPAK . t, tag of the first line of the indicator coding, og Code] # Tabs 15-bit address equesting
0 0 typewriter action.
TCON 0«=1/0 channe| #—#~15.bit address ———| Used in requesting multiple
n, op, m, 7-bit message typewriter action.
n = number Table B-1. Form Field Summary (Cont.)
f = file number

m = address

Lo
0
h
N
un
w
oo
'U}U’
> m
o
o3 O
mio 2
3 O
w &z
>
w




CLASSIFL-

FORM

R »n
>>%>m
olgS 0
m| o 3
-
o 2
o
EN s f
tw
c
Ry
[N
wn
n
oo

CONTENT FIELD OBJECT CODE COMMENT
CATION FIELD ° s
PROGRAM i program-name (2 alphanumeric words) t Five word load identifier
CONTROL LDID load-name, 0 0 0 0 is created.
(CONT.) 2 load-name (2 alphanumeric words) z
i i i Used in requesting input-
n, i/o func'r.lon fode,'oddres‘s (-not decnmt:l) 00000 /o 15-bit address autput.
XP AK f, tag naming first line of indicator coding . code ) . .
, Gen file # — 15-bit address »| Requires three lines connected
next packet’s address. ) 15-bit address - by hyphens
di . )
I0FS n, i/o function code, address, 00000~=i/6 code—<—15.bit address—s| 00" ':ff‘;ii""g input
SCAT word-count, address, <«—9-bit count«—15-bit address —————>n Used by —SER3ZZ.
XFRE f,f., 0000<+—6-bit—=000000000¢—6-bit—>
12 file # tile #
Used to assign UNISERVO ilIA
tape units for Sort,Merge,
SER3 f, channel, # servos, servo-names, see Appendix I, Table I-3 Input-Output Routines,
Diagnostics, and Own-Code.
Used in own code for assignment
SER2 f, # servos, servo-names, see Appendix I, Table I-3 of UNISERVO IIA.
; Used in own code for assignment
PNCH f, channel, see Appendix I,Table I-3 of 80-Column Card Punch.
Used in own code for assignment
RDER f, channel, see Appendix I,Table I-3 of 80-Column Card Reader.
. Used in own code for assignment
PCH9 f, channel, see Appendix I Table I-3 of 90-Column Card Punch.
RDR9 f . . Used in own code for assignment
¢ channel, see Appendix I Table I-3 of 90-Column Card Reader,
Used in own code for assignment
PRNT f, channel, see Appendix I, Table I-3 of PRINTER.
. Used in own code for assignment
PAPT f, channel, see Appendix I, Table I-3 of PAPER TAPE UNIT.
TAPE f, file id, channel, servo-type, 5-word tape packet in exec.area Used for own i/o

routines.

n = number

f = file number

Table B-1.

Form

Field Summary (Cont.)

L11VS 111 QVAINN



APPENDIX C. INSTRUCTION SUMMARY



UNIVAC III SALT

SECTION:
Appendix C

2558

PAGE:
1

APPENDIX C. INSTRUCTION SUMMARY

This appendix summarizes the SALT Assembly instruction operators. The following information is

given for each operator.

Octal Operator: This entry gives the machine code equivalent of the instruction operator, written

as a two-digit octal number.

Operation: This entry is a symbolic representation of the operator’s function.

Format: This entry prescribes the acceptable formats for instruction statements using the opera-

tor. The following conventions apply to this entry,

(1) Upper-case designations should appear as shown.

(2) Lower-case designations represent generic terms which must be supplied by the pro-

grammer,

(3) Where two or more bracketed designations are listed, any one, or none, of the

designations may appear in the instruction statement,

(4) Where two or more designations in parentheses are listed, one of the designations listed

must appear in the instruction statement.

Thus, an instruction having the format entry:

la,1 ¢ (d,)
L, 1T (e

may appear in any of the following six forms.

Notes: This entry refers to any special considerations involved in writing the instruction state-

ment, and to the indicator lists which follow the summary of instructions.



SECTION:

! UNIVAC IIT SALT

Appendix C ;
PAGE: UP-
2 ! 2558 l
OPERATOR OPERATION FORMAT NOTES
sALT|ocT
OPERAND TRANSFER
L 12 | (m') —= ARi [IA, 1 Ix 1] op, ar, m,
LCS | 13 | —(m')—>ARi [(Fs,1 [,]
EXT | 14 | Extract (m') —~ARi [,]
ST 10 | (ARi) —>m' [IA] [ x, 1 op, ar, m,
stcs | 11 | —=(ARi) —=m' .1 1,1
ARITHMETIC

Decimal
A 20 | (ARi) + (m') —>ARi [IA, 1 [x,] op, ar, m,
AH | 22| (ARi) + (m')=—> ARi' [Fs,1[.,] a
s 21| (ARi) - (m') —ARi [.]
SH 23| (ARi) - (m') —=ARi' a
M 30| (m") x (AR1)==AR2, AR3 L1A, 1 [x, ] op,[ar, 1 m, b
D 31| (AR1, AR2) + (m'); quotient —AR2, [, 1 [, ] [, 1]

remainder—»AR1 )
Binar
BA | 24| (ARi) + (m') —ARi (1A, 1 [ x, ] op, ar, m,
BAH| 26 | (ARi) + (m') —=ARi' [FS, 1 [, ] a
BS | 25| (ARi) - (m') —ARi (.1
BSH | 27 | (ARi) - (m') —=AR{' a

COMPARISON
C 54 | (ARi) : (m') [1A,) [ x,] op, ar, m, d
CA | 55| (ARi) : (m') [Fs, 11, d
cOoNE| 57 | 1-bits (ARi) : TI-bits (m') [,] e
czro| 56 | 1-bits (ARi) : 0-bits (m') e
SHIFT
SR 40 | Shift right decimal (ARi) [IA, 1 [x,] op, ar, (sc,)
SL | 41| Shift left decimal (ARi) t,1 [,1 (m,)
SAR | 42| Shift right alphanumeric (ARi)
SAL | 43| Shift left alphanumeric (ARi)
SBC | 44| Shift binary circular right (ARi)
CONVERSION

ATDl 72| (m* = 2, m' - 1, m')—=ARi, ARj LIA, ] [x,] op, ar, m,
DTA| 71| (ARi, ARj)=—>(m' - 2, m' - 1, m") (,1 0.1
ZUP] 73| Zero suppress (m')—»ARi

Table C-1,

Instruction Summary



Table C-1.

Instruction Summary (continued)

SECTION:
Appendix C
UNIVAC IIT SALT Rl
2558 ‘3
OPERATOR OPERATION FORMAT NOTES
SALT lOCT
LOGICAL
SUP | 15 | 1-bits (m') —»ARi {IA, 1 [x,1 op, ar, m,
ERS | 16 | 0-bits (m') —ARi [Fs, 10,1
.1
LOGICAL BRANCHING
TEQ| 60 | Test equal indicator: if set, m'—CC; | [ 1A, 1 [ x,1 op, [,] m,
if reset, (CC) + 1—»CC [, ] [, ]
THI | 60 | Test high indicator: if set, m' —CC;
if reset, (CC) + 1—»CC
TLO| 60 | Test low indicator: if set, m'—»CC;
if reset, (CC) + 1—»CC
TUN]| 06 | m'—» CC
TPOS| 60 | Test sign of ARi: if +, m'—»CC; LIA, 1 [x,] op, ar, m,
if —, (CC) + 1—CC L,1 [,
TR | 07 | (CC/MAC) + 1—»m' [1A, ] [x, ] op, [ cc/mac, ] m, f
m' + 1—=CC .1 [,] [ . Thl 2
SENSE INDICATOR
SSI | 62 | Set sense indicator [,110x, 1 op, inde, [m, ] Tbl 3
RSI | 61 | Reset sense indicator .1 {.]
TSI | 60 | Test sense indicator: if set, m'—>=CC;| [ IA, 1 [ x, ] op, indc, m,
if reset, (CC) + 1—CC (,1 (,1
INDEX REGISTER
LX | 51| 15LSB (m') == XOi [IA, ) [ x,] op, xo, m,
STX| 50 | (XOi)—=15LSB m' .1 [,
IX | 52] (x0i) + 9LSB (m') —=XOi
ICX | 53| (X0i) + 9 LSB (m") —XOi;
(X0i) : bits 10 - 24 (m") d
INITIATE INPUT-OUTPUT FUNCTION
IOF | 70 (m*) = channel standby [1A, 1 [ x, 1 op, channel, m, Tb! 2
location; set standby-location (1 [.]
interlock indicator ! '



SECTION:

Appendix C
AoendinC | | UNIVAC III SALT
4 | 2558 ;
OPERATOR
SALTTOCT OPERATION FORMAT NOTES
INPUT-OUTPUT INTERRUPT
TIO | 64 | Test I-O indicators: [ 1A, 1 [ x, ] op, channel, (indc,) Thl 2
if set, (CC) + 1—CC;
if reset, (CC) + 2—=CC [ I (m, ) Tbi 4
RI0O | 65 | Reset 1-O indicators
PIO | 62 { Set inhibit 1-O interrupt L,10,7o0p, [,11[m]
indicator [ .]
AlO | 61 | Reset inhibit I-O interrupt
indicator
TIOP} 60 | Test inhibit |-O interrupt
indicator:
if set, m'—=CC;
if reset, (CC) + 1—CC
PROCESSOR-ERROR AND CONTINGENCY INTERRUPT
TCl| 64| Test contingency indicators: LIA, 1 Dx, ] op, [3, 1 (indc,) g
if set, (CC) + 1—=CC;
if reset, (CC) + 2—>CC [,] [, ] [,1(m) Tbl'S
RCl| 65| Reset contingency indicators
TPE| 64| Test processor-error (1A, ] [x, ] op, [4,] (indc,) h
indicators:
if set, (CC) + 1—CC; t,1 .1 [,1(m, )
if reset, (CC) + 2—»CC Thl 6
RPE| 65 | Reset processor-error
indicators
CONSOLE TYPEWRITER
ACT | 66 | Activate console-typewriter [, 70, ep, [,11,]1
keyboard
RT | 01 (ARi) + (TBR)—= AR L, 0,1 0p, @, [,
WT |02 | Typewriter on-line: 1 character [I1A,] [ x, ] op, character, m, Tbl 7
(m')—TBR; (CC) + 2—CC (,1 [,
Typewriter off-line:
(CC) + 1T—»CC

Table C-1.

Instruction Summary (continued)



| SECTION:

Appendix C
UNIVAC III SALT >
2558 g
OPERATOR OPERATION FORMAT NOTES
SALTIOCT
MISCELLANEOUS
NOP] 00 | No operation {,10.,7ep, [,110,]1
stMc| 04 | (CC/MAC)=—>m' [IA,1 [ x,]1 op,[ cc/mac, I m, f
S R T SR Tbl 2
sTCR| 05 | (TCWRi)—>m" [1A, ] [x, ] op, tewr, m,
[,1 [,] Tbl 8

WAIT| 77 | m'=—> CC; Stop Central 1A, 1 [x, 1 op, [ ,]1 m,

Processor [,] [,]
DIS | 03 | (m')—> Memory-information (1A, 1 [x, 1 op, [,]1m,

display .1 1,1
LT | 76 | (Clock)=>ARi; valid time: [, [,]op,ar [,]

(CC) + 2==CC

invalid time: (CC) + 1—»CC

Table C-1. Instruction Summary (Continued)
NOTES:

a. For one-word operands, i, i', and the ar designations are as follows:

i i’ ar designation
1 2,3, 0r4 12, 13, or 14,
2 3or4d 23, or 24,
3 4 34,

Cannot be 4 - -

For multiword operands, i must be 1 and 2, and i' must be 3 and 4. The ar designation must

be 1234.

b. If the ar designation is omitted or is left blank, SALT will supply 123.

c. If the ar designation is omitted or is left blank, SALT will supply 12.

d. If >, high indicator set; if <, low indicator set; if =, equal indicator set.

e. If =, equal indicator set; if #, high indicator set.

f. If the cc/mac designation is omitted or is left blank, SALT will insert 14, specifying
the control counter (CC).

g. If the ¢lass designation (3,) is omitted or is left blank, SALT will insert 3.

h. If the class designation (4,) is omitted or is left blank, SALT will insert 4.



SECTION:
Appendix C

|
PAGE: |
6 ?

L UP-
2558

UNIVAC III SALT

Table C-2.

CC/MAC - INPUT-OUTPUT CHANNELS

DESIGNATION

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

UNISERVO II A, Read-Write
UNISERVO IITA, Additional Write
UNISERVO IIIA, Additional Read

Control Counter (CC) [TR, STMC]
Memory-Address Register (MAR) [TR, STMC]
Input-Output Channels [IOF, TIO, RIO, TR, STMC]
UNISERVO IIIA, Basic Write
UNISERVO IIIA, Basic Read

W N O W N -

14
15

N O NN B W

—_—
w N — O

Table C-3.

SENSE INDICATORS [RSI, SSI, TSI]

DESIGNATION

Sense
Sense
Sense
Sense
Sense
Sense
Sense

Sense

Indicator
Indicator
Indicator
Indicator
Indicator
Indicator
Indicator

Indicator

0 NN RAEWN -

W N O B W N -




UNIVAC III SALT

SECTION:
Appendix C

| PAGE:
2558
|

Table C-4.

INPUT-OUTPUT INDICATORS [R1I0, TIO]

INPUT-OUTPUT UNIT

UNISERVO | caro | carp TR PT‘APPEER INDICATOR DESIGNATION
TILA | JTA | PUNCH [READER oonen
X X X X X Standby-location interlock 1
X X X Successful completion 2
X X Initiation 2
Error A 3
Busy 4
Error B 5
X X X X X Data error 5
End-of-tape warning 6
X Out-of-paper warning 6
X X Operator oversight 6
X Greater-than-720 error 6
X X X X X Fault 7
X Wired-stop character 7
Table C-5. CONTINGENCY INDICATORS [RCI, TcCI]

CONDITION

DESIGNATION

Arithmetic overflow, clock power disrupted

Invalid operation code

Typewriter interrupt (character typed in or out)

Keyboard request (KEYBOARD REQUEST button pressed)
Keyboard release (KEYBOARD RELEASE button pressed)
Contingency stop (PROGRAM STOP button pressed)

o bW N~




SECTION:
Appendix C

UNIVAC III SALT

PAGE:

8

uP-
2558

Table C-6. PROCESSOR-ERROR INDICATORS [RPE, TPE]

DESIGNATION

MEMORY-ADDRESS ERRORS

Transferring operand to memory

Central Processor 2
Input-Output Channel
UNISERVO IIIA, Basic Write 12
UNISERVO IIIA, Basic Read 3
General-Purpose 1 13
General-Purpose 2 23
General-Purpose 3 123
General-Purpose 4 4
General-Purpose 5 14
General-Purpose 6 24
General-Purpose 7 124
General-Purpose 8 34
UNISERVO IIA, Read-Write 134
UNISERVYO IITIA, Additional Write 234
UNISERVO ITITA, Additional Read 1234
Reading operand from memory 9
Reading instruction from memory 1
MODULO-3 ERRORS

Reading operand from memory 5
Reading TEQ, THI, TIOP, TLO, TPOS, TR, TSI, TUN, or WAIT from memory 58
Transferring operand to or from memory 6
Adder output 7




SECTION:

UNIVAC III SALT | Appendix C

UP- PAGE: 9
2558

Table C-7. CHARACTER TO BE TYPED DESIGNATION
Bits 24 through 19 1
Bits 18 through 13 2
Bits 12 through 7 3
Bits 6 through 1 4

Table C-8. TAPE CONTROL-WORD REGISTERS DESIGNATION

UNISERVO IITA, Basic Write
UNISERVYO IIIA, Basic Read
UNISERVO JIITA, Additional Write
UNISERVO TIIIA, Additional Read

—_— N W A




APPENDIX D. EXECUTIVE AND BASIC AREAS



. SECTION:

UNIVAC III SALT | Appendix D

UP- "PAGE:
2558 1
|

APPENDIX D. EXECUTIVE AND BASIC AREAS

A. THE EXECUTIVE AREA

The first 44 words of every program are reserved to contain information and storage for

ise by the SALT executive system. These 44 words, known as the executive area of the program,
will appear in segment one preceding all other coding that may be included in the segment. Some
of the information contained in this area is supplied by the program through the use of several
SALT forms. The remainder of the information is supplied by the SALT executive system.

The addresses indicated below are relative to the first word of this area within the program:

ADDRESS CONTENTS

0 Address to which control is to be given at the start of the program. This
address is supplied by the STRT form statement.

1 Program relative address of the segment containing the starting address.
This is loaded into IR1 by the executive routine before transferring control
to the start of the program.

2 Reserved for use of the executive routine.

3 Address to which control is to be given to handle special overflow. This
address is supplied by the OVER form statement.

4 Address to which control is to be given if there is an occurrence of an
invalid operation code. This address is supplied by the INOP form
statement.

5 Location which will receive the contents of Index Register 1 upon interrup-

tion for unexpected overflow or invalid operation code.

6 Location at which the address where processing was interrupted for
invalid operation code or unexpected overflow.

7 Location which holds the re-entry address at time of interrupt.

8-11 Storage for the contents of Arithmetic Registers 1, 2, 3, and 4 respectively,
that this program is interrupted and control has been given to another.

12 Storage for settings Hi, EQ, LO indicators. Actually only two octal
positions contain useful information. Bit positions 1-3 indicate an equal set
by the value 001; otherwise, they are 000. Bit positions 13-15 reflect

the indicator setting with the following values:

High = 000

Equal = 001

Low =010
13-27 Storage for the contents of Index Registers 1 through 15 during interruption.
28-35 Storage to indicate sense indicator settings during interruption.
36 Contains instruction which will reset input-output inhibit indicator.

(continued on the following page)

Table D-1. Executive Area



SECTION:

|
1
Appendix D }

A UNIVAC III SALT
2 ‘ 2558
i
ADDRESS CONTENTS
37 Contains a transfer instruction to provide the re-entry address of a program.
38-39 Contains external program identification of this run, assigned at assembly time,
rrs0: Rerun and servo numbers.
41-43 Contains external program identification of the next run.
44 Beginning of tape control word packets (five words per packet.) Word zeroof the
last packet has a minus sign. If there ate no packets, word 44 contains
minus binary zeroes.

Table D-1. Executive Area (continued)

Immediately following the above area, a five-word tape packet appears for each tape file in the
program. The tape packet has the format:

WORD CONTENT
1 Four-character alphabetic file identifier.
2 Six-character decimal file date.
3 Six-character decimal number of the form t x 0 rrr, where
t is 2 for UNISERVO IIA
t is 3 for UNISERVO IIIA
x is 1 for a read channel
x is 0 for a write channel
rrr is a reel count
4 Bits 19-24 contain the numeric file designator in binary,
Bits 1-18 contain a binary block count.
5 A binary tally of the number of errors encountered in processing the file.

Table D-2. Tape Pocket




SECTION:

UNIVAC III SALT Appendix D

UP- PAGE:
2558 | 3

B. COMMUNICATION WITH THE EXECUTIVE ROUTINE (THE BASIC AREA)

The lowest order of memory has been reserved for use by the Executive Routine in communicating
with all programs that may be sharing the computer. It is often referred to as the ‘‘basic area’’ or
low order memory location. The words in this area are referenced by source program instructions
through use of the $LOCn expression. A chart of their program relative addresses and initial
contents follows:

ABSOLUTE LOCATION CONTENTS EXPLANATION
00000 Binary Zeroes Transfer to other routines,

00001-00015 Binary Zeroes Line 00001 leads into Executive Routine.
00016 Binary Zeroes Storage for CC upon processor-error interrupt.
00017 0, TUN, , EPECONT Transfer to processot-error control.

00018 Binary Zeroes Storage for CC upon contingency interrupt.

00019 1A, , TUN, , 53, Transfer to contingency control,

00020 Binary Zeroes Storage for CC upon I/0 interrupt,

00021 TUN, , INTER, Transfer to synchronizer control.

00022 (INAD: , , LISTER), Address of entrance to Executive Routine.

00023 (INAD: , , LOCATOR), Address of entrance to Executive Routine,

00024 (INAD: , , MEMDUMP), Address of entrance to Executive Routine for
memory dump or rerun.

00025 (INAD: , , REENTRY), | Address of entrance to Executive Routine for
re-entry.

00026 (INAD: , , LPRELAB), Entrance to Executive Routine.

00027-00030 Binary Zeroes For use of the Executive Routine

00031 (OTOB: -0), Contents of current re-entry line (set initially
to minus zero).
00032 (LOCA: Y2), Address of current re-entry line (on re-entry list).
00033 (LOCA: Y3), Address of re-entry list,
Legend: CC = Contingency Control 1/0 = Input-Output

Table D-3. Basic Area



SECTION:

Appendix D

PAGE:

4

| 2558

c
v

UNIVAC IIT SALT

ABSOLUTE LOCATION

CONTENTS

EXPLANATION

00034

00035
00036

00037-00039
00040

00041-00045
00047

00048

00049
00050

00051
00052
00053
00054

00055

00056

(INAD: , , INFILED),

Binary Zeroes

Contingency Indicator
Flag

Binary Zeroes

(LOCA: RMEMTAD),

Binary Zeroes

(INAD: , , INFILE2),

(LOCA: RMEMTA2),

(LOCA: RIOTYTA),
(LOCA: FIDBLK),

Binary Zeroes
Binary Zeroes
(INAD: , , CONTING),
(INAD: , , CBITODA),

(INAD: , , CDALPTBI),

(INAD: , , CDBITOCT),

-

Address of internal file designation
table (Part I)

Last clock reading

Minus if the indicator is set; plus if
not set.

Address of memory routine designation
table (Part I).

For use of utility routines.

Address of internal file designation table
(Part II).

Address of memory routine designation
table (Part II).

Address of input-output type table.

Address of program/load ID block and
facilities list.

Working storage for Executive Routine.
Working storage for Executive Routine.
Contingency base to entrance.

Entry to a subroutine for conversion of a
binary word to alpha and decimal conver-
sion of a 19-bit value,.

Entry to a subroutine for conversion of
four characters of alpha to binary.

Entry to a subroutine converting a word
of binary information into octal expressed
in UNIVAC III alpha code (six bits per
character).

Table D-3.

Basic Area (continued)




APPENDIX E. TYPEWRITER CONVENTIONS



SECTION:

UNIVAC III SALT Appendix E

UP- PAGE:
2558 1

APPENDIX E. TYPEWRITER CONVENTIONS

This appendix supplements the material given in subsection 4-E-1, Typewriter Conventions, and
is a further explanation of the flag symbols and classification codes used in the SALT system.

As mentioned previously, each message originated by SALT, the input-output routines, or the
object programs, is preceded by a message code which indicates the kind of information, and
whether an operator reply is required. This message code is two to four characters in length.
Two characters of the message code denote a flag symbol, followed by a classification code.
Longer message codes can result from the addition of channel and tape unit identification.

A. TYPE-OUTS

Three flag symbols and eleven classification codes have been provided for type-outs. These,
together with their conventional meanings, are listed in Table E-1. The type-out codes are
not examined or interpreted by the SALT assembly; their purpose is to facilitate analysis of
the log tape and to assist the operator in the recognition of system conditions. The user may
redefine or add to existing flag symbols and classification codes.

B. TYPE-INS

1. Solicited Type-Ins

Solicited type-ins are those requested by any of the possible originating sources. A type-
out preceded by the $ flag symbol indicates to the operator that a reply is being solicited.
The type-in is controlled by the SALT system, its format and other specifications are
designated in the TPAK and TCON lines supplied by the originating program. (Refer to
Section 4-G.) The classification code symbols (refer to Table E-1) are recommended for
use by all programs.

N

Unsolicited Type-Ins

Unsolicited type-ins are made by the operator when he wishes to intervene in the opera-
tion of the system, in order to perform certain specific functions (for example, run initia-
tion or termination). The operator presses the KEYBOARD REQUEST button, causing

a five-character time code and the routine’s designation to be typed out. The operator then
types in a one-character requesting code (see Table E-2). The code is interpreted by the
SALT Executive Routine, which then initiates further type-ins and type-outs as required.
Since the requesting codes are interpreted by the Executive Routine, additional requesting
codes cannot be defined by the user unless modifications are made to the SALT system.



SECTION:

!

Appendix E

PAGE:

2

Tup-
| 2558

UNIVAC III SALT

ENCODED MESSAGES

TYPE OF CODE

CODE CHARACTER

MEANING

FLAG: TYPE-OUT

REPLY SOLICITED
NO REPLY EXPECTED

P ACKNOWLEDGE OPERATOR POSTPONEMENT *
FLAG: TYPE-IN ) SOLICITED REPLY

u UNSOLICITED TYPEIN
CL ASS CODE: A ALLOCATION INFORMATION
TYPE-OUT C COMPUTER MALFUNCTION

OR D DATA ERROR

TYPE-IN E END OF PROGRAM

H HISTORICAL DATA

J JETTISON OF RUN

o OPTION TO BE SELECTED

P PROGRAM CONTROL ERRORS

S START PROGRAM

T TYPEWRITER DATA

0-9 POSTPONEMENT NUMBER

*Classification code gives postponement number assigned by SALT.

Table E-1. Flag Symbols and Classification Codes




SECTION:
! Appendix E

UNIVAC IIT SALT

up- PAGE:
2558 3

CODE CHARACTER MEANING
c THE CLOCK HAS BEEN RESET
E END TAPE LOGGING
F CHANGE FACILITY STATUS

! IGNORE REQUEST

L LOCATE A PROGRAM

P RECALL A POSTPONED MESSAGE *

R REWIND LOG TAPE AFTER WRITING SENTINELS
S START LOGGING ON TAPE AGAIN

T TERMINATE A PROGRAM

*Second character typed in gives postponement number assigned by SALT.

Table E-2. Unsolicited Type-Ins



APPENDIX F. DATA FILE CONVENTIONS



- SECTION:

UP- PAGE:
2558

UNIVAC III SALT ; _ Appendix F
1

APPENDIX F. DATA FILE CONVENTIONS

This appendix describes the conventions and tape formats for UNISERVO IIIA data files.
A. LABELS

The first block on a tape reel and in a tape file must be a 12-word label block of the form
shown in Table F-1.

B. DATA BLOCKS

The first and last words of each data block must be data descriptor words, as shown in Table
F-1. The maximum acceptable data block size is 4096, including data descriptor words.

C. END-OF-REEL SENTINELS

Each reel of a multireel file except the last, is terminated by two one-word end-of-reel
sentinel blocks (refer to Table F-1), which immediately follows the last data block.

D. END-OF-FILE SENTINELS

The last data block of a file is followed by two one-word end-of-file sentinel blocks of the form
shown in Table F-1.

E. BYPASS SENTINELS

When a file includes information that is not part of the data proper (for example, a rerun
memory dump), the non-data blocks of the file must be preceded and followed by two one-word
bypass sentinel blocks. (Refer to Table F-1.) The information to be bypassed may appear at
any place within the file.



SECTION:

_Appendix T ! UNIVAC III SALT
2| 2558 |
WORD | SIGN CONTENT COMMENTS
LABEL BLOCK
0 - 0---0 Minus indicates non-data block.
Binary 0’s indicate label block.
1 + aaaa Alphanumeric file 1D
2 + Date of cycle All reels of multireel file should
contain same date.
3 + .
000ddd Decimal reel number.
4 4 b---b Maximum block size in binary.
5 + b---b Maximum item sizein binary.
6 * X-==X Unused.
10 t X-=-X Unused.
1 - 0---0 Minus indicates non-data block.
Binary 0's indicate label block.

Table F-1. Data Tape Formats




SECTION:

UNIVAC III SALT Appendix F

UuP- PAGE:
2558

WORD | SIGN CONTENT COMMENTS

DATA BLOCK

0 + bbbbbbbbbbbbeccececcccec Data descriptor word.

b---b = Binary no. of items in block.
c---c = Binary no. of words in block*
Plus indicates data block.

DATA
c-2
c-1 + bbbbbbbbbbbbcccccccecece Data descriptor word, identical to word 0.
BYPASS SENTINEL BLOCK
0 - 0---0 Minus indicates non-data block.
Binary 01 indicates bypass sentinel.
END-OF-REEL SENTINEL BLOCK
10b---b Minus indicates non-data block.
0 - Binary 10 indicates end-of-reel sentinel.
b- - -b indicates the total number of blocks
recorded on this tape (in binary)
END-OF-FILE SENTINEL BLOCK
0 - 11b---b Minus indicates non-data block.

Binary 11 indicates end-of-file sentinel.
b---b = Binary block count includes

all blocks recorded on this tape.

*Including data descriptor words.

Table F-1 Data Tape Formats (Continued)



APPENDIX G. LOG TAPE FORMATS



UNIVAC III SALT

SECTION:

Appendix G

2558

UP- PAGE:

1

APPENDIX G. LOG TAPE FORMATS

Table G-1 illustrates the source code and machine code formats of the TPAKs and TCONs used
by SALT to control logging on the log tape and the console typewriter. Field r of each TPAK
specifies whether the message is to be typed out, recorded on the long tape, or both, The utiliza-
tion of this field and the allocation of a UNISERVO IIIA tape unit to SALT will cause messages
to be placed on the log tape as described below.,

Each message on the log tape is preceded by a three-word TPAK header. The first word of the
header contains a five-digit time code, justified right. The second and third words of the TPAK
header contain the first and second words of the TPAK in machine code format. Refer to Table
G-1,) The following convention pertaining to the second word of the TPAK has been established:
Upon the successful completion of a message directed to the log tape and execution of the
related indicator coding, the SALT Executive System will move the TPAK to the log tape output
area, replacing the 15-bit indicator coding address with the 15 least significant bits of the

word which immediately precedes the first word of the TPAK in memory. Thus, the 15 least
significant bits of this word may contain a binary message code which is defined by the user
and which will facilitate interpretation of the log tape.

If the message consists of a single message unit, the text of the message appears in three-word
packets following the TPAK header. Unused character positions in the last three-word packet
will contain hash.

If the message contains more than one message unit, a TCON header will precede each message
unit. This is a three-word packet, the second word of which contains the TCON in machine code
format. (Refer to Table G-1.) The text of the message unit then appears in three-word packets
following the TCON header. The last message unit packet is followed by a three-word stop
packet, the second word of which is a stop control word in machine code format.

Tables G-2, G-3, and G-4 illustrate the general format of the log tape. They show the label block,
intermediate data blocks, and final data blocks, Each data block comprises 20 three-word items
and two data descriptor words.

An example of the typewriter message log can be found in Appendix A (Figure A-4).



SECTION:

Appendix G | |
e JfUP § UNIVAC III SALT
) T 2sss
| ;
SOURCE CODE FORMAT MACHINE CODE FORMAT
C FORM CONTENT
TPAK n, i/o, tag—1
r, t, tag, (naming the +Annnannppmmmmmmmmmmmmmmm
first line of indicator xxxxQOrrtttiiiiiiiiiiiiiii
coding)
- +nnARNNnppmmmmmMmmMMmMmmmmmmm
TCON n, i/o, tag-1
Metooorossoransacnonanns Blank, if TCON’s nnnnnnn = Binary number of characters
follow, or 0 <n
<128
1/0 civnveeineinenrenes IN for type-in pp = 01
OUT for type-out pp =10
Blank, if TCON’s pp = 11
follow
tag-1 cevoneroniiionns Start of message or mm...mm = 15-bit address of tag-]
TCON list
Foieerenocrnssansnannss TYPE if typewriter rr =01
only
TAPE if log tape =10
only
Blank if both rr=11
Forrereonneronarannonnes Number of tabs ttt = Binary number of tabs
i-c-tag .. Start of indicator ii...ii = 15-bit address of i-c-tag™
coding
xxxx = Routine designation of originator

*Replaced with 15-bit binary message code on tape.

Table G-1.

TPAK and TCON: Source Code and Machine Code Formats




SECTION:
Appendix G
UNIVAC III SALT
UP- PAGE:
2558 3
WORD | SIGN CONTENT COMMENTS
0 - AAAA
1 + LOGT File ID
2 + Date of cycle
3 + dddddd Decimal reel number or spaces
4 + b-----b Block size (62) in binary
5 + b----- b Item size (3) in binary
6 + b-----b Number of blocks in previous log tape or zeroes
7 + AAAA Not used
10 + AAAA Not used
1 - AAAA

Table G-2. Log Tape: Label Block



SECTION:
Appendix G

PAGE: UP-
4 2558

UNIVAC III SALT

WORD | SIGN CONTENTS COMMENTS

n - 0ddddd Time (decimal)
n+l + 1st word of TPAK See Table G-1 TPAK Header
n+2 + 2nd word ot TPAK See Table G-1
n+3 - AAAA

n+4 + TCON See Table G-1 TCON Header
n+5 + Hash

n+6 + Message
ni? |+ Message Message Packet
n+8 + Message

mo| - ARAA STOP-TCON
m+1 Stop Control word Packet
mi2 Hash (close TCON list)

Table G-3.

Intermediate Data Blocks




UNIVAC III SALT

SECTION:
Appendix G

2558

PAGE:

WORD| SIGN CONTENT COMMENTS
n 3rd word of last good item 3rd word of message or STOP — TCON packet
n+1 - P |
n+2 + Hash Sentinel ltem
n+3 + Hash
n+4 + AAAA
n+5 + Hash items like this to end of block
n+b + Hash

Table G-4. Log Tape:

Last Data Block



APPENDIX H. CHARACTER CODE CHART



This appendix explains the coding and sequential values of the various UNIVAC III
characters. The character at the top of each box is the printing character for the printer
and console typewriter except for the space, bell ring, carriage return and line feed,
horizontal tabulate, and form feed, which are nonprinting, Where NP appears on the
chart, the corresponding character code is nonprinting on the printer but the character
in the parentheses will print on the console typewriter, The code in the middle of each
box is the 80-column card code. When boxed, the code is nonstandard and applies only
to the card punch, except for codes 0-3-5-8 and 11-3-5-8, which also apply to the card
reader, The code at the bottom of each box is the 90-column card code. The number on
the left side of each box indicates the octal equivalent of the character,



SECTION:

UNIVAC III SALT Appendix H
uP- PAGE:
2558
00 01 10 1
SPACE & NP (5) NP ($)
0000 |00 BLANK 20 ]12 40 60  [0]
BLANK 0-1.3-5.7 0-1-5-7-9 0-1-7-9
) : * %
0001 | O1 1-4-8 21 12-4-8 41 1148 61 048
1-3-5-7 1-3-7-9 0-1 0-1.5
— (MINUS) . $ , (COMMA)
0010 |02 1 22 12-38 42 11-38 62 038
0-3-5.7 1-3-5.9 0-1-3-5.9 0.3.5.9
0 CARR. RET. & LN. FD. BELL RING +
0011 |03 0 23 12-0 43 1.0
63 48
1- 0-3-7-9
0 0-1-3 1.57.9
1 A J /
0100 | 04 1 24 12.1 4 14 64 0-1
1 1-59 1.35 3.5.7.9
2 B K S
0101 |05 2 25 12-2 45 112 65 0-2
19 1-5 3.5.9 1-5-7
3 C L T
0110 |06 3 26 123 46 113 66 0.3
3 07 09 379
4 D M u
0111 |07 4 27 124 47 114 67 0-4
3.9 0-3-5 0-5 0-5-7
5 E N v
1000 10 5 30 12-5 50 15 70 0-5
5 0-3 0-5-9 0-3-9
6 F 0] W
1001 1 6 31 12:6 51 116 71 0-6
5.9 179 1-3 0-3-7
7 G P X
1010 12 7 32 12-7 5 1.7 72 07
7 5.7 1-37 0-7-9
8 H Q Y
101 13 8 33 128 53 118 73 08
7-9 3.7 3-5-7 1-39
9 I R z
1100 14 9 34 129 5 119 74 09
9 35 1-7 5.7-9
Y APOS. # 55 NP (2) NP (2)
o1 |, 468 25 3.8 3468 75
0-1-3-7.9 0-1-5.7 0-19 0-1-3-9
: NP () HORIZ. TAB. FORM FEED
M0 |16 4538 36 [58] 56 11-58 76  0-5-8
1-3-5.79 0-1-5-9 0-1-3-7 0-3-5-7-9
( NP (ZERO) NP (4) NP (U)
o, 358 37 57 [ 11-3.5.8 77 0-3-58
0-5.7.9 0-1-3-5.7.9 0-17 0-1-3-5
Table H-1. Character Code Chart



APPENDIX |I. CODEDIT LISTING



SECTION:

UNIVAC IIT SALT Appendix

UP- PAGE:
2558 1

APPENDIX |. CODEDIT LISTING

The codedit list, prepared by a tape-to-print computer run, is the primary hard copy document

produced by the assembly. A minimum of typewriter messages are provided by SALT
programming, although the Executive Routine may produce messages as a result of its function

while assembly is in process,

The SALT Assembly has been programmed to correct or overlook many trivial error conditions
which might arise under normal circumstances. However, when an error condition is encountered
during assembly, which cannot be corrected or ignored, the assembly will be stopped and a one-
page message will be printed showing the following information:

m Name of the routine being assembled.

m The time that the assembly was discontinued.
m The date of the discontinuation.

m A description of the error.

. GENERAL FORMAT

There are eight separate categories of entries on the codedit list. The general format of each
line of codedit output is such that it can contain up to 32 words of information. The lines have
been set up so that, usually, an original source code line will be printed in the left 64 print
positions of the printed line appearing opposite the corresponding machine code representation
printed in the right 64 print positions. Each page of the codedit output can accommodate up to
40 listed lines, of which two lines are headings.

The eight categories of entries are discussed below. Charts explaining the exact format of
each machine coded entry on the codedit list can be found at the end of this description.

1. The first two lines on each page of a codedit list are heading lines. They label the following
data as it appears in columnar designation:

(a) First Line

Segment number
Routine name
Current date
Page number

(b) Second Line (field headings)
(1) Soutce code side (alphanumeric)

m Item number (8 chars.)
m Tag (8 chars.)

m Class (1 char.)

m Form (4 chars.)

m Content (39 chars.)



SECTION:

Appendix 1 UNIVAC III SALT

PAGE: CUP-
- 2558

—~
N
4

Machine Code Side (alphanumeric, octal, and binary)

Modification key (1 char. alpha)

Form key (1 char. alpha)

Address (program relative — 5 chars. octal)

Sign (1 char. octal)

Content (up to 24 chars. — octal or alphanumeric)

Line block (3 chars. — decimal)

Line word (2 chars. — decimal)

Machine Code word (generally octal, see chart at the end of this appendix for
variations)

m Error note (4 chars. — alphanumeric)

2. The second category on the codedit listing is the directory information. This is information
placed at the front of the source code card input deck eitherby convention or for convenience.
This category contains:

Label Line

Segment Definition Statements (SGMT)
MAPS Statements

Starting Line (STRT)

INOP Line

NOTE: No machine code will appear opposite these entries.

3. The third category of the codedit listing contains the machine code entries for load identi-
fiers and facility declarations. The entries appear at this point only in the machine code;
they have been separated from their corresponding original source code entries. The
corresponding source code entries can be found in their original input sequence.

4. The fourth category of entries is the listing of original source code and corresponding
machine code representations listed side by side. The sequence of the entries is determined
by the following rules:

m Source code lines are maintained in their original input sequence.
m Machine code representations are listed in the following order:

(a) Facility declarations are sorted into form code order.

(b) All other categories are sorted into segment number, by item number (Dewey
decimal) order.

NOTE: Subroutines and macro-instructions brought into the program from the Standard
Library tape appear in machine code only; there will be no corresponding source
code entries.

5. The fifth section of the codedit list contains a listing of the SALT Error Glossary. This in-
formation is furnished for the convenience of the programmer. They are the same error notes
as explained in Table I-1.



SECTION:

UNIVAC III SALT Appendix I

upP- PAGE:
2558 3

6. The sixth category on the codedit list is called the tag edit list and is one that will be

~1

most useful to Programmers in debugging or operational maintenance of a program. The tag
edit section contains a listing of all tags and local reference points used in the program.
The entries on this list are in alphabetic order according to the tag codes. The following
information is shown:
Address of the tag (program relative — 5 chars. octal)

Index register if EQDX line (2 chars. decimal)

Marker number (3 chars. octal)

* (asterisk)

Tag name (1-8 chars. alphanumeric)

Address of referencing line (program relative — 5 chars. octal)
Map number of the foregoing referencing line (3 chars. decimal)
Address of referencing line (program relative — 5 chars. octal)
Map number of the foregoing referencing line (3 chars. decimal)
Address of referencing line (program relative — 5 chars. octal)
Map number of the foregoing referencing line (3 chars. decimal)

(nr
\r*

. The mapping list follows the tag edit list. This area of the codedit output furnishes

a list for definition of index registers as specified for the coding segments by the MAPS
statements. The following information is furnished by this listing:

w Map number (3 chars. decimal)
® Segment number
u Index register number (2 chars. decimal)

NOTE: There will be a map number for each MAPS statement in the source code. When there
are no MAPS statements present, zeroes will be shown.

. The marker list is the next category and follows the mapping list. This list is required for

definition of the marker numbers indicated on the tag edit list. The following information
is furnished in this section:

m Marker number (3 chars. decimal)
m Marker name (8 chars. alphanumeric)

NOTE: If there are no markers used in the program, three zeroes will appear in the marker
number field, and the source routine name will appear in the marker name.



SECTION:
Appendix I

PAGE:

uP-

UNIVAC III SALT

2558

Any occurrence of the following errors will cause the incorrect line to be replaced with a com-
plete word of octal (binary) zeroes. The octal word portion of the codedit will not be printed.

1
A

The implied representation in this line contained an error.

Too many addends, or addends applied to $LOC, local reference points or $NAMi in a
LOAD Statement.

Invalid class field.
Invalid Dewey item number.

1. Invalid form.
2. More than one MAXM, STRT, INOP, or OVER form in this program.
3. More than one LOAD per segment.

More than 42 facility items. Items in excess of 42 will appear only on the codedit
listing,

Improper hyphen line.

Invalid instruction or IOFS code.

Designation too long ot too large.

Not alphabetic, or improper alphabetic characters.
Not numeric, or incorrect numeric characters.

Item has blank tag field or incorrect tag.

Error in a facility item. The item type (1 through 9) and the error flag will appear only
on the codedit listing,

Variable in subroutine or macro-instruction is missing.

The m specified in a MAXM line is less than that calculated in the assembly. Binary
zeroes are placed in word 14 of the load ID block.

Too many designations.

Too few designations or incomplete designation.

The following errors will cause portions of the final machine code word to be modified or re-
placed by binary zeroes. The octal word portion of the codedit will be printed.

2
3
B
E

More than 75 items in a macro-instruction.
More than 105 variables and parameters.
A register error (bits 11-14 have been made zeroes).

Standard macro-instruction missing.

Table I-1. SALT Error Notes




UNIVAC III SALT

SECTION:
‘ Appendix I

2558

PAGE:

5

H T O R

£ »n X

Defined macro-instruction missing,
Incorrect substitution of a variable.
Part missing.

M address error (bits 1-10 or 1-15 have been made zeroes).

Designation too large, truncated within range.
Subroutine missing.

No map for this segment (bits 21-24 have been made zeroes if this line would have been
mapped).

Incorrect mapping statement (bits 21-24 have been made zeroes if this line would have
been mapped).

Incorrect or ambiguous index register definition (bits 21-24 have been made zeroes).

There are facility declarations and/or executive area forms but no LOAD line for
segment #1, or an error has occurred in the LOAD for segment #1. SALT manuu-
factures a dummy LOAD ID block.

More than 1024 lines in this segment. Segment address is truncated modulo 32,768.

Starred instructions (T10, RIO, 10F, TR, STMC), and unstarred instructions appear in
the same program.

Table 1-1. SALT Error Notes (Continued)



SECTION:
Appendix I

PAGE:

!
| UNIVAC III SALT
|

B. ERRORS THAT WILL TERMINATE THE ASSEMBLY

This section deals with errors which will cause termination of a SALT assembly before assembly
of the source program is completed. These are errors which by their nature cannot permit further
processing of the routine being compiled.

These errors will cause SALT to reposition the machine code and codedit tapes to the end of
the last successfully completed program. A one line error printout will be placed on the codedit
tape and the next routine on the control tape will be assembled normally. If no further routines
are to be assembled, SALT will go to its normal termination. Printouts will be in the following
form:

ASSEMBLY OF ROUTINE XXXXXXXX TERMINATED --- reason ——-

A list of the various reasons and brief explanations of each are noted below.

BLOCK COUNT ERROR FILE nn — A block count error has been detected upon reading a file
previously written, Attempt reassembly.

ID CHECK FILE nn — A file ID block previously written cannot be located upon re-reading.
This may be due to changing tapes and/or servos during assembly.

SEGMENTLIST ERROR — A segment has been defined which has as its predecessor segment
a non-existent segment or a segment which has not itself been defined properly. Correct
source code and reassemble.

MEMORY EXCEEDED — The sum of the length of a given segment plus the starting address of
the segment exceeds the memory of this machine. Correct source code and reassemble.

NO STARTING SEGMENT — No segment in this program has been defined as starting at ZERO.
Correct source code and reassemble.

NO SEGMENT NUMBER SPECIFIED —~ No segment number was written in the item number field
of a SGMT line. Correct source code and reassemble.

ITEM CANNOT BE KEYED — The item number for a source code line is such that it falls into
none of the segments defined by the SGMT items. Correct source code and reassemble.

NO DIRECTORY - The fitst line following the LABEL line of a routine (or its hyphenated
extensions) does not contain the SGMT form. Correct source code and reassemble.

ITEM NUMBER ERROR IN SGMT — The item number written in the content field of a SGMT
line is incorrect (alphabetics, wrong punctuation, etc ).Correct source code and reassemble.

SOURCE ROUTINE MISSING — The routine listed on the ASSEMBLY card is not within the
library into which it was placed. Place the ASSEMBLY card in its correct position on the
control tape for SCS I, check the spelling of the routine name and reassemble.

WRONG ID CONTROL TAPE — The first (ID) block of the tape that SALT assembly is using
as a control tape does not contain ‘‘SCSA’’ in word 1. Place the proper tape on the servo and
reassemble.

WRONG ID LIBRARY TAPE — The first (ID) block of the tape that SALT assembly is using
as a standard library does not contain ‘‘LIBR’’ in word 1. Place the proper tape on the servo
and reassemble,



SECTION:

U N IVAC I[[ SA LT Appendix [

UP- PAGE:
2558

TOO MANY SEGMENT DEFINITIONS — There are more segment statements than can be handled
in memory. Reduce the number of predecessor segments in SGMT and SGRT items and reassemble.

CONTROL WORD WRONG -~ An incorrect word was used in the content field of an ASSEMBLY
card. The only permissible forms are STOP, STAN, and ADDR. Correct SCS I control tape and
reassemble.

ASSEMBLY CARDS HAVE DIFFERENT RTN NAMES — There is more than one ASSEMBLY card
in a library and the routines named in these cards are different. Remake control tape and
reassemble.

NO LABEL BLOCK CONTROL/LIBRARY TAPE — There is no label block (per data conventions) at
the beginning of the control/library tape. Mount correct tape and reassemble.

NOTE:
Errors 11 and 16 will cause SALT to terminate immediately without attempting further assemblies.



SECTION:

Appendix I UNIVAC III SALT

PAGE: UP-
8 2558

Word Construction and Representations of Machine Code When Printed.

PROGRAM OPERATIONS MOD FORM
$24232221 20 1918 171615141312 1110 9 8 7 6 5 4 3 2 1

KEY KEY
INST Al oiAl IR OP CODE AR M
b b o o ol|lb b b b b o o o
IR INST, TUN, Al 1 |1A} IR OP CODE IRO M
IND. INST. b b o o o b o b o o o
TR*, STMC*, IOF* 31 21A1 IR OP CODE CHANNEL M
b b o o o b o b o o o
TPE, RPE, TCI, 31 31IA]lIR OP CODE CHANNEL INDICATORS
TI0* RCI, RIO* b b o o o b o bbb bbbbbbedb
TR, STMC, IOF 71 EHALIR OP CODE FILE M
b b o b o o o b o o o
TIO,RIO 1A} IR OP CODE FILE INDICATORS
71 Flb b o b o o o bbbbbbbbobb
FSEL Al 7]A IR LB (XS3) RB (X$3) M
b o q o q o b o o o
IOFS, XPAK1 1{ 4|{A LINES OP CODE M
PRINTER o o o o 0o 0 o o
I0FS, XPAK1 1] 5]|A uNIT OP CODE M
NON PRINTER b o q o 6 0 0o o o
INAD, SGAD, 1A} IR (BINARY ZEROS) M
LOCA 11 6]b b ole o o o o o 0o 0 o o
SCAT, STOP b - M
CAT, STO 11 8 ol =scaT Count
1} =STOP o o0 o o 0o 0 o o
XMOD 2 9 S Compare Amount (M) Increment or
b o o 0 o o | Decrement o o o
S A.C. A.C. A.C. A.C.
ALPH,LDID A
4 A b A A A A
BINY Al B S
b bbb bbbbbbbbbbbbbbbbbbbibeb
S]OCT. 0.C. 0.C. 0.C. 0.C. 0.C. 0.C. 0.C.
OTOB, DTOB Al ¢ cT I [ oc| | I |
b | CHAR. ©o o 0 © 0,0 0 o©
2
DCML Al b S| DCML D.C. | D.C. | b.C. l D.C. T D.C.
DDML ' b| CHAR dddddd
= = M
XLST 9| cla| FiLE [ “MI=RA=S
o o}l bl b|b © o 0o o o©
XPAK2, XFAD s| k|A FILENO. Y o o 0 0 o
TCON, TPAKI, 1{ L{CHAR. COUNT Ccc):b M
PAPT IOFS; XPAKI1 b o o q 0 0o 0o 0 o
TPAK?2 4| JIA Log Code] Tab Spaces M
b b ° o o 0 o o
XLOC i om 1=LDOFJRECP M
b bbb bbbbbbb ©o 0o 0o o o
XFRE s| N FILE NO. FILE NO.
o o o o
TAPE 3 ol plA FILE NO.
o o
DATE Al sl ALPHABETIC A.C. A.C. A.C.
' b CHARACTER AAA A

LEGEND: b=binary (1bit) o=octal (3bits) gq=quarternary (2 bits) DC=decimal character (4 bits) AC alphanumeric character (6 bits)

Table [-2, Codedit Forms



SECTION:
Appendix I
UNIVAC I SALT o
2558 '
INPUT-OUTPUT FORMS BIT CONFIGURATION
BIT POSITIONS 20 18 |16 12111ad 987 6 4 1
==1
SER3 1st word 1 (ALPHA) Fe olc N [CHANNEL
oo b b bo
SER3 alt. 1st word 1 (ALPHA) Je 1lc Fe CHANNEL
{for file j use) 0o Lo
SER3 Ul U2 U3 violu Fi
2nd word bo bo bo plels 0o
C CHAN
SER 1 d N ‘
ER2 st wor 2 (AL PHA) Fe oo |0 b b b bo
Ul U2 vlolu| Fi
SER2 2nd word oo bo us bo biblb oo
PNCH PRNT RDER 1st word Fe C N [CHAN.
PAPT RDR9 PCH9 T~ (ALPHA) oo |o|b b b bo
PNCH PRNT RDER 2nd word vlio Fi
PAPT RDR9 PCH9 blb °o

DESIGNATION

KEY AND EXPLANATION OF FACILITY DECLARATIONS*

1 = Absolute channel designation
0 = Not absolute channel designation

Fe External file number entered here
Fi Internal file number — will always be zero as SALT output.
Je Related file number specified in line of servos
N The number of units in this file
Type of request: 1 = Servo |l 5 =80-Col. Punch
T 2 = Servo Il 7 = Paper Tape Reader
3= 80-Col. Reader 8 = 90-Col. Punch
4 = Printer 9 = 90-Col. Reader
U 1= UT, U2, U3, are absolute servo numbers
0= U1, U2, U3, are not absolute servo numbers
Un Servo Number
v } = Used by Programmer

0 = Not used by Programmer

LEGEND: b = one binary position (1 bit); o = one octal position (3 bits); ALPHA = one alphanumeric position (6 bits)

Table 1-3. Facility Declaration Chart



O

O

®)

O

O

O

]

O

O

SEGMENT 001

ITEM NO.
-ABEL

TAG
DBO1PSO1

St
52
S3

LoaD1

SALT PARALLEL CODEDIT oF ROUTINE DBO1PSOL DATEDATEDATE
FORM ¢ecesocesversnse s CONTENTooessonsessnanes MF OCTAL SeteessOBJECT CODEsencae
CARD-TO-TAPE RUNJ.READ ALL CARDS
UNTRANSLATED VALIDATE PUNCHING
AND PUT 20 WORD 1TEMS ON TAPE |N
BLOCKS OF 10 ITEMSe
INPUT
ALL DATA CARDS
oUTPUT I
VALIDATED TAPE
SGMT ZER0+00,01,00.00
. SEGL1100+01,00¢00
SGMT SEG2100¢40,00¢
MAPS SEGL1+=1+SEG2+=2+SEGIv=4
LOAD 1¢TH*SNAM1 ¢
SGRT D4SEG1+C*SEG2¢
INOP INVALID¢
OVER OVERFLOW:
2020
2020
0801
PSOl
0000
LOAD
1
00000777
$AAF
00000000
00000000
00006041
+ 00000000
1 0100 0l o1
o4 00 00 ool 00
1 0500 01 o0t
00 00 00 000 00
3 0200 o1 00
000 (e]¢]
- 00000000
2020

001
001
001
001
001
001
001
001
001
o0l
001
001
001
001
001l
ool
001
dotl
001
ool
0014
001

PAGE
BLK WD 0CTAL wp EW

0y
02
03
oy
05
06
07
Og
[ol°]
10
11
12
13
14
15
1Y
17
18
19
20
23
59

0001

27250304
52650304
03030303
46512427
04000000

4224243
00000000

04010021
20000100
04050021
00000000
06020020
00000000

0O ¢ o 0o 00 o0 o o o o o o o o o o o o0 o o0 0o o o0

R
> 2
@
o
mi o
g
[N
o
— "
o t
C
0
'
N
w
wn
oo

NOiLD3S

Figure I-1. Example of Codedit Listing Showing:

Heading Lines, Directory Information,

Load identifiers, aad Facility Declarations.

411VvS I QVAINN



SEGMENT 003

ITEM NO«

004060

TaG
Coneé

Cons

Con9

CONLO

CoNlLl

CoN12

CoNn13

CON14

CoN15

CoNl6

Cont?

SALT PARALLEL CODEDIT o0F ROUTINE DBOLPSOY DATEDATEDA
C FORM oaossacevnennsesesCONTENTesesvcasevocarss MF OCTAL SesseeeOBJECT

CAy29NOA o 00334 0 04 550200
TEQ'CONB+ = TO 1 1 00335 0 04 60 o6
CA¢21NSAY 0 00336 0 o4 550200
TEQ'CON9» 3= TO 2 1 00337 0 o4 60 06
CAv21N4AY 0 00340 0 o4 550200
TEQ'CON10Oe 3= TO 3 1 00341y 0 04 60 06
IA+5¢TUN' vCOUNTER2 $INVALID OR SPEC 1 00342 1 05 06 00
SUP«4+K1As 31 TO AR 4 0 00343 o o4 150004
TUN'CON18» 1 00344 o o4 06 00
SUP+41K2Ar 12 TO AR 4 Q0 00345 o o4 150004
TUN'CON18» 1 00346 0 ou 06 00
SUPIUIK3AY 13 TO AR 4 0 00347 o o4 150004
TUNYCONL8 1 00350 o o4 06 00
CA+3eNUA 0 00351 o o4 550030
TEQ'CON15s 1= TO 9 1 00352 o o4 60 06
CAy3eNSAY 0 00353 0 o4 550030
TEQ+CON16+ 3= TO 8 1 00354 o 04 60 06
CAs31NOA? 0 00355 o o4 550030
TEQ'CON17+ = TO 7 1 00356 o o4 60 06
IA«S¢TUN 1COUNTER2+ 31NVALID OR SPEC 1 00357 1 05 06 00
SUP'UIK6AY 16 TO AR U 0 00360 0 04 150004
TUN'CONL8 1 00361 0 o4 06 00
SUP141K5Ar 15 TO AR 4 0 00362 0 0ok 150004
TUNYCON181 1 00363 o o4 06 00
SUP'UIKY4AY 14 TO AR 4 0 00364 o o4 150004
TUNYCON1B 1 00365 0 o4 06 00
SUP141K9AY 19 TO AR 4 0 00366 0 Ok 150004
TUNYCON18 1 00367 0 o4 06 00
SUPt41KBArY 18 TO AR 4 0 00370 0 o4 15p004
TUN'CON18+ 1 00371 0 ou 06 00
SUP+HIKTAY 37 TO AR 4 0 00372 0 o# 150004

TE

CODEsesvee
00367
00077
oo413
00101
0101
oouo7
00103
00527
00433
0110
00127
oQu37
00127
00443
1010
oo127
00407
00122
00413
1010
00124
00367
00126
00527
1011
00457
00127
00453
00127
0101
o04ud7
00127
00473
00127
o101
00467
00127
oou63

BLK
006
006
006
006
006
006
006
006
006
006
006
006
006
006
006
006
006
006
006
006
006
006
006
Q06
006
007
007
007
007
007
007
007
Q07
007
007
007
007
007

PAGE

wo
36
37
38
39
40
4y
42
43
4y
4s
de
U7
4g
Ug
S0
51
52
53
54
55
56
Sy
5¢
]

60
ol
o2
o3
[e21)
05
06
07
o]}
09
10
11
12
13

T &

0010
0CTaL WD
22650367
23014077
22650413
23014101

22650407
23014103
24300527
20642433

20300127
20642437
20300127
20642443

20300127
22644407
23014122
22644413

23014124
22644367
23014126
24300527

20642457
20300127
20642453
20300127

20642447
20300127
20642473
20300127

20642467
20300127
20642463

Ew

411VS III DVAINN

Figure 1-2. Example of Codedit Listing Showing:
Parallel Source Code and
Object Code

85ST

1
39Vd

11

-dn

I XTpuaddy

NOILD3S |



6 o o 0 06 0O o0 o0 00 O o0 o 00 0 0o o0 o o0 o0 o o

+ N <X X £ < €C -~ v - © DV O Z Xr X C = IT 6O TMMOO®D>>» WN &~

A ¥ X

SALT ERROR GLOSSARY
IMPLICIT REPRESENTATION IN THIs LINE CONTAINS AN ERROR
MORE THAN 75 ITEMS IN MACRO NAMED
COMBINED VARIABLE + PARAMETER vALUES EXCEED 105
TOO MANY ADDENDS
A REGISTER ERROR OR BLANK A REGISTER
INVALID cLASS FIELD
BAD ITEM NUMBER (DEWEY)
STANDARD MACRO NAMED 15 MISSING
INVALID FORM OR TOO MANY LOAD*STRT'MAXM¢:INOP*OVER [TEMS
MORE THAN 46 FACILITY 1TEMS
IMPROPER HYPHEN LINE
INVALID INSTRUCTION OR [OFS CoDE
DEFINED MACRO NAMED IS MISSING
BAD SUBSTITUTION FOR THIS SUBRQUTINE OR MACRO
DESIGNATION TOO LONG OR TOO LARGE
NOT ALPHABETIC OR IMPROPER ALPHABETIC CHARACTERS
NOT NUMERIC OR IMPROPER NUMER[C CHARACTERS
PART NAMED IS MISSING
M ADDRESS ERROR
CONFIGURATION ERROR IN SUBROUT[NE NAMED
DESIGNATION TOO LARGEY TRUNCATED WITHIN RANGE
SUBROUTINE NAMED IS MISSING
INCORRECT TAG OR BLANK TaG IN AREA OR LOAD
ERROR IN FACILITY ITEM
VARIABLE MISSING IN SUBROUTINE OR MACRO
NO MAP PROVIDED FOR THMIS SEGMENT
INCORRECT MAPPING STATEMENT FOR THIS SEGMENT
INCORRECT OR AMBIGUOUS INDEX REGISTER DEFINITION

DUMMY LOAD 1D BLOCK DUE 7O NO LD WRITTEN OR ERROR IN 18T LD

TOO MANY DESIGNATIONS FOR THIS FORM
TOO FEW DESIGNATIONS OR INCOMPL_ETE DESIGNATION
MORE THAN 1024 LINES IN THIS SEGMENT

STARRED AND UNSTARRED INDICATOR INSTRUCTIONSIN THIS ROUTINE

M SPECIFIED IN MAXM LESS THAN TWAT CALCULATED BY SALT

© 0 0 0O 0o 00 0O O 0 0 0O 0 0O 0 0 0 O 0 O 0 o0 0o o

n »n
> m
[»] (@}
m| > =
.- ”g o

o <

—t = ..

D a

o
5
L]
c
o
:

o

wn

0

oo

Figure 1-3, Example of Codedit Listing Showing:

Salt Error Glossary.

41VS 111 DVAINN



o 0O o o O O 0O O oo 0 0o o 0o o 0o o o o o o o o

PAGE 001
0CTAL
02633
02624
02461

02634
02625
02635
02626
02636
02627
02637
02630
02640
02631
02641
02632
02463

02063
00455
00431
02464
03613
02450
02451
Q4063
o#272
04307
02462

00213
04301
03427

o4312

03430

XR

001
001
001
002
001
001
001
001
001
001
001
001
001
001
001
001
001

001
000
000
001
003
001
00l
003
003
003
001

900
003
003

003

003

* R X X O X K K X X F R E X ¥ ¥ *

* * X ¥ F X X ¥ X ¥ ¥

TAG
AOUN
AOX
Al
Al
A1UN
ALX
A2UN
A2X
A3UN
A3X
A4UN
AgX
ASUN
ASX
A6UN
A6X
ABFIL

ABOVE9
AD
ADVANCET
AL
ALPHO
ALPHMKR1
ALPHMKR2
ANINST
ANOTH
ANTERM
ANXT

APOS

* ARIRET
* ARLSTO

ARZRET

AR2STO

TAG EDIT OF RTN. DBO1PSO1

02013
02021
02035
= Q05
02633
02624

02231
02311
02062
05417
Qo443
02171
05212
02061
02063
04056
04263
04270
02115
02120
00561
04262
04422
04301
Qu265
Q4273
04427
04312

1ADBO1PSO1
REFERENCE

000

000

Q00+ 02030 000+ 02175 000

* FF1

000

000

000+ 02244 Q00+ 02241 000
000

000+ 0206a 000

000+ 00467 000

000+ 05415 000

000

000y 05206 000

000

000

000y 04062 000+ 04253 000
000

000

000+ 02116 000+« 02031 000
000

001

[alo1e

000+ 04305 000+ 04307 000
000

000+ 04277 000+ 04275 000
000+ 04271 000

000, 04321 000+ 04316 000

000

O
O
O
O
O
O
O
O
O
O

O

O

O

LIVS III SVAINN

Figure 1-4.

Example of Codedit Listing Showing:
Tag Edit List.

C
U
.
N
wn
n
oo
O
>
@
m
—
w

I xIpuaddy

‘NOILO3S |



PAGE 001 MAPPING LIST OF RTNe. DBO1PSOl 1ADBO1PSO1
MAP< SGMT XR
001 SEGY 1
SEG2 2
SEG3 4
002 CODE 4
PooL 7

14

86S¢C

R

>

@ >

m| o

P et
o
=]
o,
=
]
P

c

o

)

NO!LD3S

.
H

Figure I-5. Example of Codedit Listing Showing:

Mapping List

411VYS 111 OVAINN



411VS III SVAINN

Marker List

o O
o o
PAGE 001 MARKER LIST OF RTN. DBO1PSO1L 1ADBO1IPSO1
o MRK< PREDECESSOR MARKER O
000 DBO1PSO1
O 001 ( O
002 T
© 003 D O
o 004 T * BW O
005 T * TA
o 006 T *  AZ O
007 T * L
) O
O O
O O
O O
o O
o O
O O
O O
O O
O O
O O
@) O
O O
@) O
O O
O O
O O
'e) O
Figure [-6. Example of Codedit Listing Showing:

8SST

ST

-dn

:39vd

I xtpuaddy

'NOILD3S



APPENDIX J. DIAGNOSTICS OUTPUT



UNIVAC III SALT

SECTION:

Appendix J

2558

PAGE:

1

APPENDIX J. DIAGNOSTICS OUTPUT

The ultimate output of the diagnostic function is a listing or series of listings on which the results
of either the trace or memory print functions are printed. The data furnished is described below.

A, TRACE OUTPUT

Two lines will appear per instruction. The total number of lines listed depends on the func-

tions covered, the number of test cases processed, the number of conditional functions which
met the prescribed conditions, and finally the option chosen for the diagnostic edit run.

1. First Line of Trace Output

The first line of data contains the following:

Final Arithmetic Registers Sense Magnitude | Block
Location Instruction
Address {4 columns) indicators Indicators | Count
INST. xxxxx{ siiAccAaaaaAmmmm | MAxxxxx ARsnnnnnnnn S1 12345678 LEH bbbbb
a, Location
INST .xxxxx xxxxx is an octal numberindicating the absolute address of the

instruction.

b. Instruction

siiAccAagaaAmmmm represents the instruction itself.,

s is the sign (bit position 25) + or —.

i is the index register designation (bit positions 21-24) expressed in octal.

cc is the operation code (bit positions 15-20) expressed in octal.



SECTION:

Appendix J j
SAGES e UNIVAC III SALT
9 l 2558
aaaa designates the arithmetic registers used (bit positions 11-15),
1 in position 11 = AR4
1 in position 12 = AR3
1 in position 13 = AR2
1 in position 14 = AR1
mmmm is the m address in the instruction word (bit positions 1-10) expressed
in octal.
c. Final Address
MA xxxxx is an octal number designating the absolute address referenced by
the instruction after the modification cycle. If indirect addressing
has been used, this value is that of the final address referenced
by the instruction.
d. Arithmetic Register Contents
ARsnnnnnnnn is the contents of the arithmetic registers
s is the sign + or -.
nnnnnnnn is the value contained in the arithmetic register (expressed in octal).
The contents of each register are printed across the line with AR1-4
appearing from left to right.
e. Sense Indicators

$112345678  The setting of each of the eight sense indicators is indicated by the
presence or absence of its designating number. When an indicator
is in a set condition, its number will be printed.

. Magnitude Indicators

LEH When a magnitude indicator is set, its corresponding symbol will be
printed. If it is reset, nothing appears.

Block Count

bbbbb is the decimal number of the input tape block containing the item
which resulted in this printed line. This block number entry provides
data for implementing the selective print option during subsequent
printouts.

. Second Line of Trace Printout

The second 'ine of data shows the contents of the index registers. A five-character octal

expression appears for each register (IR1-15) starting from left to right across the page in
the following format:

IRAAAnnnnnAAAnnnnnAAAnnannAAAnnnnn. . . ..



SECTION:

UNIVAC III SALT Appendix J

UP- PAGE:
2558 3

B. MEMORY PRINT OUTPUT

There are nine entries on each line of the memory print output, appearing in the following
format:

aaaacAAAAAAAsnnnnnnnnAAAsnnnnnnnn. . ... ..

is the sign (+ or —) of the word whose contents follow.

"

nnnnnnnn is the binary contents of one word of memory expressed as an octal number,



O

o o © o 0O o ¢ o O o o O

0 0O O o O O O o

TRACE

INST.23102

IR 23000 25475
INST.23120

IR 23000 2547%
INST.23121

IR 23000 25478
INST.23122

IR 23000 25478
INST.23105

IR 23000 25475
INST.23130

TR 23000 25475
INST.23150

R 23000 25475
INST.23151

IR 23000 25475
TNST.23152

IR 23000 25475

PRINT 23000

23000 +Q0023000
23010 +00024427
23020 +00000000
23030 +00000000
23040 403070000
23050 +03050303
23060 +00000000
23070 +04510223
23100 +04402226
23110 +04300073

+01 24 1000 0221}

00000

+01 12 1000 0221

00000

+01 10 1000 0233

0g000

+01 06 p00Q 0105

ge000

+01 06 0000 0130

00000

+01 07 0001 0147

00000

+01 12 0001 @221

00000

-01 44 0001 0127

00000

+00 43 0001 0002

00000 Q0000 00000
+00023000 +00000000
+70707070  +00023000
+00000000 +00000000
+000006000  +00000000
+03072000 +03074000
+27343027 +66067474
-00000000 +06442127
+06610224 +07014106
+04520221 +0822¢0221
404520221 +04420231

M 23221 AR+61616160
00000

00000

M 23221 AR+70707070
00000

0aooo0

M 23233 AR+70707070
00000

0p0000

M 23105 AR+70707070
00000

00000

M 23130 AR+70707070
0Q000

0n000

M 23147 AR+70707070
00000

0g0g@Q

M 23221 AR+70707070
00000

00000

M 23322 AR+70707070
00000

0pooC

M 00002 AR+70707070

+70707070 +00023000 +61616160
00000 Go000 00000 00000 00000 00000
+70707070  +00023000 +61616160
ggago G00qQ 00000 00000 00000 00000
+70707070  +00023000 +61616160
00000 00000 00000 00000 00000 00000
+70707070 +00023000 +61616160
00000 00000 00000 00000 0p000 00000
+70707070 +00023000 +61616160
00000 00000 00000 00000 00000 000Q0
+70707070 400023000 +61616160
00000 0g0g0 00000 00000 00000 00000
+70707070 +00023000  +70707070
00000 00000 00000 00000 00000 00000
+70707070 +00023000 ~61616070
00000 0g0gD 00000 00000 00000 00000
+70707070 +00023000 -60700000
00000 0p000 00000 00000 00000 00000
+00024353 400024377 +00023000  +00023103
-00607000 +00000000 +00023322  +00025475
+00000000 +00000000 +00000000 400000000
+00000000 +03060000 403062000 +03064000
+03076000 +0304000p 00300036  +27326665
+03030303  .03030427  +21053224 +30631464
+04300207  -00342053 04420222  +04534141
+D4521223 404404225 404502221 +05202221
+04302114 +04420227 404300130  +04520221
+04300101 +04520221 +04420232 404300105

SI
00000 00000
SI
00000 00000
SI
00000 00000
S1
00000 00000
S1
00000 00000
sI
00000 00000
SI
00000 00000
SI
00000 06000
SI

00000 00000

+0002uu27
+00000000
+00000000
+03p066000
+66067474
+01000027
~-00300030
404300111
+04420230
+00023000

00000

00000

00000

60000

ac000

00000

00090

00000

00000

0001R
0gooo

00019
00000

00019
20000

00020
09000

00020
00000

0o02y
00000

00021
00000

00022
00000

00022
00000

O o 0o 0 o o o 0O O o O o o o o o o0 o o o o o

R w
2% 8
@
m?D 4
~1% B
o Z
-
w
' —
C
By
h
N
w
w
0o

Figure J-1. Trace and Memory Print Output

411VS III OVAINN



APPENDIX K. SALT SYSTEM
MESSAGE TABULATION



SECTION:

UNIVAC II1 SALT Appendix K

UP- PAGE:
2558 1

APPENDIX K. SALT SYSTEM
MESSAGE TABULATION

This appendix contains a number of tables giving the messages initiated by the SALT system.
The message charts contain four columns of information.

COLUMN HEADING EXPLANATION

MESSAGE The text of the message, including the flag and classification codes,

as it appears on the console typewriter log. Upper case letters indicate
constant information which will appear on the log as shown. Lower case
letters represent variable information.

The standard header supplied by the Executive Routine is not shown.
Unless otherwise indicated, it is cccccAAAAAAA(rd)AA, where ccece
is the clock reading and(rd)is a run designation assigned by the Execu-
tive Routine to the run from which the message was initiated.

When necessary to show positioning, deltas (A) have been used to
indicate spaces.

REASON The condition indicated by the message and an explanation of variables
in the message text.

ACTION Operator response where required.

CODE The binary message code which will appear in the log tape entry for the
message. (Refer to Appendix G.)

In general, the lower case letters have the following meanings:

bbbbb number of blocks

ch channel number

dddddd date

eecece number of error A’s

fe external designation of file
Hf file ID

PPPPPPPP  program ID

rrr reel number

t type of I/0 unit



SECTION:
Appendix K

PAGE:

uP-
2558

UNIVAC IIT SALT

reel number

type of I/0 unit

TYPE
DESIGNATION ASSOCIATED UNIT
1 UNISERVO IIIA tape unit

O 0o O Nt b Wi

UNISERVO IIA tape unit
80-column card reader
Printer

80-column card punch
Compatible tape unit
Punched paper tape unit
90-column card punch
90-column card reader

uu

tape unit number

SALT CONSOLE MESSAGES - EXECUTIVE ROUTINE

MESSAGE () REASON ACTION CODE
C Clock has been reset 46
E End tape logging 46
F Change facility status (See messages 22 46
and 27)
F Expected type-in after Type character F and 27
unsolicited “F’’ release, message 22
will follow later
| Ignore request 46
L Locate program 46
USAAPPPPPPPPPPPP. Type in program ID 48
Pn Recall postponed Original message is 46
message no. n. teinitiated
R Rewind log tape 46
S Start tape logging 46
again
T Terminate program Supply 1d and xxx. 46
xxx = AAA if no dump
UEAArdxxx. uuA if dump 49
uuR if dump &
rewind

“)Messuge headers = ccece (00) AA

Table K-1.

Unsolicited Type-Ins




SECTION:

UNIVAC Il SALT fopendix X
R PAGE:
2558 3
SALT CONSOLE MESSAGES - EXECUTIVE ROUTINE
MESSAGE REASON ACTION CODE
I.| CHIEFAREADY* Loading of Exec. Rtn. com- 01
pleted. Ready for requests.
2.| /AABUSY* Exec. Rtn. not available for | Try again later 37
locator request.
2.| /CACLKAPWR* Clock power was interrupted | After resetting clock, 15
execute a ‘‘C’’ un-
solicited type~in
2.| /PACTRMAPPPPPPPR* Program p just terminated. 55
Could not carry over as
directed. Successor not
initiated.
2./ MPn* Message has been post- 45
poned by operator. Post-
ponement n assigned,
3. /HAJETTAPpPPPPPPP™ Program p has been 51
jettisoned.
2.1 JCAMITAFLTAuU™ Unable to read MIT on servo 36
uu.
2. | /HANOAALLOCAKAAAPPPPPPPP™ Unable to allocate run p. 25
k | Reason
1 | Mem. not avail.
2 | Fac. not avail.
3 | File not avail.
4 | Abs. Fac. not avail.
5 | rd not avail.
I.| /PANOTAONATAPEApPPPPPPPP™ Unable to locate program p. 35
I. | [HAREWINDASERS Servos uu should be rewound 54
uu
uu
uu™®
2.| /MDUMPAADPPPPPPPPPPPAARNAATEAr FrAUL™ Memory Dump nn for Program 56
p has been placed on reel
r of file fe on servo uu. If an
informational dump, PD
replaces nn.
l. /PARJETApppppppp* Program p has been jettisoned 39
due to invalid request of
locator.
I | JEARUNSACOMP* All runs completed 38
2. /HATERMApppppppp* Program p has terminated 51
1. Header = 00000(00)AA
2. Header = ccccc(00)AA Table K-2. Type-Outs
3. Header = cccec(rd)AA



SECTION:

i
I
Appendix K ‘.
PAGE: uP- — IVAC II1 LT
4 2558 L
SALT CONSOLE MESSAGES - EXECUTIVE ROUTINE
MESSAGE REASON ACTION CODE
1. |$AAAPPPPPPPPPPPPAAANRRNNAAAMTMIMM Program p has been assigned 19
2. [TAAACHAAFEAAAASER designation td, memoty nnnnn
2. |tArAchanfe through mmmmm, facilities as
2. [tasmachAarfeAMAUY tabled.
2. |taschaafeAMAAuUAAUY
2. [tarschaAfeAAMAUUAAUUAAUL
2. [* Choose option:
I.|SAAl. 1. Accept allocation 20
I. |SAAZ. 2. Reject allocation
|. [SAA3. 3. Change allocation
(See message no. 21)
1. [$AATFEANAACHAAUUAUUAAUUK* Results from option 3 of 21
1. [SAAt feAnAAchAAUUAAUUAAUUK. message no. 20, If k= A Type in change.
I, | $AATFEANAACHAAUUAAUUAAUUK. A INVAL* more changes requested,
repeat 21. If k = Z, stop.
If type-in in error, 21
repeated with INVAL typed.
3. |$AAKOTUU* Now ready to accept faci-
lity change Type in requested info. 22
3. | SAAkotuu. to change unit u of type
3. | [AAINVAL* t according to o.
ol Type of Change 23
1] Move to down status
2| Move to up status
3| Use as log tape
4| Ignore request
k= A, repeat 22 for more
changes
k = Z, last change.
INVAL type out indicates
last change invalid, 22 is
then repeated.
1.1 $CchAUUAFLTK™ UNISERVO IIIA fault 10
k  Type of Fault
A 10 consecutive error A’s
B 3 consecutive error B’s
F Servo uu unavailable
M Memory access etror
P Power failure Choose option;
1.1 SCchaAOK. repeat order
1] SCchAANG. terminate run
2.| $DchAUUAAAALABLATFffAddddddArrr Executive rerun label check 47
TAPEAffffaddddddarrr™
2.1 SDACK. Repeat order for new
tape.
1. Header = ccccc(rd)AA
2. Header = cccec(00)AA

Table K-3.

Type-Outs Soliciting Replies




SECTION:
UNIVAC III SALT fopend
UP- PAGE:
2558 5
SALT CONSOLE MESSAGES
MESSAGE REASON ACTION
NAME* Assembly ready. Type in name of program to
be assembled.
SAAPPPPPPPP.
Table K—~4. Assembly
SALT CONSOLE MESSAGES
MESSAGE REASON ACTION CODE
$CchARDRAkkkkkk*™ Error in Card Reader 513(80)
k | Error 513(90)
FALT* |[Fault
ERR* Rd chk err.
OPCONT|Operator
contingency
SCARDRAOK. Repeat order
$CchAPUNAkKkkkk* Etror in Punch Unit 529(80)
k y Error 533(90)
FALT* |Fault
ERR* Pnch chk err.
OPCONT#*|Operator
contingency
Repeat order
$CchAuUAU2AERRAK™ UNISERVO IIA error 523
SCAU2A0K. k = A(<720); k = B(>720) Repeat order
/CchuuAUAKKkKkkkk™ UNISERVO IIA error 525
k | Error
2BLK RD*!Two-block read
INST ERR*|Instruction error
$CchAPTPAKKK™ Paper Tape Punch error 537
k | Error
FLT | Fault
LPA Low paper
ERR Error
SCAPTPAOK. Repeat order
$CchAPTRAFLT* Paper Tape Reader Fault,. 542
SCAPTRAOK. Repeat order

Table K=5, Input-Output Routines



SECTION:

Appendix K

PAGE:
6

2558

.

UNIVAC III SALT

SALT CONSOLE MESSAGES

MESSAGE REASON ACTION CODE
/HchuuALABLAT fffAddddddArrr* File with label f, d, r 321
accepted
$DchuuALABLAT fffAddddddArrr Tape on servo uu does 322
TAPEATfffAddddddArrr™ not contain expected
SDACK. f,d, Choose option:
SDAGO. Check new tape
Accept label
[/ HchuuABKSAbbbbbbAERRABAeeeecee™ Input tape on uu completed. 323
$DchuuAaBKSAbbbbbbAERRABAeeeeee Block count error on uu. 324
TAPEAbbbbbb™
SDAGO. Accept count &
continue
$0chuuASENT™ Have reached end of tape 325
uu. Exercise option to
process as end reel or
end file. Choose option:
SOAER. End reel
SOAEF. End file
[ HchuuAkkkAT fffAddddddArrr Tape completed on servo 327
BKSAbbbbbbAERRAAAeeeeEe™ uu. If kkk = EOR, end of
reel; EOF, end of file.
$chAkkkannn™ Error condition in Printer: 520
kkk Error
FLT Fault
IPC Instr, err,
DPC Data err.
ooP Out of paper
nnn=Line no. Choose option:
SCAOK. Repeat order
SCANG. Terminate

Table K-6. — SER3ZZ and PRNTOI1ZZ




SECTION:

U NIVAC ]]I SA LT Appendix K

UP- PAGE:
2558 7

SALT CONSOLE MESSAGES

MESSAGE REASON ACTION CODE
J JAKKKKAMIN [ MUM* kkkk = SORT or MRGE. 405
Jettisoned due to (Sort)
insufficient facilities 385
(Mrge)
[ HAKKKKARELAuun* Servo uu released by kkkk 406
(SORT or MRGE) (Sort)
386
(Mrge)
/JchuuASORTAVOL Sort volume exceeds 410
BKSAbbbbbbAERRAAAeeeeee™ Capacity of Servo uu.
/JchuuABKSAbbbbbbASORT Sort jettisoned due to 421
TAPEAbbbbbb* block count error on uu.
[HchuuASRTAT ff fAddddddArrr Output reel on uu from 448
BKSAbbbbbAERRAAAeeeeecee ™ multicycle sort.
/HASORTAMCAPTANN™ Multicycle point nn 446
established by sort
/HASORTANRAMC* Processing at MC point nn 447
initiated
Merge Refer to Table K-6,
Input label check passed message number: 321 390
Input label check failed 322 391
Refer to Table K-6, for message End input tape 323 387
format. Input blk count error 324 392
Multilevel output label 327 393
/HALEVELANNNAMGANNN™* Level n merge n initiated. 396

Table K-7. Sort/Merge



SECTION:
Appendix K

PAGE: upP-
8 2558

UNIVAC II1 SALT

SALT CONSOLE MESSAGES

MESSAGE

REASON ACTION CODE

/ DAOCSAERRORAI9APpPpPppPPPARaaa™

Dating parameter aaaa 785
in Program p not specified

[JAOCSAERRORANNA* c===C.

OCS jettisoned due to error
an. 767
c--=c cols 1-24 of incorrect +nn
OCS control card,
(See Table K-9.).

PARAMETERACARDAANNNAaaaa

In addition when nn = 4 or 5,
nnn equals the parameter

card number that caused the
error. (Since OCS control
cards are not numbered, the
parameter card number refer
to an internal program card
count of the patameter cards.)

aaaa equals alph combination
of current parameter card.

OVERFLOWAAAAOCSAC---c.

Overflow has occured, c---c
equals contents of columns
1-24 of current OCS control
card.

INVAL IDAOPAAOCSAC--=-C

Invalid operation code.
c---c equals contents of
columns 1-24 of the current
OCS control card

ERROR TYPE-OUTS

ERROR NUMBER EXPLANATIONS
IA Columns 1 ~ 10 of header card do not contain 0OACASARUNA.
2A Column 12 of header card does not contain a servo number
between 0-9.
3A Columns 21 — 24 of header card do not contain correct information.
* YA Parameter card contains a wrong sign or mode.
* BA More than 50 parameters have been given in the parameter cards.

Table K-8, Object Code Service




SECTION:
Appendix K

UNIVAC IIT SALT

UP- PAGE:
2558 9

ERROR TYPE-OUTS (cont’d)

ERROR NUMBER EXPLANATIONS

SA PID of control tape does not correspond with PID of MRF tape.

7A Columns 21 — 24 of program call card do not contain correct
information.

8A Columns 13 — 20 of program call card do not contain spaces.

aA Current block on input tape does not contain correct form of
Z0ZO0’s

10 Current block on input tape does not contain ZAZA’s in words

1-2, The number of memoty locations of current load does not agree
with word 8 of current ID block.

| PID of control tape is found to be equal to or less than PID of

MRF.
12 Sentinel is not at the end of the facilities list of the PID block.
13 Current block # of tape is greater than block # of correction word.
4 Program card count is wrong.
15 Column 22 indicates that a certain tape is needed but it has been

previously released; or *“D’’ or ““U’’ tape has been called but has
been released.

16 Program cannot be found on the debugged tape.
17 Program cannot be found on the undebugged tape.
18 Block and word correction card contains wrong information

concerning number, mode and sign of corrections,

] Key word (KEYS) on input tape indicates that there is a parameter
change but the current Alpha combination cannot be found in either
parameter table, (Although there will be a typeout, OCS RUN will
continue without any type-in.)

20 Block and word corrections are supposed to be continuous but
number of words do not equal 2 or 3.

2| Corrections to key words cannot be made to both MRF and MIT, and
consecutive corrections cannot extend beyond 1 block (only words
1-60 can be corrected.)

22 Column 12 of program call card is incorrect.

23 Control tape states that the N+ n version of a routine is supposed
to go on the MRF. This is not allowed.

24 Incorrect sentinels on control tape or input MRF.

25 Control tape cards are out of sequence.

Table K~8. Object Code Service (cont'd)



SECTION

Appendix K

PAGE:

UP-
10 2558

UNIVAC II1I SALT

SALT CONSOLE MESSAGES

SPAT. aaaaa.
SPAG. aaaaa.
SPAX. aaaaa.
SPAACLOSE.

absolute address m—m
from relative address n—n.
m—m will be changed or

a transfer to it will occur.

Choose option:

MESSAGE REASON ACTION CODE
/PAAD 1AGA INST . AnnnnnAREFER. Ammmmm* Tested program refers to Run continues, 805
absolute address m—m from
relative address n—n, m—m
will not be changed
$PAAD | AGAINST. AnnnnnARE FER . Ammmmm* Tested program refers to Instruction not executed.| 886

resume trace at aaaaa
resume guard at aaaaa
resume run at aaaaa
terminate run

SALT CONSOLE MESSAGES

Table K-9. DICON3ZZ

MESSAGE

REASON

ACTION

[Hchuuffffaddddddarrrrrr*

File f, d, r accepted
as input

$Dchuuf fffAdddddddArrrrrrAERR*

Wrong label on input

Choose option:

tape
check new tape

ggﬁEggg accept wrong label
$OANORMAORAXFER™ Edit option to be Choose option:

chosen
SOANORM. edit all data
SOAXFER. edit transfers only
SOASLCT. edit selected blocks of

of input

$OABEG INAEND*

SOAmmmmMmMANnnnnN.

Results from selection
of the third option
of preceding response

Type in beginning (mmmmm)
and ending (nnnnn) block
numbers.

/PADIAGAOVERFLO*

Unexpected overflow.
Run terminated,

/PADIAGAINVAL ID*

Invalid operation code.
Run terminated.

Table K-10. Diagnostic Edit




SECTION:
Appendix K
UNIVAC III SALT _ o
2558 11
SALT CONSOLE MESSAGES
MESSAGE REASON ACTION
RAkkkkkk* Reader off normal
kkkkk  |[Condition
CDAERAI Error
FAULTA| Fault
OPCONT]| Operator
contingency
RARESUME. Replace rejected cards and
resume run.
DADECKA IDAERR™ Incorrect card ID, Card
skipped and placed in
error stacker,
DAHDRACDAERR* Header card incorrect or
missing. Run terminated.
DAPROGAERR™ Possible program error,
header-card error, or
machine malfunction. Run
terminated.
DASEQAERR* Sequence error.
HchuuAkkkAffffAaddddddArrrr kkk | Condition
BKSAbbbbbbAERRAAAeeeEE™ EOF | End of file
EOR | End of reel
Table K-11, Card-to-Tape Run
SALT CONSOLE MESSAGES
MESSAGE REASON ACTION
$chEATAPE* Ready for new input Mount new tape.
SOAOK.
$0ABCAREQ™ Repositioning of tape Type in beginning (mmmmm)
has been requested. and ending (nnnnn) block
SOAmmmmMMANNNNNA . numbers of area to printed.

Table K=12. TPTOPRO1



SECTION:

Appendix K

PAGE:
12

uP-
2558

UNIVAC II1I SALT

SALT CONSOLE MESSAGES

MESSAGE REASON ACTION
$8LPIA11AXA15AFORM* SAL T-type input file Start printing if proper form
SOAGK. ready for printing. on the printer.
$OAPATTERN* Printer test pattern Check test pattern and

printed out, choose option:
SOAOK. Start printing,.
SOART. Repeat pattern.
SOARS. Rewind tape.
SOATR. Terminate TPTOPROL.
$0AERR* Printer data or instruc- Choose option:

tion error.
SOAQK. Repeat order.
SOABP. Bypass order.
SOARP. Reposition tape.
SO0ATR. Terminate TPTOPROI.
$OAFLT™ Printer fault Choose option:
SO0AOK. repeat order
SOABP. bypass order
SOARP. reposition tape
SOATR. terminate run
$on00P* Printer out of paper Choose option:
SOAOK. repeat order
SOARP. reposition tape
SOATR. terminate run
$0AEOFEOR* End-of-file or End-of-file Choose option:
SOATT. next report on same tape
SOANT. next report on new tape
SOATR. terminate run
/ HAMBCAbbbbbb* Machine block count on

input tape = bbbbb.

Toble K~12. TPTOPROI! (cont'd)




APPENDIX L. SOURCE-CODED ROUTINES
SUPPLEMENTING -SER3ZZ



SECTION:

Appendix L

UNIVAC II1I SALT

2558

PAGE:

APPENDIX L. SOURCE-CODED ROUTINES
SUPPLEMENTING -SER3ZZ

A. OWN CODE LABEL ROUTINES

The generated input-output system provides for automatic and conventional processing of
tape labels. This processing takes place during the execution of the macro-instruction

m*START f, and also whenever a new tape for file f is initiated during a run.

Conventional label processing for input files entails the following:

m  Adding 1 to the file’s reel count. Reading a conventional twelve-word label block
and adding 1 to the file’s block count. (Words are numbered 0 through 11). Label

block is read with a Forward-Scatter-Read (FSR) using three SCAT words.

®  Comparing word one (the file name), word two (the date), and word three (the reel num-
ber of the read block), with the corresponding information fields prestored in the TAPE
packet for the file. The TAPE packet is constructed by —SER3ZZ from the information

supplied in the parameters.

m If the label check fails, a message is typed out on the console printer requesting

that the operator mount the correct tape. The new Tape’s label is checked as per (2).

Conventional label processing for output files entails the following:

m Writing a conventional twelve-word block on the output tape and adding

the file’s block count (in the file’s TAPE packet). The label includes the file
name, date, and reelnumberplus 1 as obtained from the file’s TAPE packet. It
also includes the block size and item size of the file as obtained from the input-
output routine proper. As with the input file, all of the information is as supplied
in the parameters to —=SER3ZZ,. The label block is over written (OWT) using three

SCAT words.

B. OWN CODE LABEL PROCESSING

1 to

a When the conventional label processing outlined above is not satisfactory, the user may
supply an own code label processing routine for any given file. A tag naming the first

line of this routine is supplied as parameter Pg of the FILE, statement.

® The user’s own code label routine will be executed by the input-output routine when
each tape of the file concerned is initiated. Its first line must be the NOP, line named by

the tag supplied as Pg of the FILE, statement.

m  The last line of the own code label processing routine must be in the form, IA,, TUN,, tag,

where tag is the tag of the NOP line.

8 When control is transferred to the own code routine, Index Register 3 contains the first

address of the segment in which the tag appears.



SECTION:

Appendix L

UNIVAC IIT SALT

PAGE:

[UP-
2

2558

Index Registers 1, 2, 4, and 7 are loaded with meaningful information which they must
contain when control is returned to —SER3ZZ.

The users own code label routine should not be in a segment mapped by one of these
index registers. The contents of all other index registers will be the same as when they
were loaded by the soutce program prior to the initiation process.

All the arithmetic registers are available for use by the own code routine as are the
indicators High, Low, Equal, and the sense indicators.

When control is transferred to the own code label routine, the following information
supplied by the input-output routine, can be accessed:
® The TAPE Packet

Each TAPE packet is in the form:

Word 1 frif File Name (alphabetic)
2 dddddd Date (decimal)
3 txOrr rer (decimal reel count) initially equals 000)

4 y-y b-b  b-b (block count in binary, bits 1-18).

The first word of each packet is tagged m*TAPE f, where f is an alpha file designa-
tion. Access to a word is obtained by using instructions indirectly addressing a
LOCA (of the tag plus an address modifier) when needed. For example to load the
block count into AR1 execute, IA,, L, 1, L/m*TAPE f +3,.

when using information from the TAPE packet the programmer must not alter the sign
of word one, the bits 13-25 of word three, bits 19-25 of word four.

m To set the block count of file f to zero (0), execute the instruction: 4, TR,, m*ZEROBC,.

C. OWN CODE ROUTINES DEALING WITH TWELVE-WORD LABEL BLOCKS

When own code deals with label larger than the standard 12 word size it must provide
for the following:

®  Input
To have an input-output subroutine read the label block and add 1 to the block
count, execute the instruction: 4, TR,, m*READLAB,.

Control is returned to the own code label routine with the twelve-word input label
available in memory. The label is in a segment mapped with Index Register 4.

The first word of the twelve-word area is tagged m*LABAREA,. If pertinent, own
code should access and increment the reel count prior to executing this subroutine,



SECTION:
Appendix L
UNIVAC III SALT _ !
2558 ' 3
|

Access to a given word in the label area is obtained by using an address modifier in
combination with the tag. The instruction must be modified by IR4 which is loaded with
the starting address of the area by the input-output routine. For example to load AR1

with the last word of the label block use, 4, L, 1, m*LABAREA +11,.
The own code routine performs all checking of the delivered label.

® Qutput
The own code routine must store the desired label information prior to executing the
above instruction. The reel count must be incremented where pertinent. For example,
using IR4 as loaded by the input-output routine, the contents of AR’s 1, 2, 3, and 4
can be stored in the first four words of the label area by the executing the following:

4,58T,1234, m*LABAREA +3,.
To have an input-output subroutine write a 12-word label block and add one to

the block count, execute the instruction 4, TR,, m*WRITELAB.

When own code deals with label blocks larger than the standard 12.word size it must
provide for the following:

® Independent reading or writing of label blocks.
®  Storage area for the label block to be read or assembled.
® Indicator coding to monitor completion of the read or write.

® Incrementing of block counter for each block read or written and incrementing of the
reel counter.

Use of own code label for any file inhibits the standard typeouts associated with normal
input label checking.



APPENDIX M. SOURCE-CODED ROUTINES
SUPPLEMENTING PRNTO1ZZ



UNIVAC I1I SALT

SECTION:
Appendix M

UP- PAGE:
2558 , 1

A. NEW PAGE SUBROUTINE

APPENDIX M. SOURCE-CODED ROUTINES

SUPPLEMENTING PRNTO1ZZ

The new page coding supplied by the programmer is a closed subroutine. It is entered by
the print routine when a new page condition will result from the execution of a m*PRINT,
macro-instruction using the advance n lines option,

1. Format. The first line of the subroutine is an NOP line named by the permanent tag
which was specified in parameter 98 of the routine calling statement. The print routine
records the return address in this line and transfers control to the following line, which
begins the actual new page coding. The last line of coding in the subroutine must trans-
fers control to the return address.

First and last lines of new page subroutine

\ TAG

C

FORM

CONTENT \

[

NOP,:FOR RETURN TO PRNTO01,ZZ

——
™

Main Body of New Page Subroutine Coding

T s s e (N I

LA A TUNG P8

T
-

e —— e —— |

2. Entrance Conditions.

a. Index Register 3 contains the address of the first line of the segment containing

tag P8-

b. Information necessary to the print routine is present in Index Registers 1and 2, and
must be preserved. Therefore, if these registers are used by the subroutine, their
initial contents must be restored before control is returned to the print routine.

c. The XLST word for the line being printed is in memory location m*REQ, and Index
Register 1 contains the segment address of this line.

3. Exit Conditions.

(1) The print order which caused entry into this subroutine is executed, using the cur-
rent form of the XLST word located in m*REQ,.

(2) The printing of the original line, or any lines printed during the execution of this
subroutine, does not cause re-entry into the subroutine.



SECTION:
Appendix M

PAGE:

uP-
2558

UNIVAC III SALT

B. RECOVERY CODING

The recovery coding is entered at the operator’s option when a printer malfunction occurs,

1. Format. The first line of the recovery coding is a self-referencing SGAD line, contain-
ing the same permanent tag in the tag and content fields. This tag was specified in
parameter Pg of the routine calling statement. The recovery coding is entered at the
line following the SGAD line.

\ TAG

Cc| FORM CONTENT\

slGiAiDPL'lLllLlIIILLLII!IIIII/

2. Entrance Conditions.

(1) Index Register 1 contains the word produced by the SGAD line.

(2) Arithmetic Register 2 contains a one-character operator message code in the most
significant character position. This message code is specified by the programmer in
creating operating instructions for the program. It allows the operator to inform the
program of the nature of the malfunction which occurred. Thus, one of several alterna-
tive procedures supplied by the source program may be selected for execution.

3. Exit Conditions.

If the recovery procedure includes further printing, the print routine must be reinitialized
(using m*INIT,) before any other macro-instructions are executed. In this case, the
recovery coding should include typeouts to the operator concerning the repositioning of

the print forms.

C. ALTERNATE METHOD OF PAPER ADVANCE

When space is a concern in the source program,the user may choose not to use the macro-
instructions m*PADN, and/or m*PADTOL,. The paper advance functions provided by these
instructions may be accomplished through use of the m*SELECT, and m*PRINT, macro-

instructions.

The m*SELE CT, macro-instruction is executed to place the address of the third word of
a new Print Packetin AR3. In this case the user is not concermed with the associated
current area as no printing is to be done.

Information fabricated by a special XLST word should be placed in ARA4,

The coding format of an XLST line is described below:

[C] FORM

CONTENT\

6141:1er1"1'11|111{:1111111[

\XIHSJ
{l

e



UNIVAC II1 SALT

SECTION:
Appendix M

2558

PAGE:

D.

Where: 64, = always present
p = paper advance specification
= A, to advance paper n lines.

= M, to advance paper to line .

n = a decimal number defining either the number of lines, n, to be advanced or |,

the line to be advanced to. The meaning of n is established in p.

(0<n<1023)

With AR3 and AR4 loaded as described, execution of the m*PRINT, macro-instruction

will cause the specified paper advance to occur.

SOURCE PROGRAM PRINT PACKETS

One to five areas are supplied automatically by the printer routine (specified by para-
meter P-Io)- The source program may create additional 32-word printer storage areas.

These areas will be located in the coding of the source program and are allocated by the
source program. In addition to establishing these areas, the source program must provide a
three word print packet for each area. These packets must have the following format:

\[c| Form CONTENT\
} BAUNYIO, | 11117
-[VOFSJ0,, PAD,, yymiv | | n(
_BlllNlYol'lllllllllllllllJlillz

\/_/,N‘—N

Only m in the above example is variable. m is the address (tag or decimal) of the first

word of a source program 32-word printer storage area.

The source program will assemble a printer line in such an area. To cause the area to be
printed use the macro-instruction m*PRINT, as described. Place the address of the third

word of the print packet associated with the area to be printed in AR3.

After a source program printer storage area is submitted for printing, without specifying to

retain in associated line the XLST, line control of the area is released to the Printer routine.

be obtzined via the macro-instruction m*SELECT,,



APPENDIX N. DATA FABRICATION
FOR EXECUTIVE ROUTINE



UNIVAC III SALT

SECTION:

Appendix N

2558

PAGE:

APPENDIX N. DATA FABRICATION
FOR EXECUTIVE ROUTINE

Designations to be written in XLOC line of the content field. (AR1 must always contain the XLOC
word when the Executive Routine is entered to accomplish the function.)

FUNCTION DESIRED AR2 AR3 AR4
1. Termination, normally used when the| ,,
successor program (if any) is to be
loaded
2. Termination with print dump, EP,, XFAD
3, Termination with print dump and
rewind servo on which dump was
placed. REP ,, XFAD
4, Termination with carryover of C,, (LOCA) address
facilities. of the listing
developed from
XFRE forms.
5. Tetmination with carryover of CcP,, XFAD | LOCA (same as 4)
facilities and print dump.
6. Termination with cartyover of RCP ,, XFAD | LOCA (same as 4)
facilities and print dump and
rewind servo on which dump
was placed.
7. Jettison, 3.,
8. Jettison with print dump, JP,, XFAD
9. Jettison with print dump and RJP,, XFAD
rewind servo on which dump
was placed.
10, Early release of files. F, m., LOCA
(same as 7)
11. Locate on overlay 0, (LDID: m,, LOCA
LEGEND (same as 7)

m, = Address of facility list (XFRE).

m, = Tag of load statement.
AR?2=Return address from locator.

AR3= External file to receive dump
(XFAD).

AR4= Address of facility list
XFRE words).,

SAMPLE CODING: Jettison with print dump rewind dump tape

TAG

C| FORM

CONTENT

1]

{ I |

L\ ‘1 ljzl'LJIEiTiTlPlTxDLPJ 'Lj

IIAL'l'iTIuJNI'l"s‘L‘och?Jsl'

S S R T N S I

*|xLo0cR 3P

i Wl U Y U T N O N O B O

JJEJ TlTIPI TI

o P|-|x,FAD|2

L L S WS W N T T W S O B L




APPENDIX O. KEYPUNCHING AND SEQUENCING
ASSEMBLY CARD INPUT



This appendix describes the SALT Assembly input cards and the sequence in which they
are to be introduced to the computer.

The relationship of command codes is depicted in Figure O-1, The instructions for punching
SALT code catds are presented in Table 0-2.



SECTION:

UNIVVAC ]I[ SA LT Appendix O

uP- PAGE:
2558

Library Command

There must be (

(
1
at least 1; ) i
2.« : ASSEMBLY I
for each llbraryl I
entry :
Routine Commands

TTTTTTTTTT

|

1 { LABEL {

|

2 { DELE }

|

any combination 3 { CORR** !

3.

-

Correction Commands

v ‘_opfioncl—-{ REFR
4

1 { REPL
any 2 { ERAS
iombinofion {

(44

-

ERAS

PTCH

Examples of Different Combinations:

(M (2) (3) (4)

LIBRARY LIBRARY LIBRARY LIBRARY
ASSEMBLY ASSEMBLY ASSEMBLY ASSEMBLY
LABEL DELE CORR CORR

(5) REFR REFR
LIBRARY REPL REPL
ASSEMBLY ERAS
CORR PTCH

* INDEX may be used in content field.

** PRINT may be used in content field.

Figure O~1. Relationship of Command Cards



SECTION:

Appendix O

PAGE:

2558

UNIVAC II1I SALT

SALT code is to be key-punched into cards in the following manner:

FIELD COLUMNS

Program ldentification 1 -8 (optional)
Card Number (page & line) 9 — 13 (optional)
Optional external use 14 -2

Item Number 21 - 28

Tag 29 - 3

Class 37

Form 38 - 41

Content 42 - 80

Optional external use

81 - 90 (90 Column only)

The following special symbols used in SALT should be punched with th

e multi-punch combinations indicated.

SYMBOL PUNCH CONFIGURATION CHARACTERS TO PRODUCE
CONFIGURATION
80 COLUMN 90 COLUMN 80 COLUMN 90 COLUMN
) 1-4-8 1-3-5-7 @ and 1 P, and 5
; (semi-colon)} . 4-5-8 1-3-5-7-9 @and 5 F, andl
= 4-5-8 1-3-5-7-9 @and 5 F, andl
( 3-5-8 0-5-7-9 #and 5 X, and 5
: (colon) 12-4-8 1-3-7-9 -4 P, and?9
. (period) 12-3-8 1-3-5-9 . (period) A, and3
* (asterisk) 11-4-8 0-1 * (asterisk) sym. key
$ 11-3-8 0-1-3-5-9 $ B, andV
+ 4-8 1-5-7-9 @ F, and$5
/ 0-1 0-3-5-7 / W, and5
, (comma) 0-3-8 0-3-5-9 , (comma) YV, and5
— (minus) 1 3-5-7-9 - T, and 5
(aspostrophe) 4-6-8 0-1-3-7-9 @ and 6 W, and?2
# 3-8 0-1-5-7 # U, and]l
& 12 0-1-3-5-7 & D, andR
% 0-1-5 @ and O (zero) B, and (zero)
Program card for 80-column keypunch may be ppnched in the following format.
COLUMNS PUNCHES CHARACTER
1 1 1
2- 8 12-1 A
9 1 1
10-13 12-1 A
14 1 1
15-20 12-1 A
21 1 1
22-28 12-1 A
29 1 1
30-36 12 -1 A
37 1 1
38-41 12-1 A
42 1 1
43-80 12 -1 A

* These characters are normally mutually exclusive in a single system.

Table 0-1. Instructions for Punching SALT Code Cords




UNIVAC III SALT

 SECTION:

Index

UP-

PAGE:
2558

A

Ahcolute L ocations

MUSVIULY «UuLauiviig

Activating Diagnostic Functions

Address
abbreviated implied address
absolute address
address modifiers
components
decimal address
implied address
indirect address
local reference point (LRP)

multiword addressing

permanent tag address
program relative address
reflexive address
segment relative address
standard location addressing
temporary storage tag address
Addressing Card Images
Addressing ltems
Advancing:
card image areas

card storage areas

item areas

paper tape character storage areas
ADY Group Call Statement
Alphanumeric Format
Alternate Method of Paper Advance
AREA Form
Area Retention

Arithmetic Registers. (see Register)
Assembly

Assembly Entry
Asterisk (*)

—

)
—

|
|
o -

—

—

|
@O OO0 XTPOOOOOO0O00OO0
I

Q1 T NN N RO PO R PN RN NN N RN N NN N W
|
i

N = N W = e W O D B QW o O 0O 00 ] WO
-

9-B-1,
Appendix K-5
9-A-8
2-A-4

B

Basic Area (low-order memory)
Binary Format
Bypass of Bad Records

Bypass Sentinels

C

Calling Statements:
card punch routine (80-column)
card punch routine (90-column)
card reader routine (80-column)
card reader routine (90-column)
diagnostic routine

paper tape punch
paper tape reader
printer routine
UNISERVO 1IA
UNISERVO A
Card Codes
Card File, opening the
Card Image

Card Number Field
Card Punch (80-column)
macro-instructions:

m*ADV
m*INIT
m*PUNCH
Card Punch (90-column)
macro-instructions:

m*ADY

m*INIT

m*PUNCH
Card Punching File
Card Reader (80-column)

macro-instructions:
m*ADY
m*INIT

INDEX

5-F-4
Appendix F-1,
F-3

|
W o e SO W RN
-

-

-

|
— W G O~ 00 N O 00 N N 00 N W NWw



SECTION:
Index

PAGE:

UP-
2558

UNIVAC IIT SALT

Card Reader (90-column)

macro-instructions:
m*ADV
m*INIT
Card Storage Areas

Card-to-Tape Conversion
Card-to-Tape Messages
Categories of SALT Statements
Character Code Chart
Character Codes

Character to be Typed
Character Words

Class

Class Field
Clock Reading
Codedit
Codedit Forms
Codedit Listing
Coding Form

Communication with the Executive
Routine
Computer Indicator Designation
Concurrent Processing
Content Field
Colon (use of)
Contingency Indicators
Contro} Word Indication
Control Words
Formats:
field selection

indirect address

index register modification
Conventions for Writing Designations
Copied Output File
Copying Input Item Areas
Correcting Programs:

ADD

AND

CORR

DELE

EDIT
ERAS

T
[op]
{
—

Loc.nc.ﬂmmmu‘l
x > m o o o o o =3
»—-»—-mwwcs\lm\l

Append| -11

1-B-
Appendix H
Appendix E
Appendix C-9

5-G-

1
-B-2,
-B-3
-A-4
-E-2

-B-1
Appendix | -8
Appendix |

2-A-1,
2-A-2
Appendix D

O WO WL W W W W $>m RN NN NN
> > P> DI P>POD WO OO o0
|

-

|
S~ o

UL
[

|
pt et et et D b e (O N QD et N e ND

— O N

INDEX

LIBRARY

OMIT

PTCH

REFR

REPL

SERS

SERVOSUM

STOP
Current Card Image Area
Current Card Storage Area

Current Input ltem Area
Current Qutput ltem Area

Current Paper Tape Character Storage Area

Creating a New Library File

D

Data Blocks

Data Designations

Data Fabrication for Executive
Routine

Data File Conventions

Data Forms:
ALPH

BINY

Data Storage
Data Tape Formats

Data Tape Correction Commands:

ADD
CHNG
COMP
COPY
CORR
DELE
ERAS
OMNIFLEX
PTCH
READ
REFR
REWI
REWD
SAMP
SENT
SKIP

9-A-10
9-A-14
9-A-14
9-A-11
9-A-10
9-A-11
9-A-13
9-A-13
9-A-17
5-B-2
5-D-3,
5-E-3
6-B-5
6-B-5
5—F-4,
5-G-3
9-A-6

Appendix F-1,

Appendix F-3
2-B-1

Appendix N

Appendix F

Appendix B-1,
2-B-2

Appendix B-1,
2-B-1

Appendi

ot

-10

3-A-1
ix F-2
9-A-9
9-E-1
9-E-1
9-E-4
9-E-7
9-E-6
9-E-5
9-E-10
9-E-2
9-E-1
9-E-6
9-E-1
9-E-7
9-E-7
9-E-12
9-E-7
9-E-1

-10



SECTION:

Index
UNIVAC II1 SALT e
| 2558 -3
SERVODEF 9-E-3 class 2-A-14
SERVOSUM 9-E-2 content 2-A-4
STOP 9-E-3 File Commands: 9-E-14
WAIT 9-E-8 COMP 9-E-7
Data Tape Service 9-E-1 CoPY 9-E-4
to CORR 9-E-6
9-E-12 DELE 9-E-5
Decimal Addresses 2-C-14 READ 9-E-6
Decimal Format 2-B-1 REWI 9-E-~7
Decimal Item Address 5-A-5 ';:::? g E ;
Delivered Qutput File 6-B-2
8 WAIT 9-E-8
Dewey Decimal Numbers 3-B-1, ) .
3-B-2 File Descriptions 6-B-1
3_c-3  Final Address Appendix J -2
Diagnostic Output Tape Unit g-A-g  irstAddress o ~ Appendix J -1
Diagnostic Routine 8-A-1 Flag Symbols and Classification Codes Appendix E-2,
activation 9-D-1 . 4-E-2
Form: Appendix B,
general concept 8-A-1 oA
memory guard 8-A-2 T
nemory print oA AAAA (blank) Appendix B-1
messages Appendix K-10 ALPH Appendlzx g—;’
processing considerations 8-A-2 7-B_3
rules of use 8—A-3 7o 7'
trace 8-A-2 4 ] 2'
- (see Diagnostic Rou BINY Appendix B-1,
E 2-B-1,
2-B-3,
Encoded Messages Appendix E-2 9-C=7
End-of-File Senti'nels Append@x F-1, CONF Appendix B~3
End-of-Reel Sentinels Appendix F-1, DATE Appendix B-1,
EQDX Form 5-A-6 2-B-2
EQUL Form 3-A-3 . ’
Appendix B-1,
Errors Detected During Assembly Appendix | -6 DCML PP 2-8-1
Executive Area Appendix D, 2—-B—3:
. . 3-A-4 2-C-7
Executlvg Ro.utme {I—H—l DDML Appendix B-1,
communication Appendix N 2-B-1
messages Appendix K-2, 2-B-3,
K=3, 2-B-4
K-4 2-C-7
F DTOB Appendix B-1,
2-B-1,
Facility Declaration Appendix | -9 2-B-3,
Field-Select, Control Word (FSEL) 2-D-2 2-C-7
Field-Selected Operands 2-D-3 EQDX Appendix B-1,
Field Selection 2-D-1, 5-A-6,
2-D-2 5-A-7
Field, Coding Form EQUL Appendix B-1,
card number 2-A-3 3-A-3



SECTION:
Index
UNIVAC III SALT
4 2558

FSEL Appendix B-2, SGAD Appendix B-1,
2-D-1, 2-C-11,
2-D-2 2-C-12,

INAD Appendix B-2, 4-C-2,

2-D-1, 5-A-8

2-D-2 SGMT Appendix B~2

INDX Appendix B=2 .

INOP Appendix B-3, SGRT Appendlsx ;B\-g,
IOFS Append?x g lll sLer Appendix B~2,
LDID Appendix B-4 55, : E’
LOAD §-B -4 5—H— 5'
LOCA Append;x_(l?:ii STOP Appendix B-3,
2-c-12 4=E-10

MAPS Appendix B-1, STRT Appendix B-3,
2-¢-13, -A-1,

2-G-14 8-A-3

MAXM Appendix B-3, SUBR Appendix B-2,
[ -4 5-A-2,

MCDF Appendix B-2, S-A-4

2-E-~2, TAPE Appendix B-4

2-E-4 TCON Appendix B-3,

MCND Appendix B-2, Appendix G-1,
2-E-2, Appendix G-2,

2-E-4 Appendix G-4,

MCRO Appendix B-2, 4-E-9
2-E-1, TPAK Appendix B-3,

2-E-3, Appendix G-1,

2-E-4, Appendix G-2,

5-A-4 Appendix G-4,

0TOB 2-B-1, 4-E-9
2-B-3, XFAD Appendix B-3,

2-C-7 4-1 -1,

OVER Appendix B-3, 4-1-2
4-C-1 XFRE Appendix B-4

to XLOC Appendix B-3,

4-C-3 4-)-1,

PAPT Appendix B-4 4-J-2
PART Appendix B-3 XLST Appendix B-3,
PCH9 Appendix B-4 5-H-8
PNCH Appendix B-4 XMOD Appendix B-2,

PRNT Appendix B-4 2-D-1

RDER Appendix B-4 XPAK Appendix B-4
RDRY Appendix B-4 Format Connector 5-F-5,
SCAT Appendix B-4 5-G-3,

SER2 Appendix B-4 5-G-4
SER3 Appendix B-4 Formats, data-word Appendix C-1,

8-A-8 -B-1

B-2

alphanumeric



SECTION:

Index
UNIVAC 111 SALT
UP- PAGE:
2558
binary 2-B-1 input-Output Channels Appendix C-6
decimal 2-B-1 Input-Output Indicators Appendix C-7
instruction-word 2-C-1 Input-Output Macro-Instructions 5-A-4,
multiword data 2-B-2, 5—A-5
2-B-5 Input-Output Routines 5-A-1
Form Field Summary Appendix B Instructions 2-C-1
Functional Description 5-H-1 Instructions for Punching SALT Code Appendix 0-2
Function Card 9-D-2 Cards
Instruction Summary Appendix C
G Integration of Subroutines with the
Source Program
Group Call statement: card punch (80-column) 5-D-5
ADV 6-B-10 card punch (90-column) 5-E-5
COPY 6-B-13 card reader (80-co lumn) 5-B-4
FILE 6-B-16, card reader (90-column) 5-C-5
6-B-17, diagnostics 8-A-6
6-B-18 magnetic tape 5-A-3
HOLD 6-B-14 paper tape punch 5-G-5
MERGE LP 6-B-12 paper tape reader 5-F-6
PRESELECT 6-B-15, printer 5_H-5
6-B-16,  UNISERVO IIA 6-A—6
6-B-38 UNISERVO IHA 6-B-8
—SER3ZZ 6-B-10, Integration with the Source Program 5-A-3
6-B-39 Introduction of SALT System 1-A-1
SORT FP 6-B-12,  Invalid Operation Code 4-p-1
6-B-13  Item Addressing with Permanent Tags 5-A-6
SORT LP 6-B-12  Item Description Packet 5-H-2
ltem Manipulation 5-H-1
| Item Number 3-B-1,
3-B-2
implied Addressing 2-C-6 ltem Number Field 2-A-3
index Register Address Modifier 2-C-11
Index Register, designation and mapping 2-C-12 J
Index Register Modification Control Word (XMOD)  2-D-4 .
Index Registers. (see Register) Jettison a Program 4-K-1
Indicator Coding 1_E-3 Jettison with Print Dump 4-K-1
Indicators Appendix C—6 Job Commands: 9-E-2
. ! OMNIFLEX 9-E-2
busy Appendix C-7 SERVODEF 9-E-3
comparison Appendix C-3 SERVOSUM 9-F-2
contingency Appendix C-7 STOP 9—F-3
data-error Appendix C-7
end-of-tape Appendix C-7 K
initiation Appendix C-7 o
input-output interrupt Appendix C-4 Keyboard Request Appendix E-1
Processor eror Appendix C-4 Keypunching and Sequencing Appendix 0
sense Appendix C—3 Assembly Card Input
Indirect Address Control Word (INAD) 2-D-1
Indirect Addressing 2-D-1
Informational Memory Dump 4-1-1
Input File Records 6-A-3



SECTION:
ndex UNIVAC III SALT
PAGE: uP-
6 2558
L MAPS 2-C-13
Marker List (Exhibits) Appendix A-8,
Label Block Appendix F-2 _ Appendix 1-15
Label Block, Log Tape Appendix G-3 Master Instruction Tape (MIT) 9-C-2
Label Line 4-G-1 Master Reference File (MRF) 9-C-1
Labels Appendix F-1 Memory Address, Accessing 6-B-7
Library Commands: 9-A-13 Memory Address Errors Appendix C-8
AND 9-A-14  Memory Dump 4-1-1
EDIT 9-A-14  Memory Dump Routine 4-1-2
NEW (library) 9-A-14,  Memory Guard §-A-2
9-A-15 Memory Print 8-A-2
oMIT 9-A-14 Memory Print Qutput Appendix J-3
Library Entry 9-A-8 Miscellaneous Routines 8-A-1
Library File 9-A-1, to
9-A-4 8-A-8
Load Definition 1-B-2, Modulo — 3 Errors Appendix C-8
3-C-4, Multipie Message Unit Request 4-E-9,
3-C-5, 4-E-10
3-C-6 Multiword Data 2-B-2
Loads 3-C-5 Multiword Data Designations 2-B-5
Local Reference Point 2-A-3 Multiword Operands Appendix C-5
Log Information 4~F-1
Logging Appendix G
4-F-1, N
4-F-2 New Page Subroutine: Appendix M-1
Log Tape: entrance conditions Appendix M~1
intermediate data blocks Appendix G—-4 exit conditions Appendix M-1
label block Appendix G-3 format Appendix M—-1
last data blocks Appendix G-5 Normal Printing 5-H-9
Log Tape Conventions 4-F-2
Log Tape Formats Appendix G O
M Object Code 1-B-1
Object Code Service (OCS) 4-J-1,
Machine Code Format Appendix G-2 9-C-1
Macro-instructions 2-E-1 to
calling 2-E-1 9-C-8
characteristics 2-E~1 control card preparation 9-D-2
definition 9-F-1 correction card 9-C-6,
forms: 9-C-7
MCDE 2-E-2, DATE replacement 9-C-3,
2-E-4 9-C-4
MCND 2-E-2, error type-outs Appendix K-8
2-E~4 function card 9-D-2
MCRO 2-E-3, header card 9-C-3
2-E-4 header parameter card 9-C-2
integration of coding 2-E-3 packet cards 9-D-3,
usage 2-E-2, 9-D-6
2-E-3 parameter card 9-C-3
Magnitude Indicators Appendix J-2 program call card 9-C-4,
Mapping List Appendix A-8, 9-C-5
Appendix 1-14 program sentinel card 9-C-7,
Mapping Statements 2-C-12, 9-C-8
2-C-13 sentinel card 9-C-8



SECTION:
Index

UNIVAC II1T SALT

UP- PAGE:
2558 7

Object Program Layout 3-A-1 Positioning the Load -B-4,
Octai Operator Appendix C-1 -C-5,
OMNIFLEX IH Routine. 9-E-1 -D-5,
(See Data Tape Service) to -E-5,
9~E-12 -F-
Opening:

N Oy OO Ul UTOYTOY O OV AN
|

T oww» T O MMOO @
|

— ) WD oo O WU O

card punching file 5-D-3, —H-5,
5-E-3 —A-
card reader file 5-B-2, Preselect File Groups -B-38,
5-C-3 -B-39
magnetic tape file 6-A-3 Printer “H-
paper tape punching routine 5-G-3 to
Operation Code Appendix C 5-H-10
mnemonic Appendix C-2, macro-instructions: 5-H-7,
C-5 5-H-8
octal Appendix C-2 m* INIT 9-H-7
Operator 2-C-2, m*PADN 5-H-9
2-C-3 m*PADTOL 5-H-10
Orderly Stop §4-J-1 m*PRINT 5-H-8
Output File Records 6-A-3 m* SELECT 5-H~7
Overflow 4-C-1, malfunction 5-H-3
4-C-2, PRNT01ZZ message Appendix K-6
4-C-3 Processing Considerations 8-A-2
OVER Form 4-C-2 Processing Diagnostic Output Tapes 9-D-6
Overlay 4-B-1, Processing Paper Tape Character 5-F-1
4-B-2 Words
QOverlay Load 4-B-1 Processor Error Indicators Appendix C-8
Own Code Label Processing Appendix L-1 Program Area to be Covered and 8-A-3
Own Code Label Routines Appendix L-1 Excluded in Diagnostic Functions
Program Commands 9-A-14
P Program Control Statements 4-A-1
Packet Cards 9-D-3 Program Instructions 2-C~1
Paper Positioning 5-H—2 Appendix C-1
Paper Tape Punch 5-G-1 Program Labels 4-G-1
to Programming 1-B-1
5_G—7 Program Relative Address 2-C-11
macro-instructions: 5—G—6 Punched Card Preparation 8-A-3
m*INIT 5_F_8 Punching Cards from Storage Areas 5-D-3,
m*RDPT 5-F-8 5-E-3
Paper Tape Reader 5—F-1 Punching Paper Tape Character 5-G-1
to Words
5—F—9 Punctuation Symbols: 2-B-2
macro-instructions: 5—-F-8 asterisk 2-A-4
m*INIT 5-G-6 colon 2-A-5,
m*PUNPT 5-G-6 2-B-2
Permanent Tag 2-A-3 comma 2-B-2
Positioning Segments 5-B-5, hyphen 2-A-4
5_0_5’ minus sign 2-B-2
5-D-6, parenthesis 2-B-2
5-E-5, plus sign 2-B-2
5-F-7,
5-G-5,
5-H-6,
6-A-7,
Q_A_fR



SECTION:
Index
—— e UNIVAC III SALT
2558
R segment definition 3-C-1
segment relative address 2-C-11
Reading or Writing Magnetic Tape 6-A-1 segment ZERO 3-C-2
Recovery Coding Appendix M-2, SEGnnn, 3-C-2
5-A-7 specifications by subroutines 3-C-14
entrance conditions Appendix M-2 Segments 1-B-2
exit conditions Appendix M-2 source program 2-C-7
format Appendix M=2 Select Option 4-E-12
Reflexive Address 2-C-4, Sense Indicators Appendix C-6
9-E-1 Sentinel Card 9-A-5
Register: 2-C-8 Servo Swap 6-A-19
address modifier 2-C-11 SERV02zZ 6-A-1
arithmetic 9-0-2 Sequential Assignment 3-B-1
index 9-C=2 Shift Count Designation 2-C-15
Relationship of Command Cards Appendix 0-1 (SR, SL, SAR, SAL, SBC)
Relative Address 2-C-11 Single Message Unit Request 4-E-6,
Rerun 4-L-1 4—E—7
Rerun Memory Dump A-L -1 Solicited Type-ins Append!x E~-1
Retaining Access to a Card Image 5-B-2, Sort/Merge message Appendix K~7
5-C-3 Source Code 1-B-1
Retaining Access to a Paper Tape 5—F—4 Source-Coded Routines Supplementing Appendix M
Character Storage Area PRNTO1ZZ . _
Rewiriding Magnetic Tape §-A—d, Sources-g;%izRoutmes Supplementing Appendix L
g:g:gg Source Code Format Appendix G-2
6—8—26' Source Code Service | (SCS1): 9-A-1
6-B—30 adding to existing library 9-A-8
6-B-34 ;:orricting source programs g—A—g
; . unctions -A-
RO Destgnator B2 Source Code Service 11 (5CS 1) 9-A-12
activating diagnostic function 9-D-1 corection conmands o
using the diagnostic routines §~A-3 library commands 9-A-13
S new program 9-A-16
program commands 9-A-15
SALT Error Notes Appendix 1-4 sentinel command (STOP) 9-A-17
SALT System 1-A-1 servo command (SERS) 9-A-13,
SALT System Coding 2-A-1 9-A-15
SALT System Message Tabulation Appendix K servo summary order (SERVOSUM) 9-A-13
Sample Program Appendix A Sorting and Merging 7-1
SCS1. (See Source Code Service 1) Source Program Print Packets Appendix M-3
SCSII. (See Source Code Service |) Special Programming Considerations 9-F-3,
5-G-2
Segmentation 3-C-1 Standard Library 9-A-1
to Standard Location Addressing 2-C-9
3-C-6 Start (STRT) 4-A-1
forms: Starting Address 4-A-1
LOCA 2-C-12 Status Word 5-F-3,
MAPS 2-C-13, 5-G-2,
2-C-14 5-G-3
SGAD 2-C-12,  Storage Area 6-A-2,
4-C-2 5-H-2
SGMT 3-C-1, Storing Data 5-C-1,
3-C-2 5-C-2,
SGRT 5-A-3 5-D-1



UNIVAC III SALT

!

' SECTION:

Index

' PAGE:
2558 i

Storing Data for Punching
Subroutines:
addressing

calling statements
forms, associated
SUBR
SGRT
MCRO
index registers and arithmetic
registers mapping

markers

parameters
recovery coding

segments
Successor Load
Successor Program
System Parameters
System Procedure Chart
Tag Edit List
Tags:

field:

local reference point

markers
permanent

temporary storage
Tape Control Packet

Tape Control Word Registers
Tape Packet
Tape Routines

UNISERVO I1A

UNISERVO ITIA

TCON Form

Termination
TPAK Form

5-A-2
5-A-3
5~-A-4
5-A-4,
Appendix A-8
5-A-3,
Appendix A-8
9-A-1
5~-A-7
9—-A-3
4-J-1
4-J-1
6-B-8
9-A-2
Appendix A-8,
Appendix 1-13
2-A-3
2-A-3,
2-C-4
5-A-3
2-A-3,
2-C-3
2-C-5
6-A-4,
6-A-16
Appendix C-9,
6-A-16
Appendix D-2,
Appendix L-2
6-A-1,
6-B-1
6-A-1
to
6-A-20
6-B-1
to
6-B-39
Appendix G-1,
4-E-9
4-J-1
Appendix G-1,
4-E-9,
4-E-10
4-F-1

TOPRO1) messages

Trace

Trace and Memory Print Output
Trace Output

TUN Qperator

TUNS Form

Two-Way Merge

Type

Type-ins

Type-outs

Typewriter Control

Typewriter Conventions

Typewriter Message Log

Appendix K-11,
K-12
8-A-2

Appendix J-4

Appendix J-1
4-C-3
4-C-3

Appendix A
4-E-7

Appendix E-1,

Appendix K-2

Appendix E-1,

Appendix K-3,

K-4

E-1

to

4-
4-E-12
Appendix E
4-E-1,

4-E-2
Appendix A-9

U
UNISERVO 1A — Input-Output Macro-Instruction: 6-A-8
m*BWRITE 6—-A-12
m*INIT 6-A-8,
6-A-11
m*READ 6-A-9
m*RWI 6-A-10,
6-A-14
m*RWO 6-A-10,
6-A-14
m* SWRITE 6-A-13
general considerations for use 6-A-15
general exit conditions 6-A-15
program requirements 6-A-15
program restrictions 6-A-15
UNISERVO IT11A - Input-Output 6-B-19
Macro-Instructions:
m*ADV P 6-B-22,
6-B-27,
6-B-32,
6-8-33,
6-B-39,
6-B-37
m*COPY F 6-B-28
m*COPY V F 6-B-29
m*ENDR F 6—-B-25,
6-B-30
6-B-36



SECT!ON:I : %
naex
T = UNIVAC II1I SALT
10 2558
m*END F 6-B~-23,
6-B-26, W
6-B-30,
6-B-34, Wait Instructions 9-D-1
6-B-37 Working Registers 2-C-2
m*FREE 6-B-31
m*HOLD 6-B-31
m*START F 6-B-21,
6-8-24, X
6-B-28,
6-B-32,
6-B-35 XMOD Form 2-D-4
UNISERVO 1A Tape Unit Control 6-A-1 XFAD Form 4-1-1
Subroutine to XFRE Form Appendix B—4
6-A-20 XLOC Form Appendix N-1,
UNISERVO 111A Tape Unit Control 6-B-1 4-B-1,
Subroutine to 4-J)-1,
-B-39 4-K-1
Unsolicited Type-Ins Appendlx E-1, XL ST Form 4-E-7
Appendix K-2 XPAK Form Appendix B—4



UNIVAC

DIVISION OF SPERRY RAND CORPORATION

UP-2558



	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-A_01
	1-B_01
	1-B_02
	2-A_01
	2-A_02
	2-A_03
	2-A_04
	2-A_05
	2-B_01
	2-B_02
	2-B_03
	2-B_04
	2-B_05
	2-C_01
	2-C_02
	2-C_03
	2-C_04
	2-C_05
	2-C_06
	2-C_07
	2-C_08
	2-C_09
	2-C_10
	2-C_11
	2-C_12
	2-C_13
	2-C_14
	2-C_15
	2-C_16
	2-D_01
	2-D_02
	2-D_03
	2-D_04
	2-E_01
	2-E_02
	2-E_03
	2-E_04
	3-A_01
	3-A_02
	3-A_03
	3-A_04
	3-B_01
	3-B_02
	3-B_03
	3-C_01
	3-C_02
	3-C_03
	3-C_04
	3-C_05
	3-C_06
	4-A_01
	4-B_01
	4-B_02
	4-C_01
	4-C_02
	4-C_03
	4-D_01
	4-E_01
	4-E_02
	4-E_03
	4-E_04
	4-E_05
	4-E_06
	4-E_07
	4-E_08
	4-E_09
	4-E_10
	4-E_11
	4-E_12
	4-E_13
	4-F_01
	4-F_02
	4-G_01
	4-H_01
	4-I_01
	4-I_02
	4-J_01
	4-J_02
	4-K_01
	4-L_01
	4-L_02
	4-L_03
	5-A_01
	5-A_02
	5-A_03
	5-A_04
	5-A_05
	5-A_06
	5-A_07
	5-A_08
	5-B_01
	5-B_02
	5-B_03
	5-B_04
	5-B_05
	5-B_06
	5-B_07
	5-C_01
	5-C_02
	5-C_03
	5-C_04
	5-C_05
	5-C_06
	5-C_07
	5-D_01
	5-D_02
	5-D_03
	5-D_04
	5-D_05
	5-D_06
	5-D_07
	5-D_08
	5-D_09
	5-E_01
	5-E_02
	5-E_03
	5-E_04
	5-E_05
	5-E_06
	5-E_07
	5-E_08
	5-E_09
	5-F_01
	5-F_02
	5-F_03
	5-F_04
	5-F_05
	5-F_06
	5-F_07
	5-F_08
	5-F_09
	5-G_01
	5-G_02
	5-G_03
	5-G_04
	5-G_05
	5-G_06
	5-G_07
	5-H_01
	5-H_02
	5-H_03
	5-H_04
	5-H_05
	5-H_06
	5-H_07
	5-H_08
	5-H_09
	5-H_10
	6-A_01
	6-A_02
	6-A_03
	6-A_04
	6-A_05
	6-A_06
	6-A_07
	6-A_08
	6-A_09
	6-A_10
	6-A_11
	6-A_12
	6-A_13
	6-A_14
	6-A_15
	6-A_16
	6-A_17
	6-A_18
	6-A_19
	6-A_20
	6-B_01
	6-B_02
	6-B_03
	6-B_04
	6-B_05
	6-B_06
	6-B_07
	6-B_08
	6-B_09
	6-B_10
	6-B_11
	6-B_12
	6-B_13
	6-B_14
	6-B_15
	6-B_16
	6-B_17
	6-B_18
	6-B_19
	6-B_20
	6-B_21
	6-B_22
	6-B_23
	6-B_24
	6-B_25
	6-B_26
	6-B_27
	6-B_28
	6-B_29
	6-B_30
	6-B_31
	6-B_32
	6-B_33
	6-B_34
	6-B_35
	6-B_36
	6-B_37
	6-B_38
	6-B_39
	7_01
	8-A_01
	8-A_02
	8-A_03
	8-A_04
	8-A_05
	8-A_06
	8-A_07
	8-A_08
	9-A_01
	9-A_02
	9-A_03
	9-A_04
	9-A_05
	9-A_06
	9-A_07
	9-A_08
	9-A_09
	9-A_10
	9-A_11
	9-A_12
	9-A_13
	9-A_14
	9-A_15
	9-A_16
	9-A_17
	9-B_01
	9-C_01
	9-C_02
	9-C_03
	9-C_04
	9-C_05
	9-C_06
	9-C_07
	9-C_08
	9-D_01
	9-D_02
	9-D_03
	9-D_04
	9-D_05
	9-D_06
	9-E_01
	9-E_02
	9-E_03
	9-E_04
	9-E_05
	9-E_06
	9-E_07
	9-E_08
	9-E_09
	9-E_10
	9-E_11
	9-E_12
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-001
	B-002
	B-01
	B-02
	B-03
	B-04
	C-001
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	D-001
	D-01
	D-02
	D-03
	D-04
	E-001
	E-01
	E-02
	E-03
	F-001
	F-01
	F-02
	F-03
	G-001
	G-01
	G-02
	G-03
	G-04
	G-05
	H-001
	H-002
	H-01
	I-001
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	J-001
	J-01
	J-02
	J-03
	J-04
	K-001
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	K-08
	K-09
	K-10
	K-11
	K-12
	L-001
	L-01
	L-02
	L-03
	M-001
	M-01
	M-02
	M-03
	N-001
	N-01
	O-001
	O-002
	O-01
	O-02
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	xBack

