
GENERAL
REFERENCE
MANUAL

UP·2558

®
This manual is published by the UNIVAC Division in loose leaf format as a
rapid and complete means of keeping recipients apprised of UNIVAC

Systems developments. The UNIVAC Division will issue updating packages,

utilizing primarily a page-for-page or unit replacement technique. Such

issuance will provide notification of hardware and/or software changes

and refinements. The UNIVAC Division reserves the right to rna ke such

additions, corrections, and/or deletions as, in the judgment of the UNIVAC

Division,are required by the development of its respective Systems.

@ REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION © 1962 • SPERRY RAND CORPORATION

PRINTED IN U.S.A.

PREFACE

1. INTRODUCTION

A. Relaiionship of the SALT System to the UNIVAC iii

B. Programming

2. SAL T SYSTEM CODING

A. Coding Form

B. Data Designations

C. Program Instructions

O. Control Words

E. Mac ro-In stru ctions

3. OBJECT PROGRAM LAYOUT

A. Data Sto rage

B. Sequential Assignment

C. Segmentation

4. PROGRAM CONTROL STATEMENTS

A. Start

B. Overlay

C. o ve rflow

O. Invalid Operation Codes

E. Typewriter Control

F. Logging

G. Program Labels

H. Concurrent Processing

I. Informational Memory Dump

J. Te rm ination

K. Jettison

L. Rerun Memory Dump

CONTENTS

1-A-1 to 1-B-2
1 A 1
1-1-\-1

1-B-1 to 1-B-2

2-A-1 to 2-E-4

2-A-1 to 2-A-5

2 - B -1 to 2 - B - 5

2-C-1 to 2-C-16

2-0-1 to 2-0-4

2-E-1 to 2-E-4

3-A-1 to 3-C-6

3-A-1 to 3-A-4

3-B-1 to 3-B-3

3-C-1 to 3-C-6

4-A-1 to 4-L-3

4-A-1

4-B-1 to 4-B-2

4-C-1 to 4-C-3

4-0-1

4-E-1 to 4-E-13

4-F-1 to 4-F-2

4-G-1

4-H-1

4-1 -1 to 4-1 -2

4-J-1 to 4-J-2

4-K-1

4-L-1 to 4-L-3

111

CONTENTS (continued)

5. IN PUT -OUTPUT ROUT INES 5-A-1 to 5-H-10

A. General Information 5-A-1 to 5-A-8

8. 80-Column Card Reader Control Subroutine 5-8-1 to 5-8-7

C. 90-Column Card Reader Control Subroutine 5-C-1 to 5-C-7

D. 80-Column Card Punch Control Subroutine 5-0-1 to 5-0-9

E. 90-Column Card Punch Control Subroutine 5-E-1 to 5-E-9

F. Paper Tape Reade r Cont ro I S u bro uti ne 5-F-1 to 5-F-9

G. Paper Tape Punch Control Subroutine 5-G-1 to 5-G-7

H. Printer Control Subroutine 5-H-1 to 5-H-10

6. MAGNETIC TAPE ROUTINES 6-A-1 to 6-8-39

A. UNISERVO IIA Subroutine 6-A-1 to 6-A-20

8. UNISERVO lilA Subroutine 6-8-1 to 6-8-39

7. SORTING AND MERGING 7-1

8. MISCELLANEOUS ROUTINES 8-A-1 to 8-A-8

A. Diagnostic Routines 8-A-1 to 8-A-8

9. SYSTEM PROCEDURES 9-A-1 to 9-E-12

A. Source Code Service 9-A-1 to 9-A-17

8. Assembly 9-8-1

C. Object Code Service 9-C-1 to 9-C-8

D. Diagnostic Routines 9-0-1 to 9-0-6

E. Data Tape Service 9-E-1 to 9-E-12

IV

CONTENTS (continued)

APPENDICES

A. Sample Program A-I to A-9

B. Form Field Summary B-1 to B-4

C. Instruction Summ ary C-l to C-9

D. Executive and Basic Areas 0-1 to 0-4

E. Typewriter Conventions E-l to E-3

F. Data File Conventions F -1 to F-3

G. Log Tape Formats G -1 to F - 5

H. Character Code Chart H-l

I. Codedit Listing I -1 to I -15

J. Diagnostics Output J -1 to J -4

K. SAL T System Message Tabulation K-l to K-12

L. Source-Coded Routines Supplementing -SER3ZZ L-l to L-3

M. Source-Coded Routines Supplementing PRNTOIZZ M-l to M-3

N. Data Fabrication for Executive Routine N-l

O. Keypunching and Sequencing Assembly Card Input 0-1 to 0-2

INDEX

v

TABLES AND ILLUSTRATIONS

FIGURE TABLE

2-1 SAL T System Coding Form 2-A-2

2-2 Data Designations 2-8-3

2-3 Multiword 0 ata Design ations 2-8-5

2-4 Local Reference Point Addressing 2-C-5

2-5 Multiword Addressing 2-C-10

2-6 Examples of Field-Selected Operands 2-0-3

3-1 Item Number Interpretation 3-8-2

3-2 Segment Designations (d) 3-C-3

3-3 Segments in Memory (after overlays) 3-C-5

4-1 Typewriter Control Schematic 4-E-4

9-1 SAL T System Procedure Chart 9-A-2

9-2 Library File - General Format 9-A-4

9-3 SCSI Diagram for Creating a New Library File 9-A-7

9-4 SCSI Diagram for adding to or Correcting an
Existing Library File 9-A-9

9-5 Object Code Service Run 9-C-I

9-6 Format of OCS Cards for Activating
Diagnostics 9-0-2

A-I Two-Way Merge Process Chart A-2

A-2 Two-Way Merge Flow Chart A-3

A-3 Two-Way Merge Sample Program A-4 to A-7

A-4 Tag Edit, Mapping List, and Marker List
Exhibit A-8

Vl1

TABLES AND ILLUSTRATIONS (continued)

FIGURE TABLE

A-5 Typewriter Message Log A-9

B-1 Form Field Summa ry B-1 to B-4

C-1 Instruction Summ ary C-2 to C-5

C-2 CC/MAC Input-Output Channels C-6

C-3 Sense Indicators C-6

C-4 Input-Output Indicators C-7

C-5 Contingency Indicators C-7

C-6 Processor Error Indicators C-8

C-7 Character to be Typed C-9

C-8 Tape Control Word Registers C-9

0-1 Executive A rea 0-1 to 0-2

0-2 Tape Packet 0-2

0-3 Basic Area 0-3

E-1 Flags, Symbols, and Classification Codes E-2

E-2 Unsolicited Type-Ins E-3

F-1 Data Tape Formats F-2 to F-3

G-1 TPAK and TCON: Source Code and Machine
Code Formats G-2

G-2 Log Tape: Label Block G-3

G-3 Log Tape: Intermediate Data Blocks G-4

G-4 Log Tape: Last Data Block G-5

H -1 Character Code Chart H-1

I -1 SAL T Assembly Error Notes I -4 to I - 5

I -2 Coded it Machine Code I -8

1-3 Facility Declaration Chart I -9

VlIl

FIGURE

I -1

I -2

1-3

1-4

1-5

1-6

J -1

0-1

TABLES AND ILLUSTRATIONS (continued)

TABLE

Example of Codedit Listing Showing:
Heading Lines, Directory Information,
Load Identifiers, and Facility Declarations I -10

Example of Codedit Listing Showing:
Parallel Source Code and Object Code 1-11

K-l

K-2

K-3

K-4

K-5

Example of Codedit Listing Showing:
SALT Error Glossary

Example of Codedit Listing Showing:
Tag Edit List

Example of Coded it Listing Showing:
Mapping List

Example of Codedit Listing Showing:
Marker List

Trace and Memory Print

Executive Routine - Unsolicited Type-Ins

Executive Routine - Type-Outs

Executive Routine - Type-Outs and
Replies

Assembly Type-outs and Repl ies

1-0 Routines - Type-outs and Repl ies

K-6 -SER3ZZ and PRNTOIZZ Type-Outs

K-7

K-8

K-9

K-I0

K-ll

K-12

0-1

and Replies

Sort/Merge Type-Outs and Repl ies

Object Code Service (OCS) Type-Outs
and Replies

DICON3ZZ Type-Outs and Replies

Diagnostic Edit Type-Outs and Replies

Card-To-Tape Run Type-Outs and Replies

TPOPROI Type-Outs and Replies

Relationship of Command Cards

tftstftltHons for PtlflCfttflg SA l T Code C afds

I -12

I -13

I -14

I -15

J -4

K-2

K-3

K-4

K-5

K-5

K-6

K-7

K-8 to K-9

K-IO

K-I0

K-ll

K-ll

0-1

0-2

ix

This edition of the SAL T General Reference Manual

presupposes its use in combination with UNIVAC Data

Processing System Manual (UT2488). Familiarity with

the material covered in this manual is a prerequisite to

programming the UNIVAC III computer. Manual UT2488
describes the functions of the various components which

may be used in the System. It also furnishes a detailed

exp lanation of the operation of a II UN I V AC III in structi ons.

Preface

This manual provides the user of the UNIVAC@ III Data-Processing System with the information

necessary to produce programs by means of the SALT (Symbolic Assembly Language Translator)

computer control system. Since it deals primarily with the production of SALT system programs and

the procedures required to prepare them for execution, the manual minimizes discussion of the

functional aspects of the system. Instead, the UNIVAC III system and its associated control

programs are treated as an integrated unit and emphasis is placed on the interface between the

programmer and the total system.

In general, the information is given in the order required by the programmer. The introduction

briefly describes the overall organization of the system and the basic components of the SALT

system language. Sections 2, 3, and 4, describe the manner in which a program is written and
organized, and the statements that control its overall execution. Sections 5, and 6, describe the

integration of the standard input-output routines with the program, and the means by which they

are controlled. Section 9 covers the assembly process, and the service routines which can be used

for maintaining programs before and after assembly. In addition, this section covers the use of the

program diagnostic and data-tape maintenance routines.

Following the final section are several appendices, one of which contains a sample SALT

program. The appendices are primarily charts of reference material to facilitate coding SAL T

programs.

@Registered trademark of the Sperry Rand Corporation

SECTION:

UNIVAC ill SALT
up· PAGE:

2558

I. INTRODUCTION

The SAL T Assembly System is a symbolic assembler system having many features in common
with automatic programming. The system is the core of a comprehensive software package

provided for the users of the UNIVAC III Data-Processing System. Information contained in

this manual includes SALT assembly codes, program instructions, control statements, input­

output routines, sort-merge routines, and other associated service programs.

A. THE RELA TIONSHIP OF THE SALT SYSTEM TO UNIVAC III

The SALT system may be thought of as the UNIVAC III computer in combination with a library

of input-output routines and an executive control program. The executive routine coordinates

programs for concurrent processing and, in combination with the input-output routines, provides

the SALT programmer with a virtually automatic control system.

The executive control program coordinates the overall operation of the system, allocating memory

I-A

1

and input-output facilities to individual programs and providing for the concurrent operation of

independently prepared programs. The assembly process will automatically insert into each program

the necessary mechanisms for communication with the executive program. Thus, each SALT system

program can be produced as an independent unit, without concern for conditions in the other programs

with which it may be run.

A SALT program may call on any desired configuration of input-output routines during the assembly

process. The assembly system will integrate each routine into the program on the basis of parameters

supplied by the programmer. Macro-instructions can then be used by the SALT program to communicate
with the input-output routine, directing it to perform such functions as initializing a file, reading or

writing the next item of a file, and terminating the file. The control and housekeeping operations

implicit in these functions, such as the actual initiation of each input-output operation, and

label checking, will be performed automatically by the input-output routine and therefore need

not concern the programmer.

UNIVAC ill SALT

SECTION:

1-B

I UP- PAGE:

I

2558

B. PROGRAMMING

Programs prepared with the SALT system are written in a symbolic language, source code,
which is translated by the system to a machine coded program. The translation process is
performed in two phases. The first phase is an assembly or compilation process which trans­
forms source code into a machine-oriented relative code called object code. The object code

bears a word-for-word relationship to machine code. The second phase is an operational phase

which transforms the object code to machine code, and is concerned with the execution of the

machine-coded program. In general, the SALT system programmer is not concerned with machine

code.

The SALT language consists of a vocabulary of statements which can be classified into four

categories:

(1) Program instruction statements which describe the events that are to occur in the execution

of the program.

(2) Data designation statements which are source code representations of data to be included in

the program.

(3) Compiler directive statements which control the SALT system in the translation of the source
code to object code.

(4) Parameter statements which provide environmental information to the system for use in its

interpretation of program instruction and compiler directive statements.

Each of these categories is represented in the SALT language by a large range of functional

statements. For example, one statement can instruct the system to include a complete input­

output routine in the assembled object program. Various other program instruction statements

are available to activate that routine. Still other statements describe the data file conditions

that the routine is to produce.

All of the coding statements are written on a standard SALT coding form. Cards are keypunched

directly from this form, and converted to magnetic tape for compilation. The SALT system

produces a complete listing of the input to the assembly process and the resulting object

program. A copy of the object program is recorded on UNISERVO* IlIA tape.

The statements of a SALT source program are combined by the programmer into one of two

classes of segments. One class, called coding segments, are of a general nature and can

contain most types of source code statements. Work areas and the storage of certain data such as
program constants are usually assigned to the second type which are known as pool segments.

Each segment is a portion of object code which can be accomodated in 1024 or less contiguous

words of computer memory. This divisional structure of a SALT program is directed by the

addressing characteristits of the UNIVAC III computer. The SALT segment represents an

area of computer memory which may be refefenc~ iHlderthe control of a single setting of

an index register.

• Trademark of the Sperry Rand Corporation

1

SECTION:

1-B

PAGE:
2

I

I u p-

I
2558

UNIVAC m SALT

The segments of a SALT program are combined by the programmer into one or more program loads.

A load is a group of one or more segments which are to be accommodated in a contiguous memory
area at the same time. A complete program is generally composed of a group of loads.

The planning of these segment and load divisions is an important consideration in producing
a SALT program. A simple numbering system has been provided for the programmer's use to

indicate the program segmentation. In addition, the SALT instruction repertoire has been chosen
to reflect this structural organization.

The segment structure allows a program to be written without regard for its ultimate location
in computer memory. Each time a program is to be executed, an area of memory will be

automatically assigned to accommodate it. The program will then be adjusted for execution

in this particular memory area when it is loaded. Thus, the program may occupy different areas

in computer memory each time it is executed. Since all SAL T programs share this characteristic

of automatic relocatability, they can be grouped together in a variety of combinations for parallel
execution.

UNIVAC ill SALT
SECTION:

2-A

I Up· PAGE:
2558

2. SALT SYSTEM CODING

A computer programmer must be able to translate system requirements into a medium which can
ultimately be read into the computer and which will control it through all of the required process­

ing. The SALT system provides a computer-oriented language to be used in the communication of

such information to the UNIVAC III computer. This section of the manual explains the SALT

language and the means by which it communicates to the computer.

A. CODING FORM

A standard coding form is provided for writing SALT system programs. This form is illustrated

in Figure 2-1 and in the sample program given in Appendix A. SALT source programs are key­

punched directly from the coding form, and each line on the form results in one card in the
source program deck. Each line on the coding form contains a maximum of 65 characters

and is divided into six informational fields. A general description of each of these fields is given

in the following paragraphs.

1

\SALTI CODING FORM

PROGRAMMER ______________ . ____________________ _

CARD NO. ITEM NO. TAG C FORM

I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I

I I I I 1 I I I _LL-L-I I I I I I I

I I I I I I I I I I I I I I I I I I

I I I I I I I I ..LL1-1 I I I I I I

I I I I I I I I I I I I I I I I J I

I I I I I I I I I I I I ..L.Ll I I I

I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I

J 11 1 I I I I I I I I I I I I I I

1 I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I
U T-2442 A

••• ~"'--t.~
UNIVAC III .. D""'ON Of >p,,'V lAND COIPOIA"ON

DATE

I I I I I I I I I I I I I I I

I I I I I I I~IIIII

I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I

I

PROGRAM
IDENTIFICATION

CONTENT

I I I I I I

I I I I I I I

I I I I I I I

I I I I I I I

1 I I I I I I .~~1~~L-L-L I I I

I

Ll..LL.L_L __ LJ . .-LL-..l I I I I I I I I I I I

I

__ L.L-l...-l I I I I I I I I I I I I I I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

~G OF
__ PGs.

, I I I I I I I I I I

I I I I I I I I I I I

I I I I I I I I I I I

I I I I I I I I I I I

I I I I I I I I I I I

I I I I I I I I I I I

I I I I I I I I I I I

I I I I I I I I I I I

I I I I I I I I I I I

I ILl_L_L_L I

I

I I I I I I __ LL.1 ... L I I I I I.....LI

I

I I I I I~.L.J_.I

I I I I I I I J I

I I I I I I I l..J.---L.J I

I

I I I I I I I .L. __ LLJ I

I

I

Figure 2-1. SAL T ~g Form

N

N
U1
U1
00

~I
G')I

m

N
I
~

c
:'

C
2 -
~ n
51
CD
)I
r
-I

V>
m
n
-I

0
Z

UNIVAC ill SALT

SECTION:

2-A

up-
2558

1. Card Number Field

Each card which is a part of a SAL T-coded source program bears a five-character

number to facilitate card handling. This number can be supplied during the keypunching

process and need not be specified during the writing of the program.

2. Item Number Field

The SALT item number is an object program ordering designator. The value assigned to

the item number of a SALT coding line determines the position of the object code result-

PAGE:

ing from this line in the object program. The segments into which each SALT program is

divided are defined by item numbers. (Refer to section 3-B and C, Item Number and Segmenta­
tion.) The item number for a particular line indicates both the segment to which the content

of the line is to belong as well as its relative position within the segment (Refer to
section 3-B-1).

The SALT Assembler will treat as an error a line whose item number and class field entries are

identical to those of a previously encountered line.

3. Tag Field

Any line in a SALT-coded source program may be given a name by assigning a tag to the

line. The SALT Assembly will equate this name to the computer word in the object pro­
gram resulting from this line. This word may then be referenced by its tag elsewhere in
the program. Two types of entries in the tag field are permissible in the SALT Assembly,
permanent tags and local reference points.

a. Permanent Tag

A permanent tag is an entry in the tag field of eight or less characters. the first char-

acter of which is an alphabetic character chosen from the letters A through Z and the next

characters may be any combination of the letters A through Z and the numbers 0

through 9. Each permanent tag appearing in a program must be unique. Spaces within
the tag field are ignored by the compiler. Hence, ~S~AL~T~ appearing as a tag is identi-

cal to SAL T~~~A.

b. Local Reference Point

A local reference point is a number from 0 through 9 which may be entered in the tag
field of any line. This number will serve to identify the computer word resulting from

this line until the same number is reassigned to the tag field of another line. Thus, the

local reference point establishes a temporary name for a line which can be referenced

over a limited portion of the program. The range of a local reference point is determined

by the SA-bT Assembly Sy-stem aiterthe pt"GgramHas OOen6l'Gere-d by item number.

Further information on the use of tags in instruction addressing will be found in this

section under heading C, Program Instructions.

3

SECTION:

2--A

PAG!::::

4
UP.

UNIVAC m SALT
2558

4. Class Field (C)

The class field furnishes information regarding the placement of a line in the object
program in addition to that supplied by the item number. This field may contain one of
three characters: * (asterisk), E, (hyphen), or be left blank.

The valid entries for this field are discussed in detail in section 3-B-2.

5. Form Field

The form field specifies the type of entry used in the content field of the coding line.

The SALT System provides a wide variety of entries that may appear in this field. In

general, the form field is left blank for program instruction statements but must contain

an entry for all other types of statements. Each form is described in the appropriate

context throughout this manual. Appendix B summarizes the entries which may appear

in the form field.

A period in any position of a form field is the SALT language equivalent to a ditto mark;

that is, it specifies that this line is of the same form as the preceding line in the
source program. Thus, if several lines requiring the same form field entry appear con­
secutively, only the form field of the first line need have the entire entry, and the remain­

ing lines require only a period in this field.

6. Content Field

The content field contains a SALT coding statement which may be a program instruc­
tion, a .compiler directive, specify a parameter,or designate data. A statement is written

in the content field as a series of symbolic designators. The choice of designators is

dependent on the particular type of statement being expressed. The general format of a

statement is a string arrangement where each element in the string is a designation

terminated by a comma. The inclusion or omission of spaces in content field entries is

irrelevant.

The designation in the form field specifies to the assembly the type of entry contained by

the content field. The remainder of this section describes in detail statement entries and
their associated form fields.

In addition to a statement, the content field of any line may contain descriptive comments

written by the programmer. The comments in no way affect the resulting object program,

but they do appear on the printed output after the program has been assembled. The follow­

ing rules govern the inclusion of comments in the content field:

a. A colon specifies that all succeeding characters on the line are descriptive comments

and are to be disregarded except for output listing purposes.

UNIVAC ill SALT
SECTION:

2-A

up· PAGE:
2558

b. A comment extending into a line whose class field contains a hyphen must be preceded

by a colon on the hyphenated line. In other words, the meaning of line continuation af­
forded by a hyphen in the class field does not encompass comments.

c. A line with a blank class field having only a comment in its content field is treated as

a void line: one which does not direct or inform the compiler and which does not pro­

duce an output in the object program. Both the item number and tag of a void line are
relevant. When a void line contains a tag, it w ill name the firs t following non-void line
after the source program has been reordered by item number.

5

UNIVAC ill SALT

SECTION:

2-B

up· . PAGE:
2558

B. DATA DESIGN A TIONS

Data to be included in an object program is represented in one of three formats: decima 1, binary,
or alphanumeric. The format to be used is specified in the form field of the coding line, as des­
cribed below.

1. Decimal Format

a. DCML. This entry in the form field specifies a decimal number which will occupy one com­

puter word. The content field of the word is written sdddddd; where s is the sign (+ or -)
and d is a decimal digit. If the sign is omitted, the resulting word will be positive. If less

than six digits are specified in the content field, the compiler will justify the number to the
right within a computer word, filling the remaining digit positions with decimal O's.

b. OOML. This entry in the form field specifies a decimal number which will occupy two con­
tiguous computer words. The content field of the line is written sdddddddddddd, where s is
the sign (+ or -) of the least significant word and d is a decimal digit. If the sign is omit­
ted, the least significant word will be positive. If less than 12 digits are specified in the
content field, the compiler will justify the number to the right within two computer words,
filling the remaining digit positions with decimal O's.

The tag of a OOML line applies to the most significant word. Methods of addressing OOML
lines are described in this section under the heading C-5-i, Multiword Addressing.

2. Binary Format

a. BINY. This entry in the form field specifies a binary value which will occupy one com­
puter word. The content field of the line is written s bbbbbbbbbbbbbbbbbbbbbbbb, where
s is the sign (+ or -) and b is a binary digit (0 or 1). If the sign is omitted 1 the word will
be positive. If less than 24 bits are specified in the content field, the compiler will justify

the value to the right within a computer word, filling the remaining bit positions with
binary O's.

b. OTOB. This entry in the form field specifies a decimal number which is converted by the
compiler to a one-word binary number. The content field is written sdddddddd, where s is

the sign (+ or -) and d ••• d is a decimal number less than or equal to 16,777,215. If the

sign is omitted, the word will be positive. The compiler justifies the converted num ber to

the right within a computer word, filling the remaining bit positions with binary O's.

c. OTOB. This entry in the form field specifies an octal number which is converted by the

compiler to a one-word binary number. The content field of the line is written S00000800,

where s is the sign (+ or -) and 0 is an octal digit (0 through 7). If the sign is omitted,
the word will be positive. The compiler justifies the converted number to the right within

a computer word , filling the remaining bit positions with binary O's.

1

SECTION:

2-B

PAGE:
2

u p-
UNIVAC ill SALT

2558

3. Alphanumeric Format

a. A L PH. This entry in the form field specifies an alphanumeric value which will occupy

one computer word. The content field of the line is written saaaa, where s is the sign

(+ or -) and a is any UNIVAC III character. If the sign is omitted, the word will be

positive. If less than four characters are specified, the compiler will justify the value

to the left within a computer word, filling the remaining character positions with spaces.

If any of the characters listed below are specified, the content field of the line is writ­
ten s (aaaa), where all four characters are specified and enclosed in parentheses. This
method of specification permits the compiler to differentiate between their use as symbols
or as characters of data.

SYMBOL DEFINITION

li space

, comma

(left parenthesis

) right parenthesis

: colon

+ plus sign

- minus sign

b. OAT E. This entry in the form field specifies an alphanumeric symbol which will occupy

one computer word. The content field of the line is written in the same manner as that of
an ALPH line. A DATE line differs from an ALPH line in that the value specified by the
DA TE line can be replaced in the program by another value after assembly. This is ac­
complished during the Object Code Service (OCS) run when the object program is pre­
pared for execution (that is, when the object program is placed on a master instruction

tape). The manner in which the replacement is effected is described in detail in section
8-C, under the heading Object Code Service.

Figure 2-2 illustrates the use of data designation statements as they will appear both on a

SAL T system coding form and in object code.

4. Multiword Data

Multiword data is data that will occupy two or more consecutive memory locations in the as­
sembled object program. Any of the data designation forms may be used for specification of

multiword data.

SECTION:

UNIVAC ill SALT I 2-B

I PAGE: up-
2558

I
3

SOURCE CODE RESULTING OBJECT CODE WORD

o o o 2

(Two Words)

S 24 1

X 0 0 0 0 I 1 2

1 3 4 5 6 I
i

7 8

S 24 -f

000000 000000000000001011 1

S 24 1

0000000 00000000000001011 1

t: FORM CONTENT 1 S 24 1 , J

) °ITIOIB 213] • 1 I I I I I I I I(
000000000 000000000001011 1

f; FORM CONTENT

) AILIPIH

I
AIBIS I • I i I I I I I)

A B 5

\- -

A + B

Figure 2·2. Data Des ignations

SECTION:

PAG e:!
4

UNIVAC m SALT
2558

A separate data designation coding line is to be used for each computer word that the data
will occupy in the object program. A hyphen is written in the class (C) field of the second

and succeeding lines, specifying that the data words are to be assigned to consecutive
memory locations.

The form of the first word must be specified in the first line; the form fields of the hyphen­

ated lines may be the same as that of the first line, different from that of the first line, or

may be left blank. The form field of a hyphenated line may be left blank. This will be inter­

preted to mean that the data word designated by the line is to have the same form as the

word designated by the preceding line.

Any line within a series may be tagged, but the tag names only the word specified by that

line. (The addressing of multiword data is described in this section under the heading C-

5-i, Multiword Addressing.) An item number also may be assigned to each line, but the item

numbers of the hyphenated lines are ignored by the compiler.

Although the DDML form always specifies multiword data, when used alone it is limited to
the representation of only two computer words. Like the other forms, however, the DDML
form may be followed by hyphenated data designation lines, or may be included freely with­

in a series of such lines. When so used, its double word property remains unchanged; that

is, each DDML coding line specifies two data words. If the line has a tag, the tag names

only the computer word containing the most significant part of the data. Figure 2-3 illus­
trates the use of data designation statements to specify multiword data.

UNIVAC ill SALT
2558

SOURCE CODE RESULTING OBJECT CODE WORD

TAG C FORM CONTENT S 24 1

TIAIG I I I I DICIMIL 9 1, I I i I I 1 I 1
0 0 0 0 0 0 9

I I I I I I I - I· I I 817161, I 1 I I I I ~
0 0 0 0 8 7 6

I I I I I - I I I 5141312111,1 I I I)
I ! I

0 0 5 4 3 2 1

\ TAG C FORM CONTENT \ S 24 1

TIAIG I I ! i I DICIMIL 112131415161'1 I I ,(0 1 2 3 4 5 6

- DIDIMIL 1121314151617181,1
)

I I I I I I It
0 0 0 0 0 1 2

\ - - 0 3 4 5 6 7 8

\ TAG C FORM CONTENT \ S 24 1

TIAIG I I I I I AILIPIH AIBIC I I I I I I I
0 A 1 B I c I ~

(I I I I I I I - 0
1
TIO I B 51, I I I 1 I I I I

o 0 0 o 0 0 o 00 o 0 0 o 0 0 0 0 0 o 0 0 o 1 o 1

'-'- -

\ TAG C FORM CONTENT \ S 24 1
J

TI AlGI I I i I Bill NI Y o i ' i i i i i I i
0 o 0 o 0 o 0 o 0 o 0 o 0 0 000 o 0 o 0 0 0 0 0

1 1 I I I I I - I I 01, I I I 1 1 I I I 0 o 0 o 0 o 0 o 0 0 0 o 0 0 000 o 0 o 0 0 0 0 0

I 1 I I . I - I I I 0 1 tl 1 1 1 I I I I ~ 0 o 0 o 0 0 0 o 0 0 0 o 0 0 000 o 0 o 0 o 0 0 0

I I I I - I i I o I I I I I I I I I I I o 0 0 o 0 0 0 o 0 0 0 o 0 0 000 o 0 o 0 o 0 0 0

J ... -

Note: Hyphenated lines do not require periods for identical form fields.

Figure 2·3. Multiword Data Designations

I SECTION: 2-8

PAGE:
5

RELATIVE
MEMORY
POSITION

TAG

TAG + 1

TAG + 2

TAG

TAG + 1

TAG + 2

TAG

TAG +- 1

TAG

TAG + 1

TAG + 2

TAG + 3

UNIVAC ill SALT

SECTION:

2-C

PAGE:
2558

C. PROGRAM INSTRUCTIONS

The program instructions used in the SALT system source program statements describe the

events to occur in the execution of the object program. Each program instruction specifies an
ins truction word in the object program.

1. Program Instruction Format

The complete format of the standard Sl\L T instruction statement is i/o, X, op, (ii/XCi, ffi,

where the following notation is used:

i/a, control word indicator

x, index register address modifier

op, mnemonic operation code (operator)

ar/xo, = working register or indicator designation

m, address or shift-count designation

In general, a designation which does not apply to a particular operator or instruction state­
ment may be omitted. The general rules for omitting designations are given below; the spe­

cific rules governing each operator, or class of operators, are given in Appendix C.

2. Conventions for Writing Designations

a. If four designations are used, it is assumed that i/a, has been omitted; therefore, the
line is interpreted as x, op, ar/xo, m, •

b. If three designations are used, it is assumed that i/a, and x, have been omitted. Therefore,

the line is interpreted as op, ar/xo, m, .

c. If two designations are used, the interpretation of the line depends on the instruction

operator.

(1) If the instruction operator is SSI, L T, or RSI, the line is interpreted as op, ar /xo,

(2) If the instruction operator is TUN, TUNS, TR, TEQ, TLO, or THI, the line is in­

terpreted as op, m, •

d. If one designation is used and the operator is NOP, the line is interpreted as op, •

e. Where the above rules do not apply, it is still possible to omit a designation by in-

cluding its terminating comma. For example, a programmer may wish to write an in-
struction that would transfer control to a word in memory tagged ENT RY and then to

another location thr()ugh the use ()f indirect addressing. In this case, he would use the

instruction: lA" TUN, , ENT RY, which omits the x, and ar/xo, designations by including the

1

SECTION:

2-C

PAGr:~ [UP. UNIVAC m SALT
2 2558

commas which would normally terminate the designations. If the commas were not pre­

sent, according to rule (b), the line would be interpreted incorrectly as op, ar/xo, m.

3. Operator

The operator designates the action in a SALT instruction. Each operator is a mnemonic

symbol, one to five characters in length, which will become a binary operation code
in the object program. Every program instruction statement must contain an operator. The

operator determines which of the other designations the program instruction statement may

contain, and the form in which they may appear.

Some examples of operators are:

OPERATOR ACTION

L, load one or more arithmetic
registers from computer memory

ST, store the contents of one or

more of the arithmetic registers

in computer memory

LX, load an index register from
computer memory

STX, store the contents of an index

regis ter in computer memory

SR, shift the contents of one or two

arithmetic registers a specified

number of decimal places to the

right

Note: Appendix C contains a complete listing of operator codes.

4. Working Register

The working register is the one used in the action directed by the operator. Working
registers may be either arithmetic or index registers, dependi ng on the operator. The
four UNIVAC III arithmetic registers ARI through AR4, are designated by numbers 1, 2,
3, and 4, respectively.

The fifteen UNIVAC III Index Registers are designated by the numbers 1 through 15 .

UNIVAC ill SALT
up-

2558

Examples of operators and working register symbols follow:

OPERATOR, AR/XO ACTION

L, 2, load Arithmetic Register 2
from memory

ST, 12, store the contents of Arithmetic

Registers 1 and 2 in computer
memory

LX,S, load Index Register 5 from

memory

STX, 12, store the contents of Index

Register 12 in memory

5. Address

Any line in a SALT-coded source program which will result in a word in the object pro­

gram, may be referenced by an instruction. The address designation of the instruction

statement is replaced in the object program by a value in the range 0 through 1023, which

is the relative position of the referenced word in its segment. The location of the first

word of that segment within computer memory is supplied by an index register. The com­

bination of these two values to obtain the program relative address of the referenced

word is fully discussed in this section under the heading, C-6, Index Register Address

Modifier.

The following methods are available for designating addresses in instruction statements:

a. Permanent Tag Address. As described previously, a permanent tag is interpreted by
the SALT Assem bly System to be the address of the content of the tagged line as it
appears in the object program. Thus, any instruction statement may use a permanent

tag as an address designation. For example, the instruction

\FORM CONTENT\

- - I l - -
causes Arithmetic Register 2 to be loaded with the contents of the word in the object
program corresponding to a line in the SALT-coded program bearing the tag, TAG 1.

Similarly,

CONTEN:

::;::_' --_I _:-~

SECTION:

2-C

PAGE:

3

SECTION:

2-C

PAGE:
4

i U P- UNIVAC m SALT
2558

causes Index Register 5 to be loaded with bits 1 through 15 of the word in the object pro­
gram corresponding to a line in the SALT-coded program bearing the tag, TAG 2.

b. Local Reference Point (LRP) Address. The tag field of a line may contain a number, 0
through 9, which will be interpreted by the SALT compiler as a local reference point

(LRP). The LRP, in combination with one of the letters F, S, or H, can be used to desig~

nate an address in an instruction statement. This form of addressing depends on the
sequence in which the lines of coding appear when ordered by the SALT Assembly System
on the basis of item number and class.

n F refers to the first line forward from this line having n in its tag field.

nS refers to the first line backward from this line having n in its tag field.

nH is a self-referencing address, that is, the line referring to the address n has n in its

tag field. (H stands for here.)

It should be noted from the description of this addressing scheme that, at any point in

the program, two different lines can have n in their tag fields and that both lines may be
accessed free ly by the ins tructions falling between them. The ass ignment of the same
value n to a third line has the effect of cancelling out the first line so tagged; that is,
all ins tructions between the second and third lines may reference either line but may not

reference the first line. Thus, although n may assume only ten different values, a given

line of coding can reference up to twenty one lines by LRP addressing.

The diagram in Figure 2-4 illustrates the use of LRP addressing; an example of coding
using this address form is shown in the sample problem in Appendix A.

c. Reflexive Address. The symbolic designation $H ERE, in the address designation of an

instruction statement causes the SALT Assembly to assign the segment relative address
associated with the instruction itself. This form will usually be used in conjunction with
address modifiers (refer to paragraph 5-h be low) to achieve self-relative addressing.

When used alone, this form is limited to a self-referencing effect. For example, the in­

struction

CONTENT

would have the effect of storing the contents of Arithmetic Register 3 in the computer

word containing this instruction.

i SECTION:

UNIVAC m SALT
I

I up-
I 2-C

i PAGE:

TAG

The arrows indicate the lines referenced by the instructions
using local reference point addressing .•

C FORM

Figure 2.4. Local Reference Point Addressing

2558
i

CONTENT

d. Temporary Storage Tag Address. The SALT Assembly System provides a means of both

allocating and addressing temporary storage locations throughout the program. This is
accomplished through the use of the designation $Tn, where n is a decimal num ber in
the range 1 through 1024. This designation may only appear in the address portion of an
instruction statement; it may never be specified in the tag field of a line. The content
of a temporary storage location is established as information is placed in it during the
execution of the program; temporary storage locations are assumed to have no initial set­
ting. The highest value of n referenced in each segment of the program determines the
number of computer words that will be allocated for temporary storage in the associated
pool segment in the object program. For example, if the source program contains instruc­

tions that refer to addresses $11, $12, and $15, the SALT Assembly System will allocate
five words in the object program for temporary storage. Each pool segment will be con­
sidered separately J wIth the temporary storage area established according to the associ­
ated coding segments. (Another method for assigning locations which may be used for
temporary storage is covered in section 3-A-1, Area Form.)

5

SECTION:

2-C

PAGE:
6

u P-
UNIVAC m SALT

2558

The temporary storage locations allocated by the use of $Tn addresses are placed by the

compiler in a pool segment of the program. Since the programmer defines the segment

structure of a program to the compiler by item numbers, the item number of the line con­

taining the $Tn address determines what pool segment in the program will contain the

temporary storage location being referenced. (Refer to section 3-C, Segmentation.)

The sample program in Appendix A illustrates the use of this addressing form.

e. Implied Address. In this method of address designation, another statement is referenced

by its form and content, rather than by its address. Any line which will produce a location

in the object program, can be used as an implied address designation. The address portion
of an instruction statement is written (form: content), where form and content are valid
entries for these fields. For example, the instruction:

CONTENT

uses an implied address designation for a data designation statement. When this instruc­
tion is executed, the decimal number 88 will be loaded into Arithmetic Register 1. Note
that the terminal comma of the content field within the parentheses may be omitted.

Because the form field of an instruction line normally is left blank, a special form field
entry, INST, is used in the implied address designation of an instruction. For example,

the instruction:

CONTENT

uses an implied address designation for an instruction statement. When this instruction

is executed, the ins truction L, 1, TAG 1, will be loaded into Arithmetic Register 2.

During compilation, the SALT Assembly generates a line and a symbolic address for the
implied add ress s tatemen t. The generated address is us ed in trans lating the instruction
statement line, and the generated line is sent to a pool segment. The choice of pool seg­
ment is determined by the item number of the instruction statement line. Any duplicate

lines generated by the use of implied address designations are automatically eliminated

from the pool segment.

L-

}
I

UNIVAC ill SALT
I SECTION, 2-C

2558

Two levels of implied address designation may be used in a single line.

For example, the instruction statement in line 1 will be interpreted by the SALT Assembly
as if lines 2, 3, and 4 had been written as:

ITEM NO. TAG C FORM CON·TENT \

I
I

I

I

I

I I 1 I I I I I I I I I I LI ' ! 1 i ,
(, I, H , S ,T, : i L, ' , 1" ,(,D, C, M, L, : ,8,8,) , ' I) , ') ----- I I -1

I 12 I I I I I I I 1 1 LJ ,111,ITIAIGI11,1 I I I I I I I I I I I I I r I I 1
I
I

13 TIAI Gill * LI 'I 11 , I T I Al G I 2 I ' I

I 14 TIAI GI 21 I I I * 0lC1MIL 8 18 1 , I
i.-.. - ---- -- -
It is assumed in this example that a single pool segment has been defined to include the
item numbers of the lines shown. For more information on pool segments, refer to section 3-C,
Segmentation.

f. Abbreviated Implied Address. ImplIed address designations may be abbreviated for certain
data designation statements instead of using the full entry. The abbreviations are illustrated
in the chart below:

Standard Form Abbreviated Form

(OCML: Sdddddd), O/Sdddddd,

(OOML: Sdddddddddddd), OO/Sdddddddddddd,

(BINY: Sbbbbbbbbbbbbbbbbbbbbbbbb), B/Sbbbbbbbbbbbbbbbbbbbbbbbb,

(OTOB: Sdddddddd), o B/Sdddddddd,

(OTOB: Soooooooo), OB/Soooooooo,

I (ALPH: Saaaa), A/Saaaa,

Note: DATE and INST forms cannot be abbreviated.

The two examples on the opposite page can be written using the abbreviated format.

CONTENT

,
I

I \
\

SECTION:

2-C

PAGE:
8

uP·
UNIVAC m SALT

2558

g. Decimal Address. A decimal number in the range 0 through 1023 may be written as an

address designation in an instruction statement. The use of this type of address designa a

tion is described in section 5-A-4, under the heading Addressing Items.

h. Address Modifiers. Permanent tag, reflexive, decimal, and implied addresses written in

the standard form, may be suffixed by either one or two address modifiers. Address modifiers

allow certain lines to be referenced in terms of the relationship of their position in the object

program to another line. An address designation using address modifiers in written a ± m,
where a is one of the address forms mentioned above, and m is the address modifier: either

a decimal number or the symbol $SEGi.

The address in an instruction statement is replaced by a value representing the segment
relative address of the referenced line. This is a value in the range of (decimal) 0 through
1023. Certain address forms, which are described in this section (C-6-b,c,) headed SGAD,
and LOCA, are used to express program relative addresses in the range 0 through 32, 767.
These addresses may be modified in the same manner as segment relative addresses. When
the address is to be modified, the modifier is added to or subtracted from this relative
address. For example, if the tag, TAG 1 in line 8 of the example, is computed by the SAL T
Assembly System to have the address 1005, the modified address resulting from the first
instruction in the example below will be 1007, and the modified relative address in the
resulting from the second instruction will be 1004.

~o. TAG C FORM CONTENT \

(, 1 1 1 1 1 I
L 1 TAG 1 + 2 : Load AR 1 with 000025

I I I 1 I I I 'I I' 1 I 1 I I Ii' I Iii Iii I I I I I
\

1 12 I 1 1 I I I
L 1 TAG 1 _ 1 • Load ARl with 000015

1 i , I I' I I' I I' 1 I I I I' I' I 1 I I I I I , 1 i 1
J

I
1
3 LI'll",SITIAIRITI+jSiEIGI81-11I'1 I

, , I , I i I , , 1 1 I I I I I

, 14 1 I 1 I , , I 1 I 1 S,T"1 3
1' ITIAILILIYI' I I 1 1 1 1 I , 1 1 1 1

I

I 15 TIA/LILIY: I , E BI11NIY 0/" 1 , ,
I I I I I I I I I I I I I I I I ,

I, ,6 * D1CIMIL 1 I 0 I' I I I 1 , I I , I I I I I I I I I I I j I I I I 1 I

J
17

- • 1 5, : Address 1004
I , I I , ,

! I I ! I I 1'1 I I I I I I I i
, I I I 1 I I I I

I 18 TIA, G! 11 -
I· I i

1 6, : Address 1005
,

j I 1 1 1 1 I I I I I I I i I I I I I I I i I

1
9 -

I • I I

2 1
0

1' I ~ II I I I I I I I I 1 I I I I I I I i I I I I I I I

1
1

1
0 - 2 5 , : Address 1007

I I I I I i I I I • I I I I I I I I I I 1 I I I I I I I I I I I 1 I I

\ I, - --- - --

SECTION:

UNIVAC ill SALT
! 2-C

up- PAGE:
2558

The symbol $SEGi designates a number which is equal to the number of lines in segment
i (refer to section 3-C, Segmentation), and which is added to or subtracted from the relative
address in the same manner as a decimal modifier. For example, if the first line of segment 8

is tagged ST ART, then the modified relative address, accessed by the third instruction in the

example, will actually be the relative address of the last line in segment 8. Note that this

example also illustrates the application of two modifiers.

Modifiers are commonly applied to reflexive addresses. The fourth instruction in the fore­

going example stores the contents of Arithmetic Register 3 in the memory location follow­

ing this instruction.

The programmer must ensure that the modification of an address does not attempt to pro­

duce a relati ve address greater than 1023 (or, in certain address forms, 32, 767). If a

modification attempts to exceed these limits, the SALT System will produce an error

warning in the output listing and the result will be a truncated value.

i. Multiword Addressing. As shown in the summary chart in Appendix C, more than one

arithmetic register may be referenced in a single instruction. Such an instruction requires
the referencing of an operand containing an equal number of con tiguous computer words.

A SALT Assembly instruction containing a multiword address, with one exception, al­

ways references the least significant word of the operand. (The exception is an instruc­

tion using the zero·suppression operator, lUP, where the most significant word of the

operand is the one addressed.)

Figure 2-5 on the following page illustrates the use of multiword addressing.

j. Standard Location Addressing. The SALT Assembly System reserves a set of specific

program memory locations in the computer to handle special program control functions.

The addresses of these locations are of the form $LOen, where n is a decimal number

assigned to a specific location. The values of n and their uses in this address form are

discussed in section 4, on Program Control Statements.

General references to address forms throughout this text exclude the $LOen form unless

otherwise stated.

9

SECTION:

PAGE:

2-C

10

2

3

4

5

I
I

I UP·
UNIVAC ill SALT

I
2558

SALT CODING ENTRIES

CONTENT OF ARITHMETIC
REGISTERS 1,2, AND 3 AFTER
EXECUTION OF TH E INSTRUCTIONS

TAG C FORM CONTENT\ AR1 AR2 AR3

TI AI Gill I i I E AI LIPIH 0IOIAIAI'1 I I I I I I I
I

I I i I I I I - i . I BIB iB IB:,l 1 I I J I I

I I I I I I I - I I I CICIC\("I 1 1 \ \ I I

TIAI GI 21 I I I - DID1MIL 1 I 2 I 3 I 4 I 51 6 j 7 I 8 I ' I I 1\
J - J - -

t:::':1 : ~ IL:.:l;:3~~:~G:l:+:2d 10 o A AI B B B B ICC c Cl

lb:::::1 : d:.: 1 :2:.: T: A:G~ +Il~.d 10 o A AI B B B BI

1b:':d ~ : I IL:.:l:.:T~~G:l~.: d 10 o A AI

~ : : : ': : II: : : I~U>:':1:2:':~A:G:~ I~ ~ A AI B B B BI

I: : ; : If;: IL: .~.~T:A:G:2:+:101 C C C C 1 0 0 0 0 1 213 4 5 6 7 81

Figure 2-5. Mu/tiword Addressing

NOTE: The Tag of a DDML line names the most significant word (condition 5).

I SECTION:

UNIVAC ill SALT I 2-C

up-
2558

6. Index Register Address Modifier

I PAGE:
!

I

The instruction address designation produces a lO-hit segment relative address which can
be a value in the range 0 through 1023. The index register address modifier designation

specifies an index register, the contents of which will be added to the segment relative

address, giving a 15-bit absolute address. This section describes the means by which the
programmer specifies index registers and the values with which they are to be loaded.

8. Address Components. The address referenced by a SALT coding line is made up of two

components:

1) segment relative address: the position of the line within its segment, relative to the

first line of the segment.

2) program relative address: the position of the line within the program, relative to the
first line of the program.

As a matter of interest, a third address component is involved when the object program

is loaded into computer memory. This is the computer relative, or absolute address; that

is, the position of the line within computer memory, relative to location O. This address

is automatically supplied by the SALT Executive Routine and therefore does not directly

concern the programmer.

In an instruction coding line, the segment relative address of the operand is expressed

symbolically by one of the addressing methods described in the preceding section. The

index register modifying the instruction address is loaded with a constant representing

the program relative address of the first line of the segment containing the referenced
operand. The sum of these two addresses represents the program relative address of the

operand itself. Therefore, in addition to specifying a segment relative address (as the m
part of an instruction), the programmer must indicate which index register is to modify

that address. Instructions to load the index registers with the proper program relative
addresses must also be included.

The SAL T system contains two forms which make program relative addresses available.
The SGAD form directs the assembly to produce the program relative address of the first
line of a segment, and the LOCA form directs the assembly to produce the program relative
address of a specified line. The programmer includes SGAD and LOCA lines in the program
to supply the constants needed to load the index registers. In general, each segment is
assigned one index register which will be used to modify all references to that segment. A
SGAD line provides the program relative address of the segment. This address must be
loaded into the specified index register by the source program. Instructions in the program
referencing the segment are written specifying this index register. If a single index register
is to be assigned to more than one segment, it must contain the appropriate value at the
time each particular segment is referenced.

11

SECTION:

2-C

PAGE:

12
• U p- UNIVAC m SALT

2558

b. SGAD. The entry SGAD in the form field of a line, together with a permanent tag in the

content field, specifies the program relative address of the first line in the segment
which contains the tag. For example, if TAG 1 is a tag in segment 8, the line:

will produce a word in the object program which contains the ls-bit program relative ad­

dress of the first line in segment 8. The ls-bit value contained in this word can be

added to the segment relative address of TAG 1 to produce its program relative address.
(Note that a SGAD line specifying any tag in a given segment will produce the same 15-

bit address in the object program.)

The SGAD form can be used as an implied address. It may be written in the standard
form as (SGAD: t), where t is a permanent tag. It may also be written in abbreviated

form as Sit, where, again, t is a permanent tag.

c. LOCA. The entry LOCA in the form field of a line, together with a permanent tag in the
content field, specifies the program relative address of the line named by the tag. For

example, the line:

~ I.~ ~_~_I_G_il_I_'_I~ __________ ~_i ______ .~
will produce a word in the object program which contains the ls-bit program relative
address of the line TAG 1. (Note that each tag in a given segment will produce a dif­

ferent ls-bit address in the object program when specified by a LOCA line.)

The LOCA form can be used as an implied address. It may be written in the standard
form as (LOCA: t), where t is a permanent tag. It may also be written in abbreviated

form as Lit, where, again, t is a permanent tag.

d. Index Register Designation and Mapping. The index register address modifier is
designated in an instruction statement by a decimal number, 1 through 15, immediately
preceding the instruction operator. A zero in this designation indicates that no index

register address modification is desired.

I SECTION:

UNIVAC m SALT I 2-C

2558
I PAGE:

I

up·

!

The index register address modifier locates a segment in computer memory; that is, it
establishes the correspondence between the lines of a segment and a particular set of

memory locations. For example, if the tag, TAG 1 appears in segment 5, and Index Reg­

ister 2 has been assigned to segment 5, Index Register 2 must be loaded with the pro­
gram relative address of segment 5 before TAG 1 can be referenced. The first line,

in the example that follows, accomplishes this using the implied address designation

of the program relative segment address (SGAO). TAG 1, and all other tags in segment 5,
may now be accessed by an instruction in which the Index Register 2 has been designated

as the address modifier. For example, the last two lines in the example below may appear
in segment 5.

t FORM CONTENT I
{ ~
}

I I I LIX i I 211 I (I S I G I AI OJ : I TI Aj G; 1 J) I Ii j I i I)
1 I ,

2 1 I iLl I I 1 I 2 I ' j T J A 1 GJ 1 1 + I 1 I I I I I I j I I I I I I

j I I I 2 I II S I TJ , ill 2 I I I TI A I Gill + 13 1 I I I I I I I " - - \ -

Although the allocation of index registers must be specified at some point by the pro­

grammer, a modifier need not be written for each instruction. The SALT Assembly Sys­
tem provides a compiler directive which allows the programmer to state the index reg­

ister assignment which will operate over any portion of the program. This compiler

directive is a MAPS line and has the following format:

~ FORM CONTENT'
I , MIA,P,S S IE IG I i I I 1= d i I I S I E j G I i I ..] I = i j I. ' I I • I .J • I

... J

where: i is a segment number, 1 through 126 (refer to Section 3-C, Segmentation),
and j is the Index Register, 1 through 15, which maps segment i. Any number of these

equational statements can be made with a single MAPS line. In a MAPS line, all fields
to the left of the form field are left blank.

The effect of a MAPS line is to equate a segment with a particular index register. The
equational statement applies to all the lines following it in the source program until a

new MAPS line is reached. The appearance of a new MAPS line can equate the remaining lines of a
with a different index register. MA P S lines may appear anywhere in the source program

and are interpreted while in their original input sequence. Within the portion of the source

program affected by a MAPS line, the SAL T Assembly will insert the designation of the

specified index register (j) into any instruction or field-select control word statement

(refer to heading D .. 2, in this section) which references the mapped segment (i) and does

not already contain an index register designation. Thus, the programmer need not desig­

nate the index register address modifier in any instruction statement which references a

13

SECTION:

2-C

PAGE:

14
u P-

UNIVAC m SALT
2558

mapped segment. If a statement referencing a mapped segment contains an index register

designation (1 through 15, or 0, when no indexing is desired), the designated register
will apply, instead of the register specified by the MAPS line.

In the preceding, example if the lines addressing TAG 1 had appear in the source program under

control of the MAPS statement as illustrated below, the index register address modifiers

need not have appeared in the instruction statements. The line loading Index Register 2

is still required since MAPS statements do not provide for the loading of index registers.

Therefore, the instructions might be coded as:

FORM CONTENT

e. Decimal Addresses. The foregoing discussion has been limited to index register modi­

fication with symbolic addressing. The decimal address, briefly mentioned above as an

acceptable address form, requires further discuss ion as it relates to index register modi­

fication. A decimal address is limited to the range 0 through 1023 and, like a symbolic

address, requires index register modification to produce a program relative address. The

decimal address usually represents a segment relative address. The program relative ad ..

dress may be obtained by use of an index register and a SGAD line, as described above.

In some cases the decimal address may be anum ber that does not itself represent a seg­

ment relative address. For example, a table of values might be included somewhere in a

segment and decimal addressing employed to reference elements in the table. If the table

does not begin the segment, decimal addresses may be used that are relative only to the

beginning of the table. In this case, the LOCA form can be used to provide the IS-bit pro­
gram relative address of the beginning of the table. This value can then be loaded into a

specified index register. This register can then be used as a modifier in all lines refer­
encing the table. The resulting addresses will be the proper program relative address of

the table elements.

When a statement is encountered which refers to a decimal address and which does not

contain an index register designation, the designation of the index register which has

been assigned by a MAPS line to the segment containing that statement will be inserted.

UNIVAC ill SALT
SECTION:

2-C

up· PAGE:
2558

7. Shift=Count Designation

There are five instruction operators that are shift operators: SR, SL, SARi SAL j and S8C.
(Refer to Appendix C.) A shift instruction statement requires a shift count designation instead

of an address designation. This designation is a decimal number which will be converted

to a 10-bit binary number in the object program. It specifies the number of bit, digit, or
character positions, depending on the type of shift operator, that the operand in the designated
arithmetic register(s) will be shifted. For example, the line:

CONTENT~

1 1 ::0::--1
_I ___ I j.-1

specifies that the contents of Arithmetic Register 1 and 2 will be shifted right two character

positions.

A shift instruction statement may use indexing and indirect addressing. (Refer to headings

C-6, Index Register Address Modifier, and C-8, Control Word Indicator in this section.)

MAP S lines are applied only to those shift instruction statements which specify indirect
addressing and do not contain an index register designation.

8. Control Word Indication

Indirect addressing and field selection are specified in an instruction statement by the control
word indicator designation. This designation, when used, is the first designation in the in­

struction statement and has the format lA, for indirect addressing, or FS, for field selection.
The use of either designation in an instruction statement requires that the appropriate con-
trol word be included in the program to complete the specification of the instruction. The ad­
dress designation of the instruction statement refers to the control word, and may be in any

acceptable address form. The formats of the indirect address and field select control words are

described in this section under the heading D, Control Words. A summary of the SALT system
instruction operators which may use these control words is contained in Appendix C.

An example of an instruction statement designating a control word indication is the line:

FORM CON"TENT\

I I I I I A! , 12 i ' , LI ' . 1 I ' IT. AI Gill' I I I i I I I I~
---- - (- -

where TAG 1 is the tag assigned to a control word line, and 2 is the index register map­

ping the segment containing TAG 1.

15

SECTION:

2-C

PAGE:

16
u P-

UNIVAC m SALT
2558

9. Computer Indicator Designation

This designation applies only to those operators, such as the sense indicator operators,
which reference computer indicators. In general, the indicator designation used in coding
an instruction is a decimal number, in the range of 1 through 8. The format of the instruc­
tion statements and the designation of the indicators vary. (See Appendix C for detailed

description of indicator instructions.)

UNIVAC ill SALT
SECTION:

2-D

up- PAGE:
2558

D. CONTROL WORDS

A control word is used to expand the capabilities of an instruction. It furnishes additional

information that further defines the action to be accomplished by certain operators. It is
referenced by the instruction it modifies through any valid type of address designation. The item

number and class fields of a control word line may contain any valid entries. The SAL T ~ystem
includes control words as described below:

iNAD Indirect Address

F SE L Field-Select

XMOD Index Register Modification

1. Indirect-Address (lNAD) Control Word

An indirect-address control word is specified by a line of the form:

FORM CONTENT

i/a, is a control word indicator designation and may be FS, lA, or left blank. If FS, the control
word addresses a field-select control word. If lA, the control word addresses another INAD
line, thereby creating a cascading effect of indirect addresses. If blank, the control word

addresses the operand of the ins truction originally calling for indirect addressing. In all
cases, the address designation of the control word in the object program will be the I5-bit
address of the permanent tag referenced by the INA 0 line.

x is the index register address modifier. It may be specified if the address is to be incremented.
If modification is not desired, a zero may be specified or this designation may be left blank,

since MAPS statements have no effect on this designation in INAD lines.

If the i/ a or x designations are left blank, their terminating commas must still appear.

tag may be any valid form of permanent tag.

I

SECTION:

2-D

2
u p-

UNIVAC m SALT
2558

An example of an instruction using indirect addressing is shown below where TAG 1 is the
address of the indirect address control word:

\ TAG C FORM CONTENT\

I I I I ! I I 1 I I I 1 AI, I' I L I, ' 1 1 , iT 1 AI G \1 !, : 1 I I : I

TIAI Gill I 1
I I NjAjD 'I 'ITj A i G j2j' I I I I I I I I i I I I i I i , - ~

TAG 2 is the name of the line containing the operand that will actually be loaded into ARlo

2. Field-Select (FS E L) Control Word

A field-select control word is specified by a line of the form:

The address designation (m) refers to the field being selected, and may be any instruction

address form. The address designation of the control word in the object program will be the

segment relative address of the referenced field. Therefore, the index register address modi­
fier (x) has the same function as in an instruction, and may be left blank if the F SE L line
is under the control of a MAPS statement. If this designation is left blank, the comma which
normally terminates it must be present.

The designations Ibb and rbb are decimal numbers specifying the left and right boundary
bits of the field being selected. The number 1 designates the least significant bit of a com­
puter word; 24 designates the most significant bit; the sign bit, bit 25, may not be design­
ated.

An example of an instruction using field selection is shown below.

, TAG C FORM CONTENT\
I

I I j I I I I I 1 I F1S I 'lilLI' 11 I' IT1A,G I 11 'I I I I I I j , j(
I

TIA,G I 11 , 1 I F lSI EI L '161 '111 'I T I A ,G,2 1 '1 I I I I I I 1 1 j j ~

J TjA,G
1

21 I I I AILI ~H A,B,C1Dj'l I I I I I I I I I I I I I I I I ,
-~ '-- -- -

Tag 1 in the first line references the field-select control word whown below it.

The operand, TAG 2 is an alphabetic constant therefore, the result of the execution of the
instruction is to place 6.6.6.0, in ARl. Figure 2-6 illustrates the arithmetic register content

under various field selection configurations.

UNIVAC ill SALT

PART OF ONE OCTAL WORD

AR1

RIGHT BOUNDARY BIT: 4

LEFT BOUNDARY BIT: 15

ARITHMETIC REGISTER DESIGNATED: 4

AR2

PART OF TWO DECIMAL WORDS

AR1

RIGHT BOUNDARY BIT: 5

LEFT BOUNDARY BIT: 4

ARITHMETIC REGISTERS DESIGNATED: 3,4

AR2

PART 0 F THRE E ALPHANUMERIC WORDS

RIGHT BOUNDARY BIT: 6

LE FT BOUNDARY BIT: 18

ARITHMETIC REGISTERS DESIGNATED: 2,3,4

AR1 AR2

PART OF THREE ALPHANUMERIC WORDS

RIGHT BOUNDARY BIT: 13

LE FT BOUNDARY BIT: 6

ARI THMETIC REGISTERS DESIGNA TED: 1, 3, 4

AR1 AR2

PART OF ONE BINARY WORD

AR1

RIGHT BOUNDARY BI T: 16

LEFT BOUNDARY BIT: 16

ARITHMETIC REGISTER DESIGNATED: 2

AR2

up·

AR3

AR3

AR3

AR3

AR3

2558

AR4

AR4

AR4

AR4

AR4

I

I SECTION:

2-D

I PAGE: 3

I1111IIII111II1 ! 111111111 111111111111111 iilll!!lll1 111111111111111111111 III! I II 1II1 ! I 11I11IIIIII ! III1
1 24 1 16 24 1 24 1 24

Figure 2-6. Examples of Field·Se/ected Operands

SECTION:
2-D

PAGE:
4

UNIVAC m SALT
UP.

2558

3. Index Register Modification (XMOD) Control Word

The instruction operator leX, increment and compare index register, always requires a control

word modifying it. Since this operator cannot be used without a control word, no control word

indicator designation appears in the instruction. The instruction address, however, must
always reference a control word. An index register modification (XMOD) control word is

specified by a line of the form:

Jc FORM CONTENT'

\
comparison amount, ± increment amount,

I

} X;M101D I) I

'--- - - } -

The comparison amount represents the value with which the contents of the index reg­
ister are to be compared after modification and may be either a decimal number 0 through

32, 767, or a permanent tag. If a permanent tag is specified, SALT assembler will use the

value of the program relative address of the tag as the comparison amount.

The increment amount represents the amount by which the index register being modified
is to be incremented (when used with +) or decremented (when used with -), and is a
decimal number, 0 through 511.

An example of the use of an XMOD line is given below, where the instruction on the first
line references the XMOD control word.

TAG C FORM CONTENT

The result of the execution of this instruction is to increment the contents of IR 7 by 16,
then compare the resultant value with 1024. The appropriate High, Low, or Equal indicator
is then set.

UNIVAC ill SALT
SECTION:

2-E

2558 I PAGE:

E. MACRO-INSTRUCTIONS

A group of coding lines that performs a frequently used function may be defined for use as a
macro-instruction by the programmer. Each group of lines so defined is assigned a name. Using
this name, the programmer may include the entire group of lines anywhere in the program by
means of a single source program line. The address, working register, shift-count, index register
address modifier, and control word indicator designations of any instruction statement in macro­
instruction coding may be variable. That is, the macro-instruction may be defined to allow any of

these designations to be specified each time the macro-instruction is used in the program. The

coding configuration produced by a macro-ins truction is not variable; that is, the operators of

the instruction statements and the number of lines remain fixed, and may not be specified when
the macro-instruction calls the coding into the program.

1. Defining a Macro-Instruction

Macro-instructions are written in source code language but the coding upon which they ca11

is subject to the fo11owing conventions.

a. The coding is limited to seventy-five source code lines.

b. The item number fields may contain no entries. The item number of the calling line will
apply to the coding ca11ed into the program.

c. Only one type of entry may appear in the tag field. This entry is called a variable name
tag and appears as $NAMN where n is a decimal number. This entry simulates the per­

manent tag mechanism. For each such designation the SALT Assembly wi11 generate a
unique tag and substitute it in the macro-code in place of $HAMn. New tags are generated
each time the macro-instruction is used.

d. Any designation except an operator may be left unspecified. The specification is deferred

until the coding is called by use of the variable designation $V ARn where n is a decimal

number. This designation indicates to the compiler that a variable must be specified when

the MCRO coding line is written, $VARn is automatica11y replaced with a designation as

specified by the calling line.

e. The address designations are limited to the following:

1) Variable Name Tag ($HAMn)

2) Standard Location Address ($LOCn)

3) Reflexive Address ($HERE)

4) Implied Address

5) Decimal Number, denoting an increment

6) Variable Designations ($VARn)

1

SECTION:

2-E

PAGE:

2
up· UNIVAC m SALT

2558

f. The macro-code may neither call on nor define another set of such coding.

g. The first line of a macro-instruction definition is a compiler-directive statement as
illustrated in the first line of the following example:

\ TAG C FORM CONTENT \

J permanent tag I
I I I I I i I M1C1D1F I (

l - ----.......- - --- - ~

- - - -
h. The class and content fields of this line are normally disregarded. the form field contains

MCD F which indicates the beginning of a macro-instruction definition. The item
number field is blank. The tag field contains the permanent tag that names the

macro-instruction. The macro-code immediately follows this line.

i. The last line of macro-code is followed by the -compiler directive statem ent in the

MCND form.

I I

CONT:~

I~_I_=-::\

where:

1) The item number, tag, class, and content fields are blank.

2) The form field always contains MCN D which indicates the end of a macro-instruc­

tion definition.

2. Using a Macro-Insturction

In order to use a macro-instruction, the programmer must know the entrance and exit con­

ditions imposed by the macro-code so that this coding may logically be inserted in the pro­
gram. Further, he must know exactry what variables ($VARn) occur in the macro-code, since
he must specify their values in the calling statement. Assuming that this information is
known, the macro-instruction is used by a line of the following format:

I SECTION:

UNIVAC ill SALT
I 2-E

2558
! PAGE: up·

TAG C FORM CONTENT

a. The item number of this line will be the item number effective over the resulting

object code brought into the program during assembly.

b. The tag field may contain a permanent tag which will name the first line of the

coding called into the program by the macro-instruction.

c. The class field is always blank.

d. The form field is always MCRO which indicates that a macro-instruction is being

called.

e. The first designation in the content field is the name of the macro-instruction. This
is the tag that has been assigned to the MCDF line. It is always to be preceded by

an asterisk.

The designations Pl' P2' ••• are the values, or parameters, required by the macro­
instruction to replace the variables used in the macro-code. These parameters may

be any valid designations that might have been used, had the lines of macro-code
appeared as part of the source program. There must be as many parameters as there
are different $VARn symbols in the macro-code. The parameter Pl will replace $VAR 1
wherever it appears in the macro-instruction; P2 ,will replace $VAR2 and so forth.

3. Integration of Macro-Instruction Coding into the Program

Although a macro-instruction is usually defined as a part of the source program, no copy

of it will appear in the assembled program simply as a result of its definition. It will appear
as assembled object code only where it has been called by the source program. The number
of lines resulting from a given macro-instruction is always the same, regardless of the

variables specified. All lines of macro·code created by implied address in the macro-code
will be sent to the pool segment defined to include the item number of the calling line.
All other macro-code lines become part of the coding segment defined by this item number
(see section 3-B-2 and 3).

The foregoing discussion has been limited to macro-instructions and associated lines of code
which are defined and called in the same source program. A mechanism is available for stor­
ing macro-instruction definitions in the magnetic tape library file. Any source program may then

call this coding into the assembled program without first including the definition. A macro­

instruction definition in a library has the format described above except that the word LAB E L
appears in the item number field of the MCD F line, and that the MCN 0 line is not required.

3

SECTION:

2-E

PAGE:

4
, up· UNIVAC m SALT

2558

The format of the calling line is as described on page 33, except that the asterisk preceding
the name of the macro-instruction is omitted.

An example of the use of a macro-instruction is given below. The macro-ins truction
definition (not in the library file) might appear as:

TAG C FORM CONTENT

The calling statement for this macro-instruction requires that two parameters be furnished
to be substituted for the two variables in the definition. If the calling statement is specified
as:

Jc FORM CONTENT \
\

M1C1RlO
(

*IZIZITIEISITIIITIA,GI111ITIAIGI211, I I 1\
_ l - - -

the object code in the assembled program will be as though the following lines had been in­
cluded in the source program:

CONTENT

The object code will appear on the codedit output of the SALT Assembly.

SECTION:

UNIVAC m SALT up- PAGE:
2558

3. OBJECT PROGRAM LAYOUT

One of the considerations requiring the attention of a programmer is the manner in which a program
will appear in memory. This section of the manual deals with the means provided by the SAL T
system for control of the physical arrangement of the various program components.

A. DATA STORAGE

The programmer may use the compiler directive AREA to allocate areas of memory for data
storage. These areas may be addressed by temporary storage tags, modified tags, or, if the
EQUL form described below is used, by unmodified tags. This portion of the manual describes

in detail the AR EA and EQU L forms. A unique 44-word data storage area, which is required
by all programs for use in connection with the Executive Routine, is described briefly.
(A detailed diagram of this area is contained in Appendix D.)

1. AREA Form

In addition to specifying instructions, constants, and control words, as described in Section
2, most programs must allocate memory for the storage of data which will be read into the
system or generated by the program. The compiler directive AREA is a means by which such
data storage areas may be allocated. This line has the general form:

a. The item number and class fields may contain any valid entry.

b. The form field of an AR EA line contains the symbol A R EA. The content field contains a

decimal number, n, which specifies the number of memory words to be allocated to this

storage area.

c. The area may be either in a coding segment (if the class field contains an E or is blank)
or in a pool segment (if the class field contains an asterisk). If a coding segment is speci­
fied, the tag field of the AREA line contains a permanent tag which names the first or most
significant word of the area. Any word of the area may be addressed by using this tag with

the appropriate address modifier. Thus, the area resulting from the line in the following

example will be 10 words in the coding segment. (Subsections Band C of this section explain
segmentation.)

3-A

1

SECTION:

PAGE:

3-A

I up· UNIVAC m SALT
2

I

,.
I

31° \

LV"

I

2558

ITEM NO. TAG C FORM CONTENT\

°1° °1° °1° SIT I 0 1 R I A I G I E I AIR1EIA 1 I ° I ' I I I I I I I I I III I I i I I I

- - -
a. The first (most significant) word of the area can be referenced by the tag STORAGE.

b. The second word of the area may be referenced by the modified tag STORAGE + 1,

c. The last (least significant) word of the area may be referenced by the modified tag
STORAGE + 9,

If a pool segment is specified, words within the area are addressed by temporary
storage tags of the form $Tn. (Refer to Temporary Storage Tag Address, Section
2-C-5.) Thus, the area resulting from the line

II
I

ITEM NO. TAG C FORM CONTENT'

I
3 1010 10 °1° °1° I I I I I I I * AIR,EIA 11 ° I , I I I I I I I I I 1 1 I I I I I I I I

Lv I --- "... - -
will be 10 words in a pool segment.

a. The first (most significant) word of the area is addressed by the tag $T1,

b. The second word of the area is addressed by the tag $T2,

c. The last (least significant) word of the area is addressed by the tag $T10.

Specifying an area in a pool segment overlaps the use of $Tn to some extent. It does not
preclude the use of higher numbered temporary storage designations pertaining to the
same segment although in such a case the AREA statement will be redundant. When such

designations are encountered, the SALT Assembly will increase the data storage area
to be allocated accordingly. For example, if a line of codin g referred to $T 12 of the area

illustrated above, the data storage area allocated in the pool would be 12 words instead
of 10.

-J

p.
)

I I
\

(
\

UNIVAC m SALT
up-

2558

Although each value of $TIi represents a unique word in a given pool segment, a pro-
gram may contain more than one pool segment. Thus, for example, if a program contains

two pool segments, the tag $T 1 applies to two different words. Therefore, when $T 1 is

used as a designation,the pool segment associated with the referencing instruction will

be accessed. The means by which a pool segment is associated with a given line, or
group of lines, is discussed in subsection 3-C.

SECTION:

PAGE:

2. EQUL Form

I

0 10

[
I
I

!

As described above, words in the data storage area of a coding segment may be addressed

implicitly. That is, the second and following words of the area may be addressed in terms

of their relation to the first word. The compiler directive EQUL may be used to provide

mnemonic addressing for these words. A permanent tag address may be equated with another
permanent tag or with a decimal address by the use of the EQUL form. The general for-

mat of an EQUL line is illustrated in the first line in the example below. Entries in the

item number, class, and tag fields are unnecessary. The address (add) designation is

either a decimal address or a permanent tag. If it is a permanent tag, it may have numeric

modifiers. The tags (tag 1, tag 2, •••) are permanent tags, without modifiers, which are

equated with the address. That is, each tag represents an explicit name which is assigned

to the address. Thus, in the following example, the eleventh word of the coding segment area
created in line 00.03 is equated with the permanent tag TOM.

ITEM NO. TAG C FORM CONTENT

EIQ,U,L
add, = tag 1, tag 2, ... }

I 1 1 1 tIl [i I I i I I I I I [1 I I I I [I I I i I ! I
I

o 13 0 10 010 Sj PIAL C, E1 1 I A,RJEtA 2[4[, I I I 1 1 I I I [I I I 1 I 1 I i 1 i \

[I I I I I I I I EIQIUIL SIP [A I C 1 E 1 +1 1 J 01 I J = I T 1 0 I Mil Ii I 1 I I 1 J ,
!)

010~0 14 o 101010 I I I I I J I L I , I 1 I ITIOIMI I I i I I I I I I I 1 I I

'----1 I I I
I ---- - - --

This word is addressed in line 00.04 using the explicit name TOM; it could also be accessed
using the tag SPAC E + 10.

Although the EQUL form has been described in connection with the addressing of words

allocated by AREA lines, its use is not limited to this type of addressing. That is, the
content field address designation may be any permanent tag or decimal address in the
program.

3-A

3

iECTION:

3-A

'AG E:

4

UNIVAC m SALT
2558

3. Executive Area

Every SALT system object program contains a 44-word area. It is divided into two sections,
the first of which is used for program control in connection with the Executive Routine. The
second section contains a table of tape information consisting of a five-word packet for each
UNISERVO IlIA file associated with the program. These two sections occupy the first words
of the first segment of the object program and are automatically established by the assembler.
The programmer is not required to supply an AREA line to provide for this information. How­
ever, overlaying or altering its contents by the source program must be avoided. A chart
describing the Executive Area is contained in Appendix D.

UNIVAC m SALT
SECTION:

3-B

PAGE:
2558

B. SEQUENTIAL ASSIGNMENT

1. Item Number

The item numbering system used in the SAL T Assembler is based on the Dewey
System. The eight characters of the item number field are treated as four two-character
numbers, each of which may range from 00 through 99. The left-most two characters are
treated as the major ordering level, the right-most as the most minor ordering level. The

assembly process evaluates an item number using both the numerical value and level

position. When an item number differs from the preceding item number only on a given level,

all higher levels may be left blank and these will be considered to be identical with the

predecessor. All lower levels may be left blank and will be assumed to be zeroes.

In Table 3-1, the first column illustrates a series of item numbers as they might appear

in the item number field. The second column shows the full eight-character number as it

is interpreted by the Assembler.

The Dewey System notation shown in the second column, where periods indicate the level
partitions, will be found throughout the text. This notation is also used in the source code
whenever an item number is to be specified in the content field. Such notation permits item
numbers to be written in a shortened form, subject to the following rules:

a. The left-most period shown represents the left-most divisional line in the item number

field; a second period represents the second line, and so forth.

b. The period at the end of a series of numbers or after a single number is omitted.

c. Terminal zeroes may be omitted.

d. Any two-character number, whose left-most character is zero may be written as a single

character.

The item numbers shown in Table 3-1, when written in the shortened form, would appear as:

1

1.0.1

1.0.1.1

2.0.0.2

2.0.1

1

SECTION:

3-B

PAGE:
2

u p-
UNIVAC ill SALT

2558

ITEM NO. FIELD SAL T INTERPRETATION

011 I I I 01.00.00.00

011 010 o 11 I 01.00.01.00

1 1 I 011 01.00.01.01

012 010 010 012 02.00.00.02

J I 011 I 02.00.01.00

Table 3-1. Item Number Interpretation

Every line need not have an entry in the number field. If no entry appears, SALT Assembly

System will assign the immediate Dewey System successor of the preceding number by
adding a one to its lowest specified level. For example, the successor of:

01

01.00

is 02;

is 01.01;

01.01.99 is 01.02.00;

01.04 is 01.05.

The assembly will treat as an error a line whose item number and class field entries
are identical to those of a previously encountered line.

2. Class

An * (asterisk) in the class field specifies that the content of this line is not to be placed
in the object program in the position that its item number would normally indicate, but is to
be isolated into a special area of the object program known as a pool segment. This class

designation is usually used for words, such as program constants, that will not be executed

directly and which will remain unchanged throughout the program. Duplicate words are

eliminated by the compiler when sent to the same pool segment. Further information on the

pool segment will be found in section 3-C, Segmentation.

An E in the class field also specifies an object program placement differing from that

normally indicated by the item number. In this case, the content of the line is retained in

the segment indicated by the item number, but it is placed at the end of the segment. This

class is generally used for words such as program counters, that will not be executed

directly and which will vary throughout the program. Unlike duplicate asterisk class words,

duplicate E class words are retained in the object program.

SECTION:

UNIVAC ill SALT
: UP. PAGE:

2558

.A.. = (hyphen) in the class field can have one of two meanings. depending on the statement
in the content field. One meaning is to specify that the content field of this line is a con­

tinuation of the content field of the preceding line. In general, this device is used when

there is insufficient space in the content field for the complete statement of a program in­

struction or compiler directive. Both the tag field and item number of the hyphenated line

are disregarded by the assembler.

The - (hyphen) also may be used to link together a series of data designator or declara­

tive lines. This usage of the hyphen specifies that the content of the linked lines will

occupy consecutive memory locations in the object program. Thus, if the first line of the
series has an E or an * (asterisk) in its class field, the entire series will be treated as a

single entity in terms of placement within the object program and the elimination of dup­

licates. The item numbers of the hyphenated lines are disregarded by the assembler, but

the tag fields retain their normal function. This use of the hyphen to specify multiword

entries is further discussed in section 2-B-4, under heading Multiword Data.

A space in the class field indicates that the line does not require any of the features

offered by the other class field entries.

3-B

3

SECTION:

up·
! 3-C UNIVAC ill SALT
I PAGE:

2558 I

I

C. SEGMENTATION

A SALT system source program is subdivided into segments. A program may contain up to 126
segments; each segment may contain 1024, or less, lines of source code that will occupy
consecutive memory locations in the object program.

The item numbers of the lines are used by SALT to order the lines and to associate them with

the proper segment. The programmer defines segments by indicating the item numbers that are

to be associated with each segment. The segment definition also fixes the position that the

segment is to occupy in computer memory and its position on the Master Instruction Tape relative

to the other segments in the program.

Two types of segments may appear in a source program: coding segments and pool segments.

Source code lines which contain a blank or an E in the class field go to a coding segment.

Lines which contain an asterisk in the class field, lines which are created by the use of im­

plied addressing, and temporary storage lines go to a pool segment. The same range of item

numbers may be included in both a coding and a pool segment. The class field of a line deter­

mines the type of segment to which that line belongs. Furthermore, the item number of a line

which does not contain an asterisk in the class field, but which does contain either an implied
address designation or a temporary storage tag address, must be included in both a coding seg­

ment and a pool segment. This is necessary because while the line itself is part of a coding

segmen t, it is directing another line to a pool segment.

Usually, one pool segment is defined to encompass the item numbers included in several coding

segments. Pool segments as well as coding segments are limited in size to 1024 lines. There­
fore, it is necessary to take cognizance of the number of lines being sent to pool segments in

order to determine the number of coding segments which a given pool segment will cover. The

elimination of duplicate lines from pool segments usually results in their containing less lines

than actually sent to them.

Macro-instructions may create lines which will go to a pool segment. Also, use of the SAL T

system input-output routines (to be discussed in sections 5 and 6) requires that pool segments
be defined for the lines communicating with these routines. Therefore, it is a recommended

practice to include one or more pool segment definitions covering the item numbers of all coding

segments in the program, since the occurrence of a pool segment line whose item number is not
included in a pool segment definition will be treated as an error.

1. Segment Definition

A segment definition line is identifi ed by the symbol SGMT in the form field. Such a line is
required for each segment of the program. The segment definition lines for the entire program
are written immediately following the initial label line. These lines have the following
format:

1

SECTION:

PAGE:

3-C I UNIVAC m SALT
2

I u P-

I
2558

ITEM NO. TAG C FORM CONTENT

n In '[n I~ ~i~ ~I~
I

: I I I I I SIGIMI T ~,I '1 5
'1 'I • I • I • Id 11 ' Id'1l 'I· I . I • I ' I I 1 I I 1 1

LV-~
. . -- - ---~ - --

a. The entry nnn in the item number field designates the number, 1 through 126, of the

segment being defined. It is justified left, with spaces to the right. The segment num­
ber defines the position on tape occupied by the object code segment, relative to the

other segments in the program, and is a decimal number, 1 through 126. The SALT As­

sembly will store the object code segments on t ape in ascending sequence by segment

number. The position of the segment on tape is important to the programmer in specify­

ing program loading. (Refer to heading C-3, Load Definition.)

b. The tag field contains a permanent tag which names the first line of the segment, or it
may be left blank.

c. The class field either is blank indicating ~ coding segment, or contains an asterisk

indicating a pool segment.

d. The form field contains the symbol SGMT.

e. The entries 51' 52' ... , in the content field define the position that will be occupied
in memory by the segment being defined relative to the other segments in the program,

and are either ZERO or SE Gnnn,

(1) ZERO, to indicate that this segment has no predecessor in memory; that is, this

segment occupies the first part of the memory area allocated to the program. The

initial segment of a program (segment number 1) is always in this position, and no

other segment may be so defined. It should be noted that the first segment con tains

the executive area and thus may never be overlaid.

(2) SEGnnn, to indicate that segment number nnn immediately precedes this segment in
memory. In a program with overlays, it may be necessary to define a segment posi­

tion by specifying more than one predecessor. (Refer to section 4-B, Overlay.)

For example, consider a program containing four segments. Segment 1 is the initial

segment of the program, and is defined as having no predecessor (5 is ZE RO,).
Segments 2 and 3 are overlays which will never be in memory at the same time, but

whichever is present will immediately follow segment 1. Therefore, each of these

segments is defined as having segment 1 as its predecessor (5 is S EG 1,). Segment

4 will follow either segment 2 or segment 3 in memory and will always be present.

It is defined as having both segments 2 and 3 as predecessors (5 is SEG2, SEG3,).

The position of segment 4 is defined in this manner because segment 4 must be
available in memory with either predecessor, and therefore must start in memory

i SECTION:

UNIVAC ill SALT
I 3-C

, up-
2558

beyond the end of the longest predecessor. This specification of all possible pre­

decessors provides the SALT system with the information necessary to properly

position the segment.

I
, PAGE:

f. The entries d11 d21 •• '1 in the content field are Dewey number designations which de­
fine the ranges of item numbers contained in the segment. Lines within a program are

assigned to a type of segment by various mechanisms. For example, a line which con­

tains * (asterisk) in its class field, or which has been created by an implied address

designation, is assigned to a pool segmen t; one with no entry or an E is assigned to a
coding segment. The actual segment to which a line is assigned depends upon the item
number of the line. The Dewey number (d) designation in a segment definition line de­

fines the item numbers contained in the segment by specifying the lower limit of the
range of item numbers contained in the segment. The upper limit of this range is defined
by the next higher d designation for any segment of the same type.

For example, a program which comprises four segments, two coding and two pool, might

contain the indicated ranges of item numbers.

SGMT
DEWEY NUMBER

SEGMENT TYPE RANGE OF ITEM NUMBERS (eI) DESIGNATION

1 Coding 00.00.00.00 through 01.49.99.99 0,

2 Coding 01.50.00.00 through 04.99.99.99 1.50,

3 Pool 00.00.00.00 through 03.99.99.99 0,

4 Pool 04.00.00.00 through 04.99.99.99 4,

Table 3-2. Segment Designations (d)

Note that the upper limits of segments 1 and 3 are implicitly defined by the lower limits
of segments 2 and 4. The upper limit of both segment 2 and 4 is assumed to be the highest
item number in the program (04.99.99.99), since there are no higher d designations for

any segments of the same type. Note, too, that the ranges of pool segments 3 and 4 over­

lap those of coding segments 1 and 2, but do not overlap each other. This reflects the

fact that a segment may overlap any number of segments of a different type, but may not

overlap a segment of the same type.

It should be further noted that the d designation is written in Dewey notation, and may
appear either in its full form, or in any acceptable shortened form, as shown in the ex­
ample above.

3

SECTION:

3-C

PAGE:
4

up· UNIVAC m SALT
2558

If a segment contains more than one range of item numbers, the lower limit of each

range is specified. For example, coding segment 1 of a program contains item numbers
o through 10.5.2, and 12.2 through 12.5. Coding segment 2 contains item numbers 10.6

through 11.9. The Dewey number designation to be used in the content field of the SGMT
coding line for segment 1 is 0, 12.2, , and for segment 2 is 10.6, .

Some examples of segment definition lines appear at the end of this section.

2. Specification of Segments by Subroutines

In the sections on input-output, sort, and merge routines (sections 5, 6, and 7), it will be
seen that these routines may create their own segments in a program. The establishment of the

relative position of these segments in the program is the responsibility of the programmer. In

general, the positions of these segments are specified when the routine is called. However,

the programmer may wish to use a segment of one of these routines as the predecessor for a

program segment. These segments are specified by a designation of the form m* SEGnnn,
where m (called a marker) is a permanent tag assigned to the line calling the routine, and
nnn is the number of the last segment created by the routine. The specific value of nnn is
given in the descriptions of the routines.

3. Load Definition

A load is composed of one or more segments which will be contiguous memory locations at
one time. These segments are stored on the object code tape in an unbroken ascending
sequence. Their segment numbers must be in an unbroken sequence. When loaded into the
computer, the segments comprising the load are to occupy one continuous area in memory.

A SALT system program consists of one or more loa.ds. Each load is defined by a compiler

directive load definition statement, which may appear anywhere in the source program. The

load that is defined to contain the first segment of the program is automatically read into

memory when the program is initiated.

Subsequent loads may be read into memory as program overlays. (The method of calling for
an overlay is described in section 4-B, under the heading Overlay.) Load definitions, in

themselves, produce no coding in the assembled object program. They simply direct the

assembler to partition the program into units which are eligible to be treated as overlays.

A load may be defined to become one in a chain of loads. That is any load definition statement
may specify a successor load which is always to accompany the defined load in memory. The

successor load, in turn, may define its successor, and so forth. Thus, two or more segment
groupings that cannot be defined as a single load because their segments are not consecutively
numbered, or because they are not to occupy contiguous memory areas, may be defined as a
series of chained loads and treated as a single overlay.

UNIVAC m SALT
I SECTION:

I 3-C

The format of the load definition s tatemen t is:

a. The item number field is not relevant.

up-
2558

_CONTENT 1
-~..--:--~

b. The tag field entry is a permanent tag naming the load.

c. The c lass field is blank.

d. The form field contains the symbol LOAD.

e. nnn is the segment number of the first segment in the load.

f. s is the name of a load to be chained to this load. If there is no chained load, this
designation is omitted.

For purposes of illustration, consider a program requiring three distinct memory layouts
during its execution. The program is composed of eight segments. In its initial state,

segments 1, 2, 3, 5, and 6 are in memory. An alternate state requires that segments

I PAGE:
i

I

1, 4, 5, and 6 are in memory, where segment 4 occupies the same relative position in

memory as segments 2 and 3 in the initial state. Furthermore, it may be necessary to re­
turn to the initial state after the alternate state has existed. In a closing state, segments

1, 7, 8, 5, and 6 are in memory where segments 7 and 8 occupy the memory space of segments
2 and 3.

The three possible memory layout states are shown graphically below and represent rela­

tive positions of segments in memory after various overlays have been called. Note that

each segment always occupies the same area in memory.

ALTERNATE CLOSING
INITIAL LOAD (AFTER AN OVERLAY) (AFTER AN OVERLAY)

Seg 1 t LOAD A Seg 1 I LOAD A Seg 1 LOAD A

Seg 2 I LOAD B Seg 7

Seg 4 LOAD C LOAD E
Seg 3 c __

8
l~l~l~l~l~l~l~l~lt~lt~Ul~@~ =U!l!ill@ilili@iJlUU

vt::g

Seg 5 I Seg 5 Seg 5

LOAD 0 LOAD D LOAD D

Seg 6 Seg 6 Seg 6

Table 3-3. Segments in Memory (After Overlays)

5

SECTION:
3-C

PAGE:
6

up- UNIVAC m SALT

~O.

I

I

II
\

I

I, ,

i

II I

I
.1 I

I
I

J-. -

2558

Segments 1, 2, 3, 4, and 5 in the example below, are coding segments; segment 6 is a pool
segment encompassing the same item numbers as these segments. Segment 7 is a coding
segment, and segment 8 is a pool segment encompassing the item numbers of segment 7.
The segment definition lines required for program are:

TAG C FORM CONTENT

, 1 , ! , , SIG,M, T
Z E ROO . (Item Nos. 00.00 - 01.99)

, , , , 1 i

I " " I, " I " I I I , I i I I I I I

,
II

12 (II
S GMT S E G 1 2 : (Item Nos. 02.00 - 02.99)

1\ I I I I , j 1 j I I I I I, I' I , , I I j , , I , , I I I I I I

13 SIGIMI T
(Item Nos. 03.00 - 03.99) I) , 1 , I , 11- i S I E I G I 21 ' I 3., ' I : I I Ill' I I L J 1 1 , L , 1

14 SIGjM, T
(Item Nos. 04.00 - 04.99)

I 1 I I I I I S,EIGjll,,41/1:j , II I j j I' , , J I I I 1 ~

,5 I I I I I , 1 S,GIM, T
. (Item Nos. 05.00 - 05.99»)

S 1 E 1 GI3 I I I S I E I G 14 j I IS J E I GI8 I I I 5, " , , , I I , J

* S j Gj M, T
(Item Nos. 00.00 - 06.99)

16 I I j I : I i S,E j Gj 5j "0,,,:, j j I I' , , 1'1 j I j , I 1

17
(Item Nos. 07.00 - 99.99))

I I I I I I I SjG1M,T S,E,G,1",7",:, , , , , , , , , , , , , , , , ,

* (Item Nos. 07.00 - 99.99)
18 , I , , : I .1 S,GjM1T S,E,G I 71,17 1,,:, , , , , , j 1'1 I I I I I 1 I

- _I --.... ~ ---

Note: Segment 5 requires the specification of two predecessor segments.

The load definition lines required for this program are:

TAG C FORM CONTENT

The initial state is composed of three separate loads, A, B, and D, together. Load A

contains only segment 1, load B contains segments 2 and 3, and load D contains seg­
ments 5 and 6. Load B is separated from load A because it may require reading as an
overlay after the alternate state has been in memory. Load D is separate from load B
because it does not necessarily occupy memory contiguous with load B. Load C, con­
taining segment 4, and load E, containing segments 7 and 8 are separate loads by vir­
tue of their overlay status.

UNIVAC ill SALT
SECTION:

4-A

up· PAGE:
2558

4. PROGRAM CONTROL STATEMENTS

It should be noted that the SAL T system not only includes the source program language and an
assembler, but also includes elements which control the execution and operation of object pro­
grams produced by the assembler.

This portion of the manual deals with source program statements which call upon the program
control elements of the system which constitute the SALT Executive Routine. These statements
provide for:

• starting the program,

• calling for overlays,

• taking memory dumps,

• establishing rerun points and terminating the program,

• handling overflow and invalid operation codes,

• controlling the typewriter and logging.

A. START

The starting line of the program, that is, the first line to be executed after the program has
been loaded, is specified in a line of the form:

The form field contains the symbol ST RT . The content field contains a permanent tag naming
the starting line, and a11 other fields of the line are disregarded by the compiler. Only one such
line may appear in a program.

The starting line must be a line which will be read into memory with segment 1, that is, it

must be contained in segment 1, or in the load containing segment 1, or in a load which is

chained to the load containing segment 1.

Before transferring control to the starting line, the SALT Executive Routine will load Index

Register 1 with the address of'the first line of the segment which contains the starting line.
Thus, to address other lines in the same segment, the starting tine should either d-esignate
Index Register 1 as an address modifier or be mapped by Index Register 1.

1

UNIVAC ill SALT

SECTION:

4-B

up· . PAGE:
2558

B. OVERLAY

A load, or a series of chained loads, may be read into memory as an overlay at any point during
the execution of the program. The position which the overlay will occupy in memory is deter­
mined by its segment definitions. Segment 1 of the initial load may not be overlaid. The coding

calling for an overlay includes in part, two statements the first of which is illustrated in the
following example:

,
C FORM CONTENT \

I
X LlO C

1 I o i ' 1 (I L, 0 I I 1
0

I : ,a 11), 'L 1 I I I I I I I 1 II

(---l -
This line specifies the particular load bein g called.

Item number, tag, and class field may be any valid entries.

XLOC

0,

a
1

must appear in the form field,

must be the first designation in the content field,

is the use of the implied form of address in lieu of a second

coding line, where LDID is a form used to fabricate a load
identifier word.

is a permanent tag naming the load definition (LOAD) line of
the overlay load.

A LDID statement has the following form:

C FORM

LIDIIID

)
I 1 1

""- -
where:

LDID,

q,

CONTENT\
J

q I 'j i i 1 1 j 1 1 i I I I

I , , ! I 1

(
I I I j I 1 1 I i 1 1

,
I I I i I 1 1i

- -- ----J

item number, tag, and class fields may contain any valid en try.

must appear in the form field.

is the entry used in the tag field of the LOAD coding line naming
the particular load.

The line which follows the XLOC tine, is a standard tOeA line linked to the Xt.OC
line by a hyphen in the class field. It establishes the address of the line to which control
will be transferred when the overlay load has been read into memory.

1

SECTION:
4-8

PAGE:

2

\NO.

1 ,

i up- UNIVAC m SALT
2558

C FORM CONTENT

Item number, tag, and class fields may be any valid entries.

LOCA

a2,

must appear in the form field,

is a permanent tag naming the line to which control will be trans­
ferred when the overlay has been read into memory. Any line that

will be in memory after the overlay has been read in may be
designated.

In addition to these statements, the coding calling for the overlay must include instructions
to initiate the actual read-in of the overlay. These instructions will load Arithmetic Register
1 with the information fabricated by the XLOC line, and load Arithmentic Register 2 with the
address fabricated by the LOCA line. Control is then transferred to the location specified by the INAD
control word in low order memory location 23, as illustrated by the lA" TUN" $LOC23
instruction statement in the following example. (Note that no index register address modifier
is required, and that mapping does not apply.)

When these instructions have been executed and the overlay load has been read into memory,
control will be returned to the program at the address specified by the LOCA line. The
loadings of the index and arithmetic registers are unchanged.

An example of coding callin g for an overlay load is given below.

TAG C FORM CONTENT

I 1 I I I I I 1 1 XIL10IC
(L DID . LOA DB) Fabricate address of load 10 °1, 1 1 I I I' I' I 1 I I' I I 1'1: I 1 I i I 1 I 1 1 I I 1 1

12

13

14

-

Fabricate address of first instn.
CIAjLILIBI 1 1 - L101C1A BI E LG [I [Nl B I ' I : II 1 1 1 1 I 1 I 1 I 1 1 1 1 1 I I I 1 1

Load XLOC and LOCA words

I I I I I I I 1 I I LI'1112\'ICIAIL\LIBIII:\ \ 1 III I 1 IIII1 I 1 J 1

Read in the overlay
1 I 1 I 1 I [L 1 I IjAjll,jT1UINI '1'J$jL101Cj2131' 1:1 1 1 1 1 1 1 .1 1 1 I

-- -

LOAD B is the tag field entry of the LOAD definition line of the overlay load. The permanent

tag, BEG IN B, names the address to which control will be transferred after the overlay is read
into computer memory.

I

-

UNIVAC m SALT
SECTION:

4-C

up· PAGE:
2558

c. OVERFLOW

Two types of overflow are recognized by the SAL T system; expected and unexpected. Expected

overflow is overflow which is anticipated by the programmer. An arithmetic instruction that is

expected to cause overflow is followed by an unconditional transfer (TUN) instruction. If overflow

does not occur in the execution of the arithmetic instruction, the TUN,wi11 transfer control to
the appropriate instructions. If overflow does occur, control will be transferred to the instruction

which immediately follows the TUN, and which is expected to be the first line of the programmer's
overflow codin g.

Lines 3-5 in the example be low cover expected overflow.

ITEM NO. TAG C FORM CONTENT\

I I I 1 I I I I , I I , I , L",l"I C ,O,U j N,T,E J R", , J I I , I I I I
\

L I t I ,2 I t ! I J 1 I I , A",1",$,T,5 L ,J j , ~ I ~ L 1 i I 1 J

I I 1 3 Tj U1Nl,L 51 F jL ,
I I ~ J 1 -' 1 J J 1 j 1 11 j 1 j 1 1 1 1 I

I I
.~ 'I 11 1.1 (1 0 I C I MIL I : , 0 I) i, i

I ,4 I t I I I , , , t J -' I 1 J J J

I
\ 1 J 1

5 5,
t , I 1 , , , , I SI TI , I 1 1 " C I 0, U, NI TI E,R 1 ,1 , , I I I I I

\
I I I , I , , I 1 I I , I I I I I I I I , I I I I

L

This coding adds the con tents of temporary storage location ($T 5) to the contents of a line

named COUN T E R. When overflow does not occur in the execution of line 2, control is

automatically transferred to line 3 which will always contain a TUN instruction. In this

example, line 3 transfers control to line 5 where the sum of the addition is stored in the
counter, and processing continues.

I

When overflow does occur in the execution of line 2, control is automatically transferred to

line 4 where the coding to handle the overflow condition begins. In this example, the counter

is set to zeroes and processing continues.

1

\
)
I)
,

1

SECTiON:

4-C

PAG E:

2
uP· UNIVAC m SALT

2558

Unexpected overflow is overflow which is not anticipated by the programmer, that is, it is

caused by an arithmetic instruction that is not followed by a TUN instruction. Unless every

arithmetic instruction in the program is followed by a TUN instruction, a special section of

coding to handle unexpected overflow must be included in the program. The first line of this
coding is as follows:

This line specifies its own permanent tag in the content field. The word resulting from the

SGAD line will contain the address of the first line of the segment containing this SGAD
line.

The instructions to be executed if unexpected overflow occurs will immediately follow the SGAD
line. When unexpected overflow occurs, Index Register 1 will be loaded with the value established
by the SGAD word before transferrin g con trol to these instructions. Therefore, these instructions
should be mapped by Index Register 1 or should designate it as an address modifier.

In addition to the inclusion of coding written to handle unexpected overflow I a program containing

this coding must also contain a line naming the location of this coding. This line may appear

anywhere in the program and has the form:

a.. The item number and class fields are disregarded.

b. The tag field may contain a permanent tag.

c. The form field must always be OVER.

d. The content field contains:

a, is a permanent tag naming the first line (the SGAD line) of the unexpected

overflow coding.

The sample program in Appendix A illustrates the use of these control statements.

UNIVAC ill SALT
SECTION:

4-C

up· PAGE:
2558

When an arithmetic instruction which is not expected to cause overflow is to be followed by

an unconditional transfer, the special operator TUNS must be used. This operator will function

in the same manner as a TUN operator, unless the arithmetic instruction preceding it causes

overflow. If this occurs, the overflow will be considered unexpected overflow, and the SALT
system will transfer control to the program's OVER coding.

The following is an example of coding written using the TUNS operator:

TAG C FORM CONTENT

In this example, the addition in line 2 is not expected to overflow, but the logic of the program

is such that a transfer of control instruction is required in the line immediately following the

addition. If a TUN operator appeared in line 3, SALT would interpret this as expected overflow,

and in the event of overflow, transfer control to line 4.

The use of the TUNS operator avoids this, and if overflow occurs, control will be transferred to

the OV E R coding for the program. When overflow does not occur, control goes to line 3 and the

TUNS operator effects an unconditional transfer of control to an address named by the tag TEST.

3

UNIVAC ill SALT
SECTION:

4-D

up· PAGE:
2558

D. INVALID OPERATION CODES

If there is a possibility that the program may at some time contain invalid operation codes, a
special section of coding must be included. The SALT system will transfer control to this

coding whenever the execution of an invalid operation code is attempted. The first line of this
coding is:

CONT=~
'~' '=j

This line specifies its own permanent tag in the content field. The word resulting from the SGAD
line w ill contain the program relative address of the first line of the segment containing the
SGAD line.

Immediately following the SGAD line are the instructions to be executed when the execution of

an invalid operation code is a ttempted anywhere in the program. When such an a ttempt is made,
Index Register 1 will be loaded with value established by the SGAD line before transferring
control to these instructions. Therefore, these instructions should be mapped by Index Register
1 or should designate it as an address modifier.

In addition to the inclusion of the invalid operation coding, a program containing this coding must

also contain a line naming the location of this coding. This line may appear anywhere in the

program and has the form:

!~

CONTE~

where:

a. The item number and class fields are disregarded during assembly.

b. The tag field may contain a permanent tag.

c. The form field must always be INOP.

d. The content field contains 0, a permanent tag naming the first line (the SGAD line) of the
invalid operation coding.

The sample program in Appendix A illustrates the use of these control statements.

1

UNIVAC ill SALT

SECTION:

4-E

up-
2558

E. TYPEWRITER CONTROL

The standard means of communication between an operational program and the computer
operator is through the console typewriter.

PAGE:

The source program must contain coding necessary to prepare or interpret any messages which
its logic requires. The Executive Routine controls the actual writing of the messages or the

transfer of messages to computer memory.

Information written through the typewriter must be organized into message units whose length
can range from 1 - 127 characters. These messages may be typed from memory to the console
typewriter or typed into an allocated area from the typewriter to memory. A single message
unit area is used for either type-out or type-in, but not both.

Messages appear on the console typewriter log sheet in chronological order. When several
programs are sharing the computer, the messages originated as a result of their execution
will be interspersed on the log. Furthermore, e8.ch program will produce both input and output
messages originating from several sources with the program. The input-output routines
which are called into the source-coded program during assembly (see Section 5, 6, and 7, of
this manual), the Executive Routine, and the programmers own coding, will require operator
communication. Rapid comprehension of each message and an accurate response, when
necessary will be contingent upon the ability of the operator to recognize and interpret the
particular message. Conventions have been developed for typewriter messages which provide
this identification of the origin of messages. The use of these conventions can result in the
conservation of time and memory space. The following paragraphs explain these conventions
in detail.

1. Typew riter Conventions

The print line of the typewriter consists of 72 character positions and is divided into six

12-character columns by five tab stops. The first line of every type-out message begins
with a header which is supplied by the Executive Routine. The header consists of

a carriage return, a five-character clock reading, a number of tabs, and a six-character routine

designator. The header of a message originated by the Executive Routine is preceded by no

tabs, that of a message originated by a input-output routine is preceded by one tab, and
that of a message originated by an object program is preceded by two tabs. Therefore, the body

of a message starts at character position 12, 19, or 31, depending on the nature of the routine

which originated the message. The second and succeeding lines of a message begin with a

carriage return and the same or greater number of tabs as the header. The carriage returns and

tabs for these lines are to be supplied by the routine which originated the message.

The general format of a message originated by an object program is as follows:

ccccc~~~~~~~ ~.~ ~ ~:\ ~ ~ ~ ~ c'l ~~ (nn) ~~fk~\mmm . •• mmmz

1 1 2 1 3 24 25

1

SECTION:

4-E

PAG E~
2

up· UNIVAC m SALT
2558

The clock reading, ccccc, is supplied by the Executive Routine for the first line of every
message. If the system does not contain an addressable clock, five O's will be supplied.

The routine designator, {nn} ~~, is supplied by the Executive Routine for the first line of

every message. As described below, it is also supplied when there is a change of direction

within a message.

The message (which must be in alphanumeric notation) starts in character position 31 of
the print line. Thefollowingparagraphs describe its format:

The first character of the message is a flag symbol, f, which classifies the message in

terms of operator action. It has the following values.

(f) SYMBOl:. INT ERPRETATION

/ Message is a type-out which does not require action by the

operator.

$ Message is a type-out which requires operator action and a

type-in.

S Message is a type-in made by the operator in response to a
type-out.

U Message is a type-in by the operator to reque.st an
action.

The second character of a message is a classification code, k, which classifies the message

in terms of subject matter. It may be assigned any values meaningful to the programmer.

It should be noted that messages initiated by the operator, the SALT system, and the input­

output routines may use f designations other than those shown above. These routines should
use a standard convention for k designations if possible. Appendix E contains a complete list

of f and k designations.

The text of the message, m •.. m, is separated from the k designation by a space, and starts

in character position 34 of the print line. It may result from both type-outs and type-ins.

The SALT system will automatically supply a carriage return, two or more tabs (depending

upon the number specified in the reques t) and the routine designator each time there is a

change of message direction. Information typed in is justified left by the Executive Routine.
Source program information to be typed out should be justified left by the program.

A sentinel (z) is supplied by the Executive Routine at the end of each type-in and type-out:

a period signals the end of a type-in and an asterisk signals the end of a type-out. These

sentinels should be considered by the programmer in calculating the length of a print line.

When a carriage return is not given at the proper time, the typing will continue, but the last

character will be s truck over.

UNIVAC ill SALT
up·

2558

2. Indicator Codin g

During the execution of the object program, there may be a delay between a request

for a type-in or a type-out and the actual typewriter action satisfying that request.

The SALT sys tern provides a mechanism which allows the possibility of the program

being able to operate during this waiting period.

In writing the source program: the programmer supplies two addresses in connection

with each request. One address is the location to which program control will be

returned when the typewriter request has been initiated. The program can proceed

from this point with any processing that does not depend on the completion of the

typewriter action. The other address is a location to which control will be temporarily

transferred when the requested typewriter action has been successfully completed.
This location is the beginning of a special section of source coding called indicator

coding. The purpose of this coding is to allow the program to set a switch indicating

the completion of a typewriter (input-output) action. The Executive Routine will

temporarily interrupt the processing currently in progress and at the point of successful

execution will transfer control to the indicator coding ass ociated with the message.
Indicator coding should always be written in a closed subroutine format with an exit loop.

After this coding has been executed, control returns to the point of interruption. The
indicator coding should be as brief as possible because input-output interrupt remains
inhibited while it is being executed.

Through this device, the Executive Routine allows the program to set a switch indicating
the completion of a typewriter action. The processing performed between the time of the
typewriter request and the transfer of control to the indicator coding will normally include
instructions which test this switch. Thus, after the indicator coding has been executed

and control has been returned to the point of interruption, the switch will be found to be
set, and processing can proceed to that part of the program which is dependent on the
completion of the typewriter (input-output) action. This flow of control is shown
schematically in the diagram on the following page.

SECTION:

4-E

PAGE:
3

SECTION:

4-E

PAGE:
--- ------+---------i

! Up·
UNIVAC m SALT

4 2558

FROM

EXECUTIVE

ROUTINE

Ready switch

is not set

®-1Enter ~EXit TO EXECUTIVE ______ Set ready switch
IC IC ROUTINE

----------c,,--------~

Request

typewriter

action
POINT TO

WHICH

EXECUTIVE ROUTINE

RETURNS CONTROL

TO THE

SOURCE PROGRAM

........

"
........

Ready switch set?

Release

Control

to the

Executive

Routine

Figure 4-7. Typewriter Control Schematic

The upper line represents the indicator coding subroutine, the address of which is supplied

to the Executive Routine when the request is made. The indicator coding is entered auto­

matically w hen the typewriter action has been successfully completed, and sets a program

switch called a ready switch. Control returns to the point of interruption. The line between

connectors 1 and 2 represents processing which can continue even though the typewriter

action has not been completed. Connector 1 represents the address to which control will

be transferred after initiating the typewriter action. Connector 2 represents the entry point

from which the processing continues after the typewriter action has been completed.

It is recommended that a routine providing indi cator coding be included in the source program
and used for all messages; otherwise, the program will never know when its typewriter re­
ques ts are completed.

UNIVAC ill SALT up-
2558

I SECTION:
4-E

~ PAG E:
! 5

Indicator coding may appear anywhere in the source program. It has the following format:

\ TAG C FORM CONTENT\
}

" (il-,cl-Itlalgl SIGIAI D ii- ICI-it lalg l , I I I I i I I i I I
I (

indicator codin
I I I I

The first line is always a SGAD line, which contains a permanent tag naming it as the

first line of the indicator coding. The address designation in the content field is the
permanent tag used in its own tag field. The next line is always a NOP line, and is the

exit line of the subroutine.

When the associated typewriter action is completed, the SALT Executive Routine will

execute the following instructions before control is relinquished.

Index Register 1 will be loaded with the SGAD word in order that it may be used to

map the indicator coding.
(I R 1 = SGAD i.c.tag),

Index Register 2 will be loaded with the indicator coding address.

(lR2 = i.c.tag),

Index Register 3 will be loaded with the address of the TPAK just completed which

specified this indicator coding.
(I R 3 = to g 2),

Control is released by the execution of a 2, TR" 1, instruction.

The exit from indicator coding, with IRl and IR2 unchanged, is accomplished through one

of the following instructions:

lA, 2, TUN" 1,
or

lA, 1, TUN" i-c-tag + 1,

As shown above, the last line of the indicator coding is an unconditional transfer to the
location specified by the contents of the NOP line. This returns program control to the

Executive Routine allowing it to complete its function.

SECTION:

4-E

PAGE:

6

I

I Up· 2558

UNIVAC m SALT

Since indicator coding is a closed subroutine executed as part of the Executive Routine,
certain restrictions are imposed on indicator codin g. These restrictions are listed below.

• A possibility of overflow must not exist.

• The execution of invalid operations must be precluded.

• Release of control to another routine is prohibited.

• Index Registers 4-15 must remain intact.

3. Single Message Unit Request

To request a type-in or type-out of a single message unit of information (1 to 127 characters),
the source program must contain two packets of linked statements. The first packet consists
of the first three lines illustrated in the following example:

, TAG C FORM CONTENT\

I) I J I I I I I T IPjA1K nj,j i i/jO;'l a j'1 j i I I I I I I i I I I

I I i I : I i - I I I T1Y1P1E 1 ,IT I ,I bl,1 I I I I I i I i

t la I 9 I I I - I I I , I I I I I I I j I I I I I I I I

-- - --,-- ---
The first line may be named by a permanent tag.

a. The item number and class fields may contai n any valid entries.

b. The form field must contain the symbol TPAK.

c. The content field must contain three designations:

n, is the number of characters, 1 through 127, in the message.

i/o, is IN for a type-in request, or
OU T for a type-out request; and

I I I

I I I

a, is a permanent tag naming the first (most significant word) of the
message.

The second line is chained to the first by a hyphen in its class field.

a. It may be named by a permanent tag.

b. The form field must be blank.

c. The content field may contain three designations:

TYPE,

T,

specifies that this is a typewriter message (another variant of this
designation is described under heading F. Logging.

is a number in the range of 2-5 specifying the number of tab spaces
desired.

,
i)

I
I

b, is a permanent tag naming the first line (that is, the SGAD line) of the
indicator coding for this request. This designation is a blank when no
indicator coding is associated with the request.

UNIVAC m SALT

The third line is linked to the second by a hyphen in its class field.

It may be named by a permanent tag.

The form field must be blank.

The content field contains only a comma.

I

I up·
2558

The second packet consists of an XLST line linked with a LOCA line, and is illustrated
in the example below.

C FORM CONTENT

The first line of this packet is an XLST line.

It may be named by a permanent tag.

The item number and class fields may contain any valid entries.

The content field must contain three designations:

TYPE, specifies that this is a typewriter message.

, , A blank designation.

a, is the tag naming the address of the third line in the TPAK packet.

The next line is a LOCA line linked to the XLST line by a hyphen in its class field.

It may be named by a permanent tag.

b, names the line to which program control is to be transferred when the typewriter
action has been initiated.

. SECTION:

I 4-E
I

I PAGE:

I
7

SECTION:

4-E

PAGE:

8

\

, 1

J
(,2

,3

14

I 5

,6

17

18

9

110
I

111

112

1
13

114

1
15

)

1
16

,17

,18

1
19

1
20

J
I 121

up· UNIVAC m SALT
2558

The programmer must include instructions to initiate the request for typewriter action. The

ins tructions w ill perform three functions: load Arithmetic Register 1 with the XL ST word,
load Arithmetic Register 2 with the LOCA word, and transfer control to the location

specified by the contents of standard location 22 (lA, , TUN, , $LOC22,).

The coding below illustrates a single message unit request to type out ORIGINAL PASS.

TAG C FORM CONTENT \ ,
0IU, T, P,U,T, I A,L,PIH (I / I H I ~, ° I) I ' I I I I Iii I , I I I I I I I I I I I I I I I I I I t\

I I I , I I , - I- j I R,I, GI 11 '1 , , , , , , I I I I , , , I , I , I , I , I I , , I I I I I ,

, , , I , , , - 1-' , (IN, A, L, ~l) I ' I I I l I I I , I I I , , I I , , , I I , , I I I I , , I I

I I I I , J , - ,e, , P,A,S,S", , , , , , , , , , , , , , I , , , , , , I I , , , , I , , , ,

I,N I P, UI T, A,LIPIH
Note No Pool

I , :, , , I , I I I I , , I , , , , , , , I , , I I , I , , I I 1 I , , I I

, , , I , I I T,PIAIK 1,6 I ' I 01 U I T I' I ° I U I TIP I U1 T J ' I I I I 1 I I J 1 I I I , , I I , I I I 1 1 1

I I I ill I - 1 , T IY,P,E"1 2",I,Ni D,I,CI 'i , I I 1'1 I I I i I I I I I , I , , ' I I'

PIAICIKIEITl11 - , I I ' I I I , I I I I I I I I I , I I I I I I I I , I I I I I J I I I I I I I

, X, L1S,T T, Y, P , E, ' I ' I P, A I C , K, E, T, 1, ' ,
I , I ' , , , I ' I ' I I I I I I I ' I I I

P,A,C IK IE I T I 2, - L 10lCIA WI AI I I TI LI °1°1 PI' I I I I I , I I I I I I I I I I I I I I I L I I I I I I

, , I I ' I ' , , I L I ,,1,21 'IPIAICIKIE,TI2"1 , , , I I I I I I I , , I I I I I , , I I I I

, I I I , I ' , I I SIT,C,S", ~"P,A,C,K,E,T,2"1 :IS,E,T, ,P,~C,K,E,T,2, ,N,E,G,A,T,I,V,E,

I , , I ' I I I , I I, A, " ' 1 TI U1 N, '1 ' I $, L ,0, ~ 2, 2 I ' I , , , , , , , , , , , , , I , , , I I 1

W,A, I, T, LI °1°, P , , , L,C,SI,,1"I P,A,C,K,E IT,2"1 I I 1'1 I' I I I I I I I I I , , I 1'1

I 1 1 j 1 1 I I , I IIAI' "IT,PIOIS I'" ,$6 0 ,C, 2,5",: ,S,E,E, ,S ,U, B ,S IE, C, T, 1,0, N, ,H, , I

P,R,OC,E,S,SI I I I T, U, N , I C, 0, N, T, I , N, U, E, ' I : ,P , RIO I C I E IS, S I I A, FIT, EI R, 1M, E , S, S , A ,G , E, I

II ~DIIICI I I S,GIA, ° I,NID,II C", I I I I , I I , I I , , I , I , I I I I I I 1.1 I I I I I I

I , , I , , , , , , NIOIPI'I , I I I j , I I' , , I I I I I I I I I 1'1 , I I I , I , , ,

I , I , , I , I I , LI '111'IP,A1C,KJEIT12L'J 1 1 J 11' , I I I I I I I I , I I I , I I I I

STCS 1 PACKET2,
I I I I I 1 1 ill I I I 1'1 " I I I I , , I , , I , , I ' 1 I I III , I I I I , I I , ,

I I I I I I I i I I IIAI 'l'ITIUINI'I"IINID,IICI+lll'l I I I I I I I I I I I I I I , I I I I

In this example, the message unit to be typed is entered in lines 1 through 4. The first
character of the message is the flag symbol.

I

UNIVAC ill SALT
SECTION:

4-E

UP- PAGE:
2558

Lines 6 through 8 and 9 through 10 represent the two packets of statements. The instructions
to activate the request for the type-out appear in lines 11 through 13. After the request has been
accepted by the Executive Routine, control will be returned to line 14 which relinquishes
control to the Executive Routine until the indicator coding associated with this request has
been completed.

4. Multiple Message Unit Request

When a message contains more than 127 characters or when a single message involves both
type-outs and type-ins, more than one message unit must be provided. Since type-ins are
generally preceded by a type-out, the multiple request form has been developed to allow a
related set of bidirectional message units to be treated as a single message. It is recommended
that bidirectional messages be handled as shown below.

The two packets described above for a single message unit request are also required for a
multiple message unit request. However, the first line of the TPAK packet (the TPAK line),

takes a different format. A list of typewriter control words, each control word identifying a
message unit, is included in the program. The (first) TPAK line for a multiple request has
the form:

) TAG C FORM CONTENT'
f I

! I I ! I T1P1A,K ,! ,I m I " ! ! I I I I I I I I I I I I J I

\--- - - (-

All fields except the content field are as described above under the heading, Single Message
Unit Request. The first two designations are left blank, but the terminating commas are
retained. m, is a permanent tag naming the first line of the typewriter control word list. The
control words are stored in consecutive memory locations and have the form:

TAG C FORM CONTENT

9

SECTION:

4-E

PAG E: up· UNIVAC m SALT
10 2558

a. Item number may contain a valid entry.

b. The tag field must contain a permanent tag naming this line. (see m designation TPAK line)

c. The form field must always contain TeON.

d. The content field contains:

rl, is the number of characters, 1 through 127, in the message unit.

i/o, is IN, if the message unit is to be typed in, or

OUT, if the mess age unit is to be typed out; and

a, is a permanent tag naming the first line of the message unit storage area.

UNIVAC ill SALT
up·

2558

Any control word may be named by a permanent tag; the first word of the list is always
named by a, of the TPAK line. The second and succeeding words are linked to the first
by hyphens in their class fields. The last control word in the list is followed by a stop
control word of the form:

This word signals the end of the control word list to the Executive Routine.

The instructions required to initiate a multiple message unit request perform the same
functions as those required for a single message unit request; that is, load Arithmetic
Registers 1 and 2 with the XLST and LOCA words, respectively, and transfer control to

the location specified by the contents of low order memory location 22.

SECTION:

4-E

PAGE:
11

SECTION:

4-E

PAGE: UP. UNIVAC m SALT
12 2558

O. TAG C FORM CONTENT
1

,1 0, U, T, P ,U , T, I * A I LIP I H (j $, C , ~I S I) , " , , ii' I , 1 iii I , j)

"
12 , I I I I I I ElL, E 1 C, " I , I I I I I I 1 I 1 I ILl 1 I

II 13 I 1 1 1 1 I I -., I I (I T, ~I 0, PI) , I I , I I I , I , , 1 , 1 , 1 ,

I I 4. I I I I I I 1 -. 1 I 1 T1 I I 0 I N I , I I I I 1 1 I I 1 I I 1 I I I I I

16 I I , , I I I * TI P I AI K , I TIC I 0 , N, L , I j S , T 1 • 1 1 , , , I I I I L j

I 17 I j j 111 I - 1 I I T,Y,P,E",2 1 'JI,N,D,I,C", , I 1 I I I' ,

~ ,8 P, AI C, K, E, T ,1, - , I I , I I , , , , , , I I I I I I I I I , , , ,

19 ,j j j 1 , I
.)

II - L,O,C,A W,A,I,TIL,O,O,P", , I , 1 I , , I I I , ,

I ~ 3 I I I I J , , - SIT, 0, PI' , I 1 j 1 1 , , , , , , I I I I I I I

I , ~4. 1 1 1 1 I I I

I ~ 5 , I I I 1 , ,
J

, " S,TIC,S"J2,'jPjA,C,K,E,TI21" , I I' , I)
I

I, ~6 , I I , , I I , I I

I

I

- --~L-___ -------------------__________ ----------~~
p. TAG C FORM CONTENT

I
)

S I G1 AI D I IN, D, I , C, " 1 , , I I , , 1 , , ill , 1 ,19 I, N I D I I , C, I I

I

C ,20 I 1 , , 1 I I I I IN, 01 P, ' 1 , , , I I I I I 1 , I , I I I 1 j

\ I ,12 , , , , , " , , , S , T, C, S, " I, " P ,A , C I K IE, T I 2 I " I , , , , , (

\ ' \
! ?3 , I I , , I' I I I I I A I ' I I I T I U I N I I I I I I I N I D I I I C I + I 11 I, , , , 'Jl

\,\LI __ L-__ --------~~--~--------------------------------~\

UNIVAC ill SALT
ISECTION'4_E

PAGE:

13 2558

The coding chart on the opposite page illustrates a multiple message unit request, where the

program types out the words SELECT OPTION, then waits for the operator to reply before

processing continues. The operator is expected to type in a four-character coded answer.

Indicator coding changes the sign of the word at the address PACKET 2 when the message
has been completed.

This illustrates the type of coding that is recommended for any program where there
must be a waiting period for the completion of the operation. The Executive Routine will
transfer control to the other programs sharing the computer until the present program

receives its response and is ready to proceed. This insures that there will be efficient

usage of the computer at all times.

In this example, the message unit to be typed out appears in lines 1 through 4, the first

character of which is the flag symbol. The next character is a classification code C,
recommended for messages involving operator choice. Line 5 is the location that will

receive the operator reply when it is typed in. Lines 6 through 10 represent the two packets
of statements. Lines 11 through 13 represent the 'control word list. The instructions
requesting the communication appear in lines 14 through 16. The sign of the word at

PACKET 2 is set to minus. Lines 17 and 18 are the instructions that the program executes

while it waits for the completed response. These lines return control to the Executive
Routine until the indicator coding changes the sign of PACKET 2 at which time control is

transferred to the coding that will continue the program. The associated indicator coding
is shown in lines 19 through 23.

UNIVAC ill SALT
ISECTION:

4
_

F

PAGE:
1 2558

F. LOGGING

The computer log is a complete record of all messages transmitted between the computer operator
and the programs. The standard UNIVAC III medium for this communication is the console type­

writer; however, this information may also be recorded on a UNISERVO IlIA tape unit when a servo

is allocated for this purpose. The Executive Routine supplied for such a configuration will auto­
matically record on the log tape all messages that are initiated by the SALT system. Messages
initiated by the source program may be directed to the typewriter only, to the log tape only, or to
both. The log tape is always referenced by the numeric file designator 62 (Refer to Section 6).

1. Directing Log Information

The destination of log information, that is, whether it is to be directed to the console typewriter,
to a log tape, or to both, is specified by the source program in the second line of the standard
TPA K packet. For messages which are to be recorded on the typewriter only, the form of the
packet remains as described under subsection E, Typewriter Control.

C FORM CONTENT

The designation TYPE in the second line of the above example indicates typewriter logging
only.

C FORM CONTENT

1)

T,P,A,K n I' I ii/I 0 I ' It la 1 gill' I , 1 , , I 1 1 1 1 I

- I I I T, AI PIE I ' I T I ' Ii, -I C I -, t ,a I 9 , ' I I , I 1 1 I

- I 1 I
- j

For messages which are to be recorded on the log tape only (see the example above), the
second line of the packet contains the designation TApE.

SECTION:

4-F

PAGE:

2
uP. UNIVAC m SALT

2558

C FORM CONTENT}

T1PjA,K n, • , i ,/, 0' . j t , a , a , 1, • , , , , , , , ,
}

, , ,
I

- I I I "2,, ,i I-Ie I-I t,a,9", , , , , , , , , , ,

- I I , I, , , , , , , , I , , I , , , , , , , , ,
L_ - \ -

For messages which are to be recorded on both the typewriter and the log tape, the second

line of the packet (see the example above), contains a blank designation.

2. Log Tape Con ventions

Messages to be recorded on the log tape must conform to the conventions described for
typewriter messages. The general format of the log tape conforms to the standard UNIVAC
III data tape conventions as shown in Appendix F. The arrangement of the data recorded
on the log tape is described in Appendix G.

'0.
J

,

UNIVAC ill SALT up-
2558

G. PROGRAM LABELS

Programs are stored and maintained on UNISERVO IlIA library files in alphabetic order by
name. This name is established by a header card input that is converted to tape with the
source code card en try check.

A label line is written in the following form:

ITEM NO. TAG C FORM

any comment; no colon required
L,A B,E L, , a,a,a,a,a,a,a1a

ii' , I I , I , I I I , , , , I , I I

...... -

a. The item number field contains the symbol LABEL~~~.

i SECTION:

I 4-G

I PAGE:

I 1

CONTENT \

I I I I (

- --1

b. The tag field contains an eight-character program identifier in the form aaaaaaaa, where:

aaaaaaaa is an eight-character alphanumeric program name, the first character of which
must be alphabetic.

c. The class and form fields are to be left blank.

d. A description of the program may appear in the content field. It may be extended by the
use of a hyphen in the class field through as many lines as are required. The colon
comment signal, required for all other lines is not needed in the label line.

UNIVAC ill SALT
SECTION:

4-H

H. CONCURRENT PROCESSING

I UP­

I
2558

The Executive Routine coordinates the exchange of control between the various programs
sharing the computer. Control is automatically passed to successive programs on a rotating
basis each time a source program releases control to the Executive Routine. Control is
relinquished each time an input-output function is performed. This may occur through the
execu tiOfi of a SALT input-output contiol subioutine or through a request to initiate a
typewriter message.

When it can be determined that a program is likely to retain control over a relatively lengthy
period of time, control should be periodically relinquished to the execu ti ve routine. Other
programs, which require more frequent use of input-output functions are thereby enabled to
make efficient use of the peripheral equipment. This release of control to the Executive
Routine is accomplished by the following coding lines in the source program.

\ TAG C FORM CONTENT
J /

II I I I I I I I I I L",l"'(I L 0IC1AI:IN,EjX,T,)"1 I I I I I (

II I I I I I i I I I i ~ ',' TI U i Ni ' , 'i $1 L I 0 I C 12 ,5 1 ' I i I I , I

- - -- -

PAGE:

where: the first line is an instruction which loads Arithmetic Register 1 with the address of
the first instruction to be executed after control is returned to this program by the Executive
Routine. The implied form of addressing has been used to fabricate a LOCA address. It has
been assumed that the next instruction to be executed is named by the tag NEXT.

The second line transfers control to the Executive Routine at the address specified by the
INAD word at low order memory location 25.

1

UNIVAC ill SALT

S F.CTIO N:

4-1

up·
2558

1. INFORMATION MEMORY DUMP

An informational memory dump, writes the contents of memory onto an output data tape
for later editing and printing. The informational memory dump is used primarily in error
paths of the program as a debugging aid.

PAGE:

An informational memory dump may be taken at any point during the execution of the program.
The memory dump is written on an output data file specified by the programmer, for subsequent
editing and printing. The specified file must be on a magnetic tape mounted on a UNISERVO
IlIA tape unit (refer to Section 6). The execution of the program continues after the memory
dump has been written.

An informational memory dump requires that an X FAD line be included in the source program
of the form:

IC FORM CONTENT \ , I 1 XtlAID f1'lal'l 1 I ,I I I I 1 I I I I I I l I

l.....",,-- \ - -

Item number and class fields may contain any valid entries.

The tag field may contain a permanent tag naming the X FAD line.

The form field must always contain X FAD.

The content field contains:

f, designates the numeric file identifier of the UNISERVO IlIA output data file
on which the memory dump will be written.

a, is a permanent tag or implied address designation naming the line to which
control will be transferred after the memory dump has been taken.

1

SECTION:
4-1

PAG E:
2

u p~ UNIVAC m SALT
2558

The program must also include instructions to activate the memory dump coding. These
instructions will perform the following functions:

a. Load Arithmetic Registers 1 and 3 with binary O's.

b. Load Arithmetic Register 2 with the XFAD word.

c. Transfer control to the INAD control word at standard location 24 (see the second
instruction in the example below).

Control will be returned to the program at the address specified by the X FAD line, after
the dump has been taken. The loadings of arithmetic and index registers are unchanged
except for Arithmetic Register 4.

An example of coding calling for an informational memory dump is as follows:

\ TAG C FORM CONTENT \
I

I I f
, , I I * BIIINI Y o I I I I I I I I I I i I I I I I , I , I I j I I(

(
I) , I , I I , , - X,FjA,D 3, I,M,A,I lNIL,OIOIP, " , I , , I I , , I I I

DIU,MIP I I , , - B,IIN,Y 0, " , , , , , , , I I , I , I , , , , , I , I

Load AR's 1,2, & 3
I , , , , I , , , I LI 1,1 12 1 3 , IjD1UjM,P, 11:1 I I , I , I I I , I I

To mem dump
I I I I I I 1 1 I I IIA,'i'1TlUjNl'JI,$,LIOICI2141, ,: I I I I I I 1

\ - - ~

The number 3 in the X F AD line is the external file number of the output da ta file on
which the memory dump will be written (external file numbers are in the range of 1-41).

The permanent tag, MA IN LOOP in the X FAD line names the address to which control
will be transferred after the memory dump has been taken.

UNIVAC ill SALT
2558

J. TERMINATION

Normally, a program is brought to an orderly stop when it has completed processing and has
closed its input-output files. (Refer to Section 5 and 6.)

1. Orderly Stop

The source program includes an X LOC line of the form

fi;:~:~ C~ __ I ___ - ___ ~~I CONTEN~~ ~ 1
a. The item number and class fields may contain any valid entries.

b. The tag field may contain a permanent tag naming this line.

c. The form and content fields are written exactly as shown.

The instructions provided by the programmer must perform two functions: load Arithmetic
Register 1 with the X LOC word, and transfer con trol to the location specified by the
contents of low order memory location 23 as illustrated in the following example:

C FORM CONTENT
I

1 1 I Ll '] 1] ,] (I X I L ,0 I C, : I ' 1)) 'I I , I I I I , I

I I I II AI ' I ' I T I U IN] , I ' I $1 L I 0 I C I 2 1 3 I '.1 I I I I I

..,.-

2. Specification of a Successor Program Load

When the Executive Routine terminates a program, it will attempt to load another into
memory. In order for a new program to be loaded, its program ID must have been placed

i SECTION:
I 4-J

! PAGE:

I 1

in words 41-43 of the executive area of the terminating run. (Refer to Appendix D.) The
specification of a successor run is usually accomplished through control cards which are
introduced by the programmer into Object Code Service Run at the time the Master
Instruction Tape is prepared.

Any program may contain coding which changes the designation of the previously specified
successor program. It can do this through the communication of the proper information to
the Executive Routine at the time of termination. The coding lines needed to terminate a
program and to override the designation of the successor program that may have been
specified by the Object Code Service Run are as follows:

SECTION:
4-J

PAGE:
2

up· UNIVAC m SALT
2558

'0. TAG C FORM CONTENT\
I l ,

~

I

, , , , , , , , AIL1P,H a ,a ,a ,al) , i , , , I ! I I , , I , , I , I ,
> The program 10 established

1 1 I I I , , ,
J • 1 1 a ,a, ala jt I b,Y ~he, 19be,1 I,inf I I , I , , I I ,

J
PI R,OIG, ' X, - 0,0,0,0, , I , • I I i , , I , : i I I I 1 I I I I I I

, , I , , , I I , J I LI 'I 1 12 I 3 I " P, RIO, G I X I I, I , , I I I I I 1\

1, I , S I T[, , 1 ? I 3 I ' I 4 I 3 I 'I I
)

1 I I I I I I I I I I , I I I I I I I I

1 , I 1 1 I I , I I I L I ' I 1 I ' 1 (I X I L I 01 C I : I ") I ,I I I I I I I I ,
)

I I I I I I I I I I II A, ' I ' I T I U I N I " 'i $, LI 01 CI 21 31 ' I , , , , I ,

- ---1 ..-- - - -

The first three lines are ALPH form lines linked together to set up a three-word constant
as aaaaaaaaOOOO, where gggggggg is the program ID which is the entry used in the tag
field of the LA BEL line (see subsection 4-G). The eight alphabetic characters are
supplemented by four alphabetic zeroes.

The next two lines contain instructions to load the data into words 41-43 of the executive
area. The last two lines will then cause the termination of the program.

SECTION:
4-K

UNIVAC ill SALT
up· PAGE:

2558

K. JETTISON

A jettison, or emergency stop and termination, may be requested at any time by the source
program. Generally, it is requested when unplanned conditions, such as unexpected overflow,
occur during the execution of the program. If desired, an informational memory dump can be
included as part of the jettison procedure. A program may be jettisonned at any time if source
code lines have provided for it.

1. Jettison with Print Dump

An XLOC line is used to fabricate information needed by the Executive Routine to initiate
the jettison action. If an informational memory dump is desired at the time of jettison, the
following statements must be included in the source program:

, C FORM CONTENT'
I

I 1 1 Ll I / 11 I 1 (/ X, L , 0 1 C, : ,J / P I I /) I I, I 1 , 1 / 1

I I , I I,AI'I'IT,U,H", I,$ILI~C,213, II 1 1 1 II

1- -
where the word fabricated by the XLOC line is loaded into Arithmetic Register 1, and
control is transferred to the address specified by the IHAD word at low order memory
location 23.

The implied form of address has been used in lieu of an X LOC line. The implied address
designation must be written exactly as illustrated.

2. Jettison

If it is desired to jettison the program without attempting a memory dump, the following
statements are required:

C FORM CONTENT'
J

I ,
1 LLtl 1 ill(,X1LiO,C,:,J/ld, ") 1 J I I I

j 1 1 II A, I I I T, U i H I I I I I $ I L I 0 1 C I 2, 3 I I I i I I I I

L- -
where the word fabricated by the XLOC line is loaded into Arithmetic Register 1 and
control is transferred to the address specified by the IHAD word at low order memory
location 23. The .implied form of address has been used in lieu of an. XlOC line. The
implied address designation must be written exactly as illustrated.

1

UNIVAC m SALT
SECTION:

4-L

up·
2558

L. RERUN MEMORY DUMP

The SAL T system provides for a second type of memory dump, called a Rerun Memory Dump.
In this case, the contents of memory and other pertinent information are written on an output
data tape to provide a means of restarting the program at that point, instead of restarting
the program from it's beginning. The Rerun Memory Dump is not edited for printing, and is
primarily intended to restore memory to the dump time conditions for program restart.

PAGE:

It is recommended that rerun points be established periodically during the execution of the
object program. The programmer has full control of the selection of these points. Depending
on the nature of the program, they may be established at periodic clock intervals, at intervals
based on the processing of a fixed number of items, at file termilldtion points, or at other
points in the program. The Executive Routine contains a program which will write (on a
UNISERVO lIlA output tape) the information necessary to restart the program from any rerun
point selected. This information includes a memory dump, the contents of the index and
arithmetic registers, the settings of all indicators, the address at which the program is to
start, and the position and identification of all UNISERVO lIlA data tapes. After each memory
dump is completed, control will be returned to the source program.

The Executive Routine contains a program which can use the information provided by the
rerun dump to restart the program. Therefore, once a series of memory dumps has been
provided, the operator may reinitiate the run from any of the established rerun points. The
program will be restored in memory as it was at the completion of the memory dump. The
UNISERVO lIlA tapes are au tomatically repositioned to the poin t to which they had been
read or written at the time of the dump. Each peripheral control routine is signalled that
processing is to be resumed and control is transferred to the source program at the specified
restart address.

Provision for the repositioning of files mounted on general purpose channel input and
output devices is the responsibility of the programmer. The rerun dumps should be taken at

points that will facilitate the repositioning of these files.

Three statements are included in the source program to develop information required by the

Executive Routine for rerun. Instructions that activate the rerun coding reference these data

words. These statements have the form:

\ C FORM CONTENT\

I I
LJOJC[A a I Ii Iii I I I i I I I r I I d

\

- XIFrAID f 111 b l11 1 1 1 L I 1 1 1 I I I 1 I 1 I I
I)

- S JGiA,D C, I I J I I I I I I I I 1

- - l

1

SECTION:

4-L

PAG E:
2

uP· UNIVAC m SALT
2558

The first line is a standard LOCA line, giving the address of the line at which processing
will resume when the program is restarted from this rerun point.

a. Item number and class fields may be any valid entries.

b. The tag field may contain a permanent tag naming the LOCA line.

c. The form field must always be LOCA.

d. The content field contains:

a, is a permanent tag naming the line at which processing is to begin if the
program is rerun.

The second line is an X FAD line, which is linked to the LOCA line by a hyphen in the
class field. It designates the data file f on which the rerun information will be written,

and the line to which SAL T will transfer control after the rerun information has been writ­
ten on tape.

a. The tag field may contain a permanent tag naming the X FAD line.

b. The form field is always X FAD.

The content field contains:

f, designates the numeric file identifier of the UNISERVO IlIA output data file
(refer to Section 6, Tape Routines) on which the rerun information will be
written.

b, is a permanent tag, or implied address designation, naming the line to which
control will be transferred after the rerun information has been written.

The third line is a standard SGAD line, which is linked to the XFAD line by a hyphen in
the class field. It provides the address of the first line of the segment containing the
restart line. This address will be loaded into Index Register 1 by the Executive Routine
when the program is restarted from this rerun point. ,

The tag field may contain a permanent tag naming the SGAD line.

The form field is always SGAD.

The content fi~ld contains:

C is any permanent tag in the segment containing a,

In addition to these statements, the programmer must also include instructions to activate
the rerun dump. These instructions will perform the following functions:

a. Load Arithmetic Registers 1,2, and 3, with the LOCA, XFAD, and SGAD words,
respectively.

b. Transfer control to the location specified by the contents of INAD control word at
$LOC24. The transfer of control is accomplished by the instruction in the fifth line of
the exam ole shown on the following page.

\0.

I 1

\ 12

)

13

I 14

1

5

....... ----

I SECTION:

UNIVAC ill SALT
I 4-L
I

I Up·

I

I
PAGE:

2558 3

When these instructions have been executed and the rerun information has been written on tape,
SAL T will return control to the program at the address specified by the XFAO line with the comparison
indicators, and index registers unaltered. The content of the arithmetic registers will have been changed.

Note that no index register address modifier is required and that mapping does not apply.

An example of coding calling for a rerun memory dump is given below.

TAG C FORM CONTENT \

* L 10lCIA
PRO C E S S • Address process ing begins after restart

I I I I I I I I I I 1 1 1 1 I,' Iii I I 1 I 1 1 I I I I I I I I

Add-for control after dump I) I 1 j I 1 1 - XlF1Al0 611IPIOjSjTIOjUIMIPIII:j II 11 j I I j j II I I

I
RIRI 0 1 U1M1P 1 I - S IG1A10 PIRIOICIEISISIII 1 j i I I I I I I I j j 1 J I I I I

1 1 1 1 I I 1 ' I L 1 I 1 1121 3 I I 1 R I R, 0 IU 1 M I P j I 1 1 I , j J j L ~ J L I 1 11

I I I I I I I I I I 1 A, ' I' , T I U , N, I 1 ' 1 $, L I 01 C, 2 1 4 1 'I j I I I I I I I 1 I)
~ -- I - - -

UNIVAC ill SALT
SECTION:

5-A
up· PAGE:

2558

5. INPUT-OUTPUT ROUTINES

The input-output units of the UNIVAC III are controlled by input-output routines which may be

called into a source program during assembly. Sections 5 and 6 of this manual describe the
input-output control routines. A subsection containing general information introduces the control
routine concept. It is followed by the detailed description of each of the individual routines.

A. GENERAL INFORMATION

The SALT system provides a complete set of control subroutines to handle the input and output
of da ta files process ed on the following devices:

SECTION 5

Card Reader (80 column)

Card Reader (90 column)

Card Punch (80 column)

Card Punch (90 column)

Paper Tape Reader

Paper Tape Punch

Printer

SECTION 6

UNISERVO IIA

UNISERVO lilA

As many as forty-one files may use the input-output equipment listed above in any com bina­
tion.

The programmer provides for the inclusion of the input-output routines by writi ng statements
which cause selected routines to be assembled with the program. Each calling statement is
followed by a series of designations which describe to the called routine the files to be
processed, and the conditions under which the processing is to occur. The functions of each
routine can be varied depending on the specific external medium involved and on the conditions
under which it will be processed.

The SALT system uses the parameters specified by the calling statement to modify the
called routine to fit the conditions described by the programmer. The input-output subroutines
have been prepared for inclusion in the program as a separate load. The routines may be
entered by the processing program any time that the program logic requires access to the
various functions they provide.

The basic concept of all the input-output routines is the use of an item advance function,
which makes available to the program successive items for processing in input files, or suc­
cessive areas for storage of data to be placed in output files. The item advance function
transmits data to or from the external media as the need arises. One current input item, or one
current output-item area· is automatically made a vaH able for processing.

A set of input-output macro-instructions have been provided in each subroutine to simplify com­
munication. The use of a macro-instruction causes the assembly routine to include at that point

1

SECTION:

5-A
PAGE:

2

)

r
I
\

J

I UP-
UNIVAC m SALT

I

2558

in the assembled object program the particular group of instructions identified by the name of
the macro-instruction specified. The number of lines in this coding must be considered by the
programmer when computing the capacity of his program segments. There is a macro-instruc­
tion available for each function which an input-output routine performs. Separate sets of
macro-ins tructions are available to perform the functions for each file when more than one
file is involved. A macro-instruction may be used anywhere in the source program that its
function is required.

The rules for the use of the input-output macro-instructions, the addressing of input-output
items, and the integration of the input-output routines into a source program are covered in the
pa ragraphs below. The specific informa tion associated with each of the individual routines
follows under a separate heading for each routine.

1. Calling Statements

A calling statemen t in the source program calls for the inclusion of an input-output routine
and supplies certain parameters. The general form of a calling statement is:

ITEM NO. TAG C FORM CONTENT\
[

routine-name, Pl' P2' I
I

~I~
marker ...

II n ,n In In ~I~ I I I I I I I S,U,B1R I , I I , I I I I I I I I I I I I I I I
I

I i I I

Pn , Pn + 1 , •••
i) , , i i , I I I - , j I 1 1 11 , I I I I I I I I I I I I I I I

""",,- I - -.l - - --

The item number assigned by the Programmer is restricted to the upper two levels of the
item number. The item numbers from nnnn~~~~ through nnnn9999 are reserved for use by the
input-output routine. These numbers may not be used elsewhere in the program.

The entry in the tag field of a SU B R coding line is called a ma rker, and follows the rules
for permanent tags. It is used in the source program to access the object code produced by
the routine. For example, all macro-instructions communicating with a routine require the
use of this marker as a part of the macro-ins truction name.

The class field of the first line of the calling statement is always blank. The entries in

the content field may require several lines, as shown. If so, the class field entries of the
subsequent lines contain hyphens.

The form field always contains the symbol SU BR in the first line, as shown.

The first designation in the content field is the specific name assigned to the routine. The
remaining designations are the parameters required by the routine. The order and form of
the parameters vary with the particular routine.

All calling statements include file identifiers among their parameters. These are symbolic
names or designations aSSigned by the programmer to each data file processed by the
routine. A unique one-or-two-character numeric designator, in the range of 1-41, must be
assigned by the Programmer to each data file involved in the program.

SECTION:

UNIVAC m SALT
, uP. PAGE:

2558

In addition to these external file numbers, a second set of file designations must be used
in some of the routines. These designations are one= or two-character alphanumeric
characters, where the first character is always alphabetic. This designation, along with
the marker, enables the program to identify the particular file that is to be processed.

All calling statement parameters are described in detail in the descriptions for indi vidual
rou tines.

2. Integration with Source Program

Calling statements for input-output routines may appear anywhere in the source program.
Each input-output routine comprises a program load. The routines supply their own 10ad­
definition statements. The source program must provide for reading the input-output loads
into memory, either by chaining them to other program loads, or by calling them in when
needed as overlay loads.

In addition to providing for the reading-in of the input-output loads, the source program
must also specify the location these loads are to occupy in memory. Each input-output
routine contains segment definition lines for defining the position of the inpu t-output seg­
ments in memory, relative to one another. However, the input-output segments must be
assigned a location in memory relative to the source program segments, through specifica­
tion of their source program predecessor segments. If the location of an input-output
routine can be assigned by specifying a single predecessor segment, the segment
number of the predecessor is specified as a parameter during the call of the input-output
routine. If more than one segment must be specified to establish the location of the
routine, the predecessor segment parameter is left blank and the source program must
include a partial segment definition line of the SGRT form (see example).

FORM CONTENT

This line may appear anywhere in the source program.
Its item number, tag, and class fields are disregarded during assembly.
The form field always contains the symbol SGRT.
The designation m * SEG1, in the content field names the first segment of the input-output routine,
where m is the marker used in the calling statement for this routine. The designations
51' 52' •.. name all the possible predecessor segments of m * SEG1, (the first segment of the
subroutine).

For all input-output routines, the first segment of the input-output load is named m * SEG 1,
and the last segment of the load is named m * SEG2, (where m is the marker of the calling
statements) regardless of the number of segments included in the load. These names may
be used in any SGMT and SGRT statements in the source program for assignment of the
input-output segment locations.

S-A

3

SECTION:

5-A
PAGE:

4
up- UNIVAC m SALT

2558

3. Input-Output Macro-Instructions

Macro-instructions are supplied by the SALT system input-output routines to provide communi­
cation between themselves and the processing program. The general form of an input-output
macro-instruction is:

lC FORM CONTENT\ ,
J m * macro-name, Pl' P2 , . . . , M1C,R,O I I I I I I [I [I I I I I I I I I I I I j

L - \

The item number of a macro-instruction may be assigned by the source program or may be
supplied by the SALT assembly. In either case, there must be both a coding segment and a
pool segment in the source program, defined to contain this item number. Furthermore, both
of these segments must be under the control of a MAPS statement at the point at which the
macro-ins truction appears in the source program. Index Register 1 may not be used to map
the pool segment defined to include the item number of the macro-instruction.

The tag field may contain a permanen t tag. It will name the first line of the coding produced
by the macro-instruction after the program is assembled. A MCRO line does not survive the
assembly.

The class field of a macro-instruction is always blank.

The form field always contains the entry MCRO.

The first designation in the content field, m * macro-name, is the name of the macro-in­
struction, where m is the marker used in the SU BR line which called the routine. In
certain routines that operate on a single file, the name of a macro-instruction is a fixed
functional name, such as ADV for item advance. In routines designed to operate on more
than one file, this name may be composed of two parts: the first part is the fixed functional
name, and the second part is the alphabetic file designation. For example, the macro-name
of the item advance for a UNISERVO IlIA file is ADV f, where f is the alphabetic file
designa tion. The full name of this macro-ins truction is therefore m * ADV f,.

The designations Pl, P2, ••• are parameters which may be required in particular ma cro­
instructions. A list of the macro-instructions available with each routine descri bing their
functions, and the formats of their content field designations, appears in this section under
a separate heading for each routine.

In general, a fter a ma cro-ins truction has been executed the following conditions exist:

a. The contents of the index registers are unchanged except in those subroutines where
an index register is specified as a parameter. In these instances, the specified index
register will have had its contents altered.

b. The contents of the arithmetic registers are altered by the execution of the input-output macro­
instructions. Furthermore, arithmetic registers may be utilized by some macro-instruc-
tions to carry information back to the processing program.

SECTION:

UNIVAC m SALT up-
2558

c. The status of the comparison indicators may be altered; the status of the sense indi­
cators is not altered.

PAGE:

d. Information concerning a particular file may be placed by the macro-instruction in one of
two memo~ locations contained in the input-output routine. These locations are tagged
m * f1, and m * f2,
where m is the marker of the calling statement and
f is an alphabetic file designation.
These lines occupy consecutive memory locations and they may be addressed by the
processing source program using indirect addressing. For example, the contents of m * f 1,
may be loaded into Arithmetic Register 1 by the execution of the instruction:

IFORM CONTENT \ , }
'I 1 I I I AI ' I' I L I' I 1 I ' I (I I I N I AID I : I ' I ' I m I * I A I 1 I) I' I I ,
L..-_ ..,..-- ...J.

where m is the marker, and A is the alphabetic file designation.

The particular exit conditions for each macro-instruction are given in the description
of the pertinent input-output routine.

4 .. Addressing Items

The input-output routines maintain full control over the actual location of input-output
items in computer memory. Successive items of the same file may occupy different posi­
tions in memory. The allocation of specific memory areas to contain the items and the
location of the current item is controlled by the input-output routine. Each time an item
advance macro-instruction for a file is executed, the address of the new current item
is loaded into a specified index register before control is returned to the worker
program. Coding which references the item uses this index register to furnish the base
address of the item in memory. A single set of coding can process all the items for one
file. While the base address of the item is a variable component of this coding, the relative
position of each word in the item is fixed. Two techniques are available for the addressing
of items using these components: decimal addressing and a special type of permanent tag
addressing.

a. Decimal Item Addressing. The program relative address supplied in the specified index
register by the macro-instruction is the IS-bit address of the first word of the current
item. The index register containing this address must be specified as the address
modifier in the instructions referencing the item. The address designation of these in­
structions is a decimal number representing the relative position of a word in the item.

S-A

S

SECTION:

5-A

PA.GE~ : up· UNIVAC m SALT
6 2558

Thus, if Index Register 2 has been loaded with the address of the current item, the
address designation for the first word of the item in an instruction is O. For example,
the instruction:

CONTE

d I~ I

loads the first word of the item into Arithmetic Register 1, and the instruction:

Y~IRM I f;:. 1 : 21 - IS I r l _ 11~=- I - I I I I I I I

CONTENT;

::::1 I If
stores the contents of Arithmetic Register 1 in the tenth word of the item.

While this addressing technique offers the advantage of brevi ty, the address designa­
tions have no mnemonic quality. When a decimal address is referenced and the IR
designation has been left blank, the index register mapping the segment which contains
the instruction, would become the address modifier, instead of the index register mapping
the segment which contains the item. Therefore, since mapping cannot be used, the index
register address modifier must be stated explicitly for each instruction.

b. Item Addressing with Permanent Tags. The SALT system provides an alternate item
addressing technique which allows the IR designations to be omitted from the source
code statements. The fields within an item may be mnemonically named and mapped by the
use of the SAL T form EQDX. The general format of an EQDX line is:

Ie FORM CONTENT\
}

E,QIDI X x I + I n I 'I = I t I a I gIll' 1 t la I g 12 1' 1 • , • I· I , I I I
L.,..o -

where the item number, class and tag fields are disregarded during assembly.
(x) is a decimal number, 1 through 15, which specifies the index register containing the
base address of the item (specified in the subroutine calling statement for this use).
(n) is a decimal number representing the address of the field being named, relative to
the first word of the item. If n equals 0, that is, if the first word of the item is being
named, the plus sign and the zero may be omitted. The designations (tag 1, tag 2, •••)
are permanent tags without modifiers, which are assigned to field n and are used in
instructions to reference these fields.

'c
\
\

L

I SECTION:

UNIVAC ill SALT I S-A

up- PAGE:
2558

For example, if the first and tenth words of an input item are to be named FI E LD 1 and
FIE LD 10 respectively, and if Index Register 2 has been assigned to control the address­
ing of the item, then the lines:

FORM CONTENT

E QD X 2
1
"=lF11,E,L

1
D,l i

Equates the word at relative address zero with the tag FIELD 1
, I 1 , I :, I I I I I , , , I I I I I , I I , I I I 1 1 , 1 , I I

Equates the word at relative address 9 with the tag FI ELD 10
E,Q/D/X 2,+ ,9" ,=,F,I jE[LID, 11°1 1 ,:, , I I , I I , , I I , I , , I , , I , , , I I ,

- -- -

In both cases, of course, Index Register 2 would have to be loaded elsewhere in the
program with the starting address of the item.

5. Recovery Coding

The SALT system input-output routines controlling the general purpose channels have been
programmed to attempt reprocessing of records when hardware detected errors occur. The
routines will automatically attempt for a limited number of times to reread or repunch the
record which produced the error signal. If the error clears up within the alloted number of
reprocessing attempts, the program will continue to be executed. Occasionally an error con­
dition will be encountered which does not clear up after several attempts at reprocessing.
In this instance, the input-output routine can relinquish control to a routine provided by
the source program.

When coding has been included in the source program to supplement the input-output
routine, the tag of the first line of source code routine is to be specified as a parameter
when the SUBR line is written. The actual transfer of control to this coding will occur as
the result of a type-in response. The response will be to a message typed-out by the
input-output routine, informing the operator that a persistent error has been encountered.

7

SECTION:

5-A
PAGE:

8
u P-

UNIVAC m SALT
2558

The first line of the source code recovery coding should be a SGAD line in the following
format:

,
TAG C FORM CONTENT {

RIELCjOJVIE IR IY SIG1AID R I E Ie 10 I V IE ,R ¥ I ' I I I I I I I I I I III
l_ - -

• The item number field may contain any valid entry.
• The tag field contains a permanent tag naming the first line 0 f the recovery coding.
• The c field is to be blank.
• Form is al ways SGAD.
• The content field contains a designation which is the permanent tag naming this line.

The SGAD line will be immediately followed by the instructions which are to be executed.
This coding may provide for the bypass of the particular unit causing the error. It may
close out all the files assigned to the program and terminate the run. If the recovery pro­
cedure attempts to continue processing by reprocessing or bypassing the record, the
subroutine must be reinitialized. This is done by again executing the macro-instruction
m * INI T,. Reinitialization mus t precede the execution of any further macro-ins tructions.

The recovery coding must be mapped by Index Register 1. The loading of Index Register 1
with the starting address of the segment is accomplished by the input-output subroutine,
prior to the transfer of control to the source code subroutine. Control will be transferred
to the instruction immediately following the SGAD line.

UP-

I SECTION~_B
UNIVAC ill SALT

2558

B. 80-COLUMN CARD READER CONTROL SUBROUTINE

A control system for reading cards from an 80-Column Card Reader is available through
a single routine of the SALT Data Processing Library. This routine, CR080RZZ, is
called from the library into the source program. The call includes a parameter set which modi­
fies the control system to conform to and provide options required by the source program. The
modified control routine is assembled with and becomes an integral part of the user's program.

The control system represents a single program load and thus will occupy a unit of the
memory area required by the assembled program. This load includes the card control
subroutines and storage area for the card images read. In addition, a single set of macro­
instructions is defined by the subroutine.

Macro-instructions provide complete control over the card control subroutines. These instruc­
tions are used by the programmer in the source program where their specified functions are
needed. The macro-instructions are assigned names in the form m*function. The Card Reader
routine is made unique by assigning a marker, m, to the call on C R080RZZ. This marker is
in the form of a SAL T tag. The function is as defined by the subroutine.

1. General

a. Addressing Card Images.

Successive card images may be read into different positions in memory. As each image
is advanced, the address of the first word of the current image area is supplied by the
Card Reader routine in a specified index register.

A single set of coding designed to process one card image is supplied by the programmer.
This coding addresses words of the ima ge relatively. A valid address of a word of the
current image is derived by modifying the relative address with the index register con­
taining the current image area address supplied by the Card Reader routine.

The n words of an image, from first to last, are numbered relatively from 0 through n-1.
For cards read with translation, n equals 20; for cards read with no translation. n equals
40. The relationship of card columns and rows to the n words is conventional.

(1) Instructions coded to access words of an image use these numbers as a SALT
decimal address. These instructions are modified by the index register loaded with
the first word of the current image area.

For example, with the current image area address in Index Register 4 , to load the last word
of a translated image into Arithmetic Register 1, use the instruction: 4, L, 1, 19,.

To store the contents of AR1 in the last word of an untranslated image, use the entry:
4,ST, 1,39,.

(2) An alternate way to construct image processing coding is available through use of
the SALT form EQDXe A ta&naming a particular image word, is equated with an
index register number combined with the image word number (0 through n-1).

1

SECTION:
5-B

PAGE:

2
u P-

UNIVAC m SALT
2558

For example, to equate tags for the first and tenth word of a translated image wi th
IR4, use:

C FORM CONTENT\
\ I)

E IQIDtX 4 I ' : =: TI 0, Ni E : , I i i i i 1 i I I i i I 1

I I 41 + J9 1 , 1= I TITI EIN, I i 1 1 I I I i I I I I
l

\ L,.. ...

An instruction to load ARI with the first word of the image would be written as:

L,l,TONE,.

An instruction to store ARI into the tenth word of the image would be written as:
ST,l,TTEN, or ST,1,TONE+9,.

b. The Current Card Ima ge Area.

Only one card image area is current at any time. The words of the image are available
for processing when its area is current.

c. Opening the Card Reader File.

The card reader file is opened by the macro-instruction m*INIT,o The card reader file is
opened at the start or restart of a program before any card image area is requested.

d. Advancing Card Image Areas.

The address of the first word of the current card image is obtained by executing the
macro-instruction m* ADV,. After each execution of m* ADV, the next card image is
advanced and become s the current image. The address of the first word of the current
image area is supplied in a specified index register.

e. Retaining Access to a Card Image.

Processing may dictate that information from specific card images shall govern the
processing of succeeding card images. (This occurs typically when a header/trailer card
relationship exists in a given card file.) In this case, the programmer must provide for
the reten tion of the required information fields. This is accomplished by moving the
required fields from the image storage area to a storage area in the source program while
the card ima ge containing such data is current.

~

I

I

b
}
~
1

• SECTION:

UNIVAC ill SALT
up-

2558
I PAGE:
:

2. Calling Statement

The general form of the calling statement for CROSORZZ Card Reader Routine is shown
below.

I

It should be noted that the INOX and SLCT lines, although a part of the calling statement,
are not hyphenated. Parameters Pl through P6 may take as many lines as necessary, and
all of these lines following the first line are hyphenated as shown.

ITEM NO. TAG C FORM CONTENT

marker J
nln n ,n ~j~ ~,~ I j I. I ! i I S,U1BlR C 1 R J 01 SI 01 R I ZJ Z l' IP] 1 ' 1P.21 ' I 1 I 1 1 I 1

I

I

I

I J 1 , J I I I I - I i I P31 , IP41' ,Ps, ' IP6J ' I I I I I I I I I I I I

I
I ,NIDI X P7, ,I I I I , I I ! I I I I I I I I I , I I I , i I I I I I

I I I I I I I I I I I S jLJCIT Rj Oj Al4j PS1 ' L J 1 J 1 I I I I I I I ' I

- --

The item number field contains a two level item number as indicated: the lower levels
are restricted for use by the subroutine coding. marker is a permanent tag making the coding
produced by CROSOZZ unique.

The parameter CROSORZZ specifies that the 80 column Card Reader routine is being called.

Pl defines the location in memory of the first segment of the reader routine coding by speci­
fying its predecessor. If the predecessor segment is part of the source program, this
parameter is of the form SEGn, where n is the segment number of the predecessor. If the
predecessor segment is part of a routine produced by the SALT assembly, this parameter is of
the form m * SEGn, where m is the marker used in calling the routine, and n is the number of
the last segment in the routine. If more than one predecessor is needed to define the location
of the reader routine coding, Pl, is ~ (space). In this case, a SGRT line naming the prede­
cessors is to be included elsewhere in the source program. (Refer to heading A-2 of this
section.)

P2 is the successor load, if any, which is to be chained to the Card Reader load. If a load is
to be chained to the Card Reader load, P , is a permanent tag naming the load definition
line of the chained load. If no load is to te chained to the Card Reader load, P2' is a space.

P3 is the numeric file designation for the card reader file, and is a unique number, 1 through
41.

P 4 is the number, 1 through 6, of reserve storages to be allocated to the routine.

PSis to specify the use of automatic translation. It is .NT if the cards are to be read without
translation. It is a space if the cards are to be read wi th translation.

I 1

)
I I

I

I I \
--..J

S-B

3

;ECTION:

5-B
JAG E:

4

i

i u p-
UNIVAC m SALT

2558

P 6 is a permanent tag naming the first line of the recovery coding supplied by the source
program. If such coding is not supplied, P 6 is to be left blank, but the terminating comma is
to be retained.

P7 is a number, 2 through 15, specifying the communication index register to be used by
the m * ADV, macro-instruction. Note that Index Register 1 may not be specified.

RDA P 4 PS' the parameters P 4 and PSI described above, are combined without punctuation to
form a name used internally by the routine. For example, if P 4 has been specified as 4 and
Ps as .NT I this designation is R DA4NT. If P 4 is 1 and PSis a space, this designation is
RDA 1. If this statement is omitted, a routine providing for six reserve areas and automatic
translation is supplied. It will be as though RDA6 was specified.

3. Integrating the Card Reader Routine with the Source Program

A few SALT Assembly Sys tern directives mus t be provided in the source program to effect
the proper integration of the Card Reader program load.

a. Positioning the Load.

The Card Reader program load is identified by the name, m*$NAM 1,.

Using this name it may be read in as an overlay. More frequently it will be chained to a
load of the source program and be read into memory along with it. This is accomplished
by writing a LOAD statement in the source program as follows:

TAG C FORM CONTENT

Where ANYTAG names a load of the source program whose first segment is s. The Card
Reader program load m*$NAM 1, is a successor to the load ANYT AG and will be read
into memory when ANYTAG is read.

UNIVAC ill SALT

i SECTION:

5-B

up·
2558

b. Positioning Segments.

(1) The first segment of the Card Reader program load is always m*SEG1,.

The user may es tablish a single predecesso r to this segment by simply specifying
SEGn, or m*SEGn, as a parameter (P

1
) of the subroutine call. The form m*SEGn,

(where n is the number of the predecessor segment) is used when the predecessor
segment belongs to another subroutine called into the source program. The first
segment of the input-output routine will be assembled relative to the last line of
the specified predecessor.

I PAGE:
I

The user may establish more than one predecessor segment by specifying parameter
Pl as ~,. This in effect defers specification to a statement that must appear in the
source program as follows:

FORM CONTENT

m*SEG1, names the first segment of the input-output routine and SEGn, and SEGp,
are its predece ssors.

In this case m*SEG1, will be assembled relative to the last line of the longest of its
predecessor segments.

(2) The last segment of the input-output program load is always, m*SEG2,. This segment
may be named as the predecessor of a segment of the source program. If required,
this is done simply by specifying m*SEG2, in the appropriate SGMT, or SGRT, line
of the source program.

5

;ECTION:
S-B

6

up· UNIVAC m SALT
2558

4. Card Reader Macro-Instructions

(Each instruction produces four lines of object code~

Im*INIT,\

IC FORM

MlC1R1O

~-

Entrance
Conditions: None.

m, * I I I N L I I T I 'I I

CONTENT\ ,
I I I I I I , I I I I I I

--- --

Results: m*IN IT, opens the Card Reader routine by setting all initial conditions.

Discussion: m*IN IT I must be executed once, and only once, prior to the execution of the
m*ADV, macro-instruction.

Entrance
Conditions: None.

I~I

CONTEN~ I

Results: m*ADV, causes the reading of cards in the Card Reader. m*ADV, places in a
specified index register the address of the next card image, making it the current
card image.

Discussion: The programmer should provide a procedure for detecting the end of the file, based
on some field or fields in a current image. No further m* ADV, macro-instructions
should be executed after detecting this situation. Six cards should follow the
card on which detection of end of card file is based. This will insure that a
reader off normal, due to an empty input magazine, does not occur.

UNIVAC m SALT

S. General Considerations When Using Card Reader Macro-Instructions

I UP­

I
2558

a. All of the input-output macro-instructions produced are subject to the same basic con­
siderations with regard to use.

(1) Program Requirements

i SECTION:

I 5-B

I PAGE: 7

I

Each macro-instruction must be assigned an item number in the range encompassed
by both code and pool segment definitions (SGMT). An index register mapping state­
ment (MAPS) for both the code and pool segments must precede the use of any macro­
instruction in the source program.

(2) Program Restriction

No macro-instruction may be included in a segment whose pool is mapped with Index
Register 1.

(3) General Exit Conditions

(a) Index Registers

Except for the case where a specified index register is to contain the address of
a current item, no other index registers are altered by the execution of a macro­
ins truction.

(b) Arithmetic Registers

The contents of the arithmetic registers are altered by the execution of the macro­
instructions.

(c) Indicators

The status of the Low, High, and Equal indicators may be altered by the execu­
tion of the macro-instructions.

SECTION:

UNIVAC ill SALT
up· PAGE:

2558

C. 90-COLUMN CARD READER CONTROL SUBROUTINE

A control system for the reading of data into the UNIVAC III Central Processor for 90-Column
Punch cards is available through a routine of the SAL T Data Processing Library. This routine
CRD90RZZ, is called from the library into the source program. The call includes a parameter
set which modifies the Card Reader Control Routine to conform to and provide options re­
quired by the source program. The modified control routine is assembled with and becomes an
integral part of the user's program.

The control system represents a single program load and thus will occupy a single consecu­
tive portion of the memory area required by the assembled program. This load includes the
card reader control subroutines and storage areas into which the punched card images are
read. In addition, a single set of macro-instructions is defined by the subroutine.

Macro-ins tructions provide complete control over the punched card reader control subroutines.
The programmer will use these instructions within the source program at the points where
their specified functions are needed. Macro-instructions of the routine are assigned names in
the form m * function. The Card Reader routine is made unique by assigning a marker, m, to
the call on CRD90RZZ. This marker is in the form of a SALT Tag. The function is as
defined by the subroutine.

1. General

a. Storing Data

Multiple storage areas provide the card reading subroutines with the means of achiev­
ing efficiency in card reading. These storage areas are used by the subroutine on a
rotating basis. Card Images are made available to the programmer when advanced, at
his direction, to bring the next image into a current status. The advancement of each of
the card images is accomplished through the use of an index register designated by the
programmer when the subroutine is called. This index register is loaded with the address
of the first word of the current storage area. When the current storage area is advanced,
the address of the first word of the next card image is placed in the specified index
register.

A maximum of six storage areas may be designated by the programmer for use by the
card reader subroutine CRD90RZZ, to store successive card images. A simple means of
addressing the card image areas is available to him.

The subroutine has been designed to provide the programmer with the possibility of us­
ing the same set of instructions to process each card image without regard as to the
work area being used. The words within the storage areas are to be addressed on a
relative basis. This relative address is converted to a valid address by modifying the
relative address with the contents of the designated index register. Control of the con­
tents of the index register as each work area changes is provided by the subroutine.

S-C

1

SECTION:

5-C
PAGE:

2
up· UNIVAC m SALT

2558

The storage areas for reading 90-column cards are 24 words in length. When card images
are read into these areas, most of the words delivered contain four alphanumeric characters.
Two words, located, at relative addresses 11 and 23 receive special treatment. A single
alphanumeric character is delivered to each of these words from columns 45 and 90
respectively. The character is stored in the most significant part of the word, with the
rest of the word filled with binary zeroes.

Instructions in the source program may use the decimal form of address to access words
of the current card image area. The actual address of a word within the storage area is
developed automatically by modifying the decimal number used in the m position of the
SAL T instruction line by the contents of the designated index register (The index
register contains a value equal to the address of the first word of the current image
area.) For example, assume that a number representing the starting address of the first
word of the current image area has been loaded into Index Register 4. Assume also that
a programmer wishes to load four words of data from the last four words of a card image
resulting from the reading of a 90-column card. The instruction will be written as
follows: 4, L, 1234, 23,.

Another way to address words within a storage area is by tags through the use of the
SAL T form EQDX. A tag naming a particular storage area word is equated with an index
register and the decimal designation of the storage area's relative address. Noting that
the first word of the storage area has a relative address of zero, the following is an
example of the EQDX form equating tags to the first and tenth words of the storage area:

FORM CONTENT

An instruction to load AR1 with the first word of the storage area could then be written
as: L, 1, CASH,.

UNIVAC ill SALT up-
2558

An instruction to load the contents of A R2 from the tenth word position of the storage
area could be written two ways as shown in the example:

CONTEN~(

b. The Current Card Image Areas.

I

· SECTION:

5-C

I PAGE:

I 3

Only one card image is current, or normally accessible to the programme r at anyone
time. The data are accessible for processing in an area only when that area is current.

c. Opening the Card File.

The card file is opened when the user program executes a macro-instruction m* IN IT,.
The card file must be opened before the m* ADV, macro-instruction can be used. The
source program must be constructed in a way that permits the execution of this macro­
instruction at the s tart or restart of a program. This action does not in itself make a
card image available for processing.

d. Advancing the Card Image Areas.

The address of the first word of the current image is obtained by executing the macro­
instruction m*ADV,. Each time a new ima ge is desired, the m* ADV, instruction must be
executed. The address of the first word within the next current storage area is supplied
automatically by the card reader subroutine in an index register designated by the
programmer.

e. Retaining Access to a Card Image.

Processing may dictate that information from specific card images shall govern the
processing of succeeding card images. (This occurs typically when a header/trailer card
relationship exists in a given card file.) In this case, the programmer must make provision
to retain access to the required information fields. This is accomplished when the card
image is current by moving the required fields from the image storage area to a storage
area in the source program.

SECTION:

5-C
PAGE;

4

p.
{
II

\

(
\

l

up· UNIVAC m SALT
2558

2. Calling Statement

The general form of the calling statement for CRD90RZZ Card Reader routine is shown
below.

It should be noted that the INDX and SLCT lines, although a part of the calling statement,
are not hyphenated. Parameters PJ through P6 may take as many lines as necessary, and
all of these lines following the first line a re hyphenated a s shown.

ITEM NO. TAG C FORM CONTENT\

nln

I

I

I

-

n In ~I~ ~I~ ml a I r I k Ie I r I I SIUjBI R C I R,D I 9 I 0 ' R J Z I Z I , I P'l , I P,J , I I I I , I I

j I 1 -' I 1 I I I I - 1 I I I~I ' lJ!Ll' jP"1 ' IP~I ' I I j 1 1 I I , I I I I - -
I I I I I I I I I I IINIDJ X lP71 ,I I I I I I I I I I I I I I I I I I ,

I I I I I I I I I I S ILJC1T RJ DIA IP..fIPrI 'I I I I 1 1 1 I I I I I I I .,

--- ---

The item number field contains a two level item number as indicated; the lower levels are
restricted to use by the subroutine coding. The entry, marker, is a permanent tag making the
coding produced by CRD90RZZ unique.

The parameter CRD90RZ Z specifies that the 90-column card reader routine is being called.

P 1 defines the location in memory of the first segment of the reader routine coding by spe­
cifying its predecessor. If the predecessor se gment is part of the source program, this
parameter is of the form SEGn, where n is the segment number of the predecessor. If the
predecessor segment is part of a routine produced by the SALT assem bly. this parameter is
of the form m * SEGn, where m is the marker used in calling the routine, and n is the
number of the last segment in the routine. If more than one predecessor is needed to define
the location of the reader routine coding, P1 is ~ (space). In this case, a SGRT line nam­
ing the predecessors is to be included elsewhe re in the source program. (Refer to heading
A-2 of this section.)

P2 defines the successor load, if any, which is to be chained to the card reader load. If a
load is to be chained to the reader routine load, P2 is a permanent tag naming the load
definition line of the chained load. If no load is to be chained to the card reader load, P2
is a space.

P3 is the numeric file designation for the card reader file, and is a unique number, 1
through 41.

P 4 is the number, 1 through 6, of reserve storages to be allocated by the routine.

I I

1 I \
I

I II

J
I I

-J

UNIVAC ill SALT
I
! SECTION:

5-C

i up-
I 2558

! PAGE:

P S specifies the us e of automa tic transla tion. It is .N T if the cards are to be read without
translation. It is space if the cards are to be read with translation

P6 is a permanent tag naming the first line of the recovery coding supplied by the source
program. If such coding is not supplied, P6 is to be left blank but the terminating comma is
to be retained.

P7 is a number, 2 through 15, specifying the communication index register to be used by the
m * ADV, macro-instruction. Note that Index Register 1 may not be specified.

RDA P4 PS' the parameters P4 and PS' described above, are combined without punctuation to
form a name used internally by the routine. For example, if P4 has been specified as 4 and
P S as .NT I this designation is RDA4N T. If P 4 is 1 and Ps is a space, this designation is
RDAl.

3. Integrating The Card Reader Routine With The Source Program

A few SAL T Assembly Sys tern directives m us t be provided in the source program to effect
the proper integration of the Card Reader program load.

a. Positioning the Load.

The Card Reader program load is identified by the name, m*$NAM 1 I.

Using this name it may be read in as an overlay. More frequently, it will be chained to a
load of the source program and be read into memory along with it. This is accomplished
by writing a LOAD statement in the source program as follows:

TAG C FORM CONTENT \

AINIY I TIAIG I I L10IAID 511 Iml*l$ IN,AIMll I, j I I 1 I I I I I I I I \
l l ..

ANYT AG names a load of the source program whose first segment is 5. The Card Reader
program load m*$NAMl I is a successor to the load ANYT AG and will be read into
memory when ANYT AG is read.

b. Positioning Segments.

The first segment of the Card Reader program load is always m*SEG 1 I.

The user may establish a single predecessor to this segment by simply specifying
SEGn, or m*SEGn, as a parameter (Pl) of the subroutine ca11.

n is the number of the predecessor segment. The form m*SE Gn, is used when the
pre decessor se gment belongs to another su broutine called in to the source program.
The first segment of the input-output routine will be assembled relative to the last
line of the specified predecessor.

5

SECTION:

5-C

PAGE:
6

up· UNIVAC m SALT
2558

The user may establish more than one predecessor segment by specifying parameter Pl
as 11,. This in effect defers specification to a statement that must appear in the source
program as follows:

~ FORM CONTENT \
I

I S,GIR,T m[* , S ,E [G , 1 , , IS 1 E 1 Gin I ,I S , E, G, p, " • I • , • , I I I
I-

m*SEG1, names the first segment of the input-output routine and SEGn and SEGp
are its predecessors.

In this case m*SE G 1, will be assembled relative to the last line of the longest of its
predecessor segments.

The last segment of the input-output program load is always, m*SEG2,.

This segment may be named as the predecessor of a segment of the source program. If
required, this is done simply by specifying m*SEG2 in the appropriate SGMT or SGRT
line of the source program.

4. Card Reader Macro-Instructions

(Each instruction produces four lines of object code.)

I m*INIT,I

C FORM CONTENT\

M,C,R,O m, * I I I N, I IT, " I , I I I I , , , , , , 1/
J -

Entrance
Conditions: None.

- ,
---..&

Results: m*INI T, opens the Card Reader routine by setting all initial conditions.

Discussion: m*INIT, must be executed once, and only once, prior to the execution of the
m* AD V, macro-instruction.

UNIVAC m SALT

I I
Im*ADV,1

Entrance
Conditions: None.

l/' '

; SECTION:

I 5-C

UP-
I

2558
I PAGE:

I 7

CONTEN~J

Results: m*ADV, causes the reading of cards in the Card Reader. m*ADV, places in a
specified index register the address of the next card image, making it the current
card image.

Discussion: The programmer should provide a procedure for detecting end of card file based
on some field or fields in a current image. No further m* ADV, macro-instruc­
tions would be executed after detecting this situation. Six cards should follow
the card on which detection of end of card file is based. This will insure that a
reader off normal, due to an empty input magazine, does not occur.

5. General Considerations When Using Card Reader Macro-Instructions

a. All of the input-output macro-instructions produced are subject to the same basic con­
siderations with regard to use.

(1) Program Requirements.

Each macro-instruction must be assigned an item number in the range encompassed
by both code and pool segment definitions (SGMT). An index register mapping

statement (MAPS) for both the code and pool segments is made before any macro­
instruction is included in the program.

(2) Program Restriction.

No macro-instruction may be included in a segment whose pool is mapped with Index
Register 1.

(3) General Exit Conditions.

(a) Index Registers

Except for the case where a specified index register is to contain the address of
a current item, no other index registers are altered by the execution of a macro­
instruction.

(b) Arithmetic Registers.

The contents of the arithmetic registers are altered by the execution of the
macro-instructions.

(c) Indicators.

The status of the Low, High, and Equal indicators may be altered by the execu­
tion of the macro-instructions.

UNIVAC m SALT
i

I up-

D. 80-COLUMN CARD PUNCH CONTROL SUBROUTINE

2558

I

SECTION:

S-D
I
! PAGE:

I 1

A control system for the punching of data into 80-Column Punch Cards from the UNIV AC III
Punch is available through a routine of the SALT Data Processing Library. This routine,
PUN80PZZ, is called from the library into the source program. The call includes a parameter
set which modifies the control routine to conform to and provide options required by the source
program. The modified control routine is assembled with and becomes an integral part of the
user's program.

The control system represents a single program load and thus will occupy a unit of the memory
area required by the assembled program. This load includes the card punching control sub­
routines and storage areas from which the punched card data is punched. In addition a single
set of macro-instructions is defined by the subroutine.

Macro-instructions provide complete control over the punched card con trol subroutines. The
programmer will use these instructions within the source routine at the points where their
specified functions are needed. Macro-instructions of the routine are assigned names in the
form m* function. The Card Punch Routine is made unique by assigning a marker, m, to the
call on PUN80PZZ. This marker is in the form of a SALT Tag. The function is as defined
by the subroutine.

L General

a. Storing Data

Multiple storage areas provide the Card Punching subroutines with the means of achiev­
ing efficiency in card punching. These storage areas are used by the subroutine on a
rotating basis. Storage areas are made available to the programmer for assembling card
format when advanced at his direction to bring the next area into a current status.
The advancement of each of the storage areas is accomplished through the use of an
index register which is designated when the programmer calls the subroutine. The index
register is loaded with the program relative address of the first word of the area. When
the current storage area is advanced, the address of the first word of the next storage
area is placed in the specified index register by the subroutine.

A maximum of four reserve storage areas may be used by the programmer to edit and
assemble card format punched under control of the card punching subroutine PUN80PZZ.
The programmer is responsible for writing the instructions to assemble punched card
format into these storage areas. A simple means of addressing the storage areas is
available to him.

The subroutine has been designed to provide the programmer with the possibility of
using the same set of instructions to assemble a particular format without regard as to
the work area being used. The words within the storage areas are addressed during the
assembly of the card format on a relative basis. This relative address is converted to
a valid address by modifying the relative address with the contents of the designated
index register.

SECTION:
S-D

PAGE: up·
2

UNIVAC m SALT
2558

The size of the storage areas needed to edit card images depends on whether punching
is to be translated from UNIVAC III machine code to Hollerith punched card code or
punched in machine code (untranslated), When translation is specified, the capacity of
each card is limited to 20 words of information. The capacity of a single card is 40
words when data is punched untranslated. The words within a work area are addressed
on a decimal number basis ranging from zero for the first position to 19 or 39 depending
on the number of words that can be punched at one time.

Instructions in the source program may use the decimal form of address to access
words of the current storage area. The actual address of a word within the storage area
is developed automa tic ally by modifying the decimal number used in the m position of
the SALT instruction line by the contents of the designated index register (The index
register contains a value equal to the address of the first word of the current storage
area). For example, assume that the starting address of the first word of the current
ima ge area has been loaded into Index Re gister 4. Assume also that a programmer
wishes to store four words (16 columns) of data in the last four words of a storage
area that is being edited for translation to Hollerith code. These words have already
been loaded into the arithmetic registers. The instruction will appear as follows:

CONTj

If the programmer wishes to store the contents of AR1 in the 40th word of a storage
area being edited for punching without translation, the instruction would look like this:

Another way to address words within a storage area is by tags through the use of the
SAL T form EQDX. A tag naming a particular storage area word is equated with an index
register and the decimal designation of the storage area's relative address. Noting that
the first word of the storage area has a relative address of zero, the following is an
example of the EQDX form equating tags to the first and tenth words of the storage area,

\~ FORM CONTENT\

E1QIDI X 4 1, 1 = 1 C1 A IS I HI' I 1 I I I I 1
I

1 1 1 1 I J 1

1 • 1 1 41 + 19 I' 1= l PI A L Y I ' I I I I I 1 I 1 I I I I I L... __
--

UNIVAC ill SALT
2558

An instruction to store ARl in the first word of the storage area could then appear as:

CONTEN~!

An instruction to store the contents of AR2 into the tenth word position of the storage
area could be written in the following two ways:

CONTENT

b. The Current Card Storage Areas.

Only one storage area is current, or normally accessible to the programmer at anyone
time. The data is to be stored for punching in an area only when that area is current.

c. Opening the Card Punching File.

I SECTION:

I PAGE:

I

The card punching file is opened when the user program executes a macro-instruction
m * IN IT. The card punching file mus t be opened before any other macro-instruction
can be used. The source program mus t be constructed in a way that permits the execu­
tion of this macro-instruction at the start or restart of a program. This action does not
in itself make a work area available for editing card data for punching.

d. Advancing the Card Storage Areas.

The address of the first word of the current storage area is obtained by executing the
macro-instruction m*ADV,. Each time a new storage area is desired, the m*ADV,
instruction must be executed. The execution of this instruction will cause a new
storage area to be advanced for the assembly of data for punching. The address of the
first word within the next current storage area is supplied automatically by the card
punching subroutine in an index register designated by the programmer.

e. Punching Cards from Storage Areas.

The contents of a storage area are punched into a card and the area is made available
for reuse by the execution of the macro-instruction m*PUNCH,. The storage areas are
punched in the same sequence that they become current through execution of m*ADV,.

The punching of cards may be delayed if so desired by the programmer. In normal
practice, the execution of a m* PUNCH, macro-instruction should occur immediately fol­
lowing the completion of moving the data to be punched into the work area. This
practice insures the most expeditious program treatment for efficient card punching.

S-D

3

SECTION:

PAGE:

5-D

4

JO.

\,
I

~
,

I

) I

I
I
I
I UP- 2558

UNIVAC m SALT

!

2. Calling Statement

The general form of the calling statement for the 80-Column Card Punch Routine is shown
below.

It should be noted that the IHDX and SLCT lines, although a part of the calling statement,
are not hyphena ted. Parameters Pl through P6 may take as many lines as necessary, and
all of these lines following the first line are hyphenated as shown.

ITEM NO. TAG C FORM CONTENT\

marker }
"I" "I" AlA AlA

I , , t I I I S, U1BjR PI U , N I 8 I 0 I P I Z I Z 1 , IPi I 'IP21 't I I i I I I I ,

-I I I I I I I I I I I I I I IPjI 'IPA 'IP" "Pili '1 I I I I , I I I I . I I I I

I I I I I I I I I I I II Nl DlX P"I I I I I I I I I I tit t , I I I I , ~

I I I I I , I , , , , S ,LICIT PIU I AIPAP" 'I I I I I I , I , I I I I I I I

\::~"-- -- --

The item number field contains a two-level item number as indicated; the lower levels are
restricted for use by the subroutine coding. marker is a permanent tag making the coding
produced by PUN80PZZ unique.

The parameter PUN80PZZ specifies that the 80-Column Card Punch Routine is being called.

Pl defines the location in memory of the first segment of the punch-routine coding by
specifying its predecessor. If the predecessor segment is part of the source program, this
parameter is of the form SEG", where" is the segment number of the predecessor. If the
predecessor segment is part of a SALT produced routine, this parameter is of the form
m * SEG", where m is the marker used in calling the routine, and" is the number of the
last segment in the routine. If more than one predecessor is needed to define the location
of the punch-routine coding, Pl is a space. In this case, a SGRT line naming the prede­
cessors is included elsewhere in the source program. (Refer to heading A-2 of this section.)

P2 defines the successor load, if any, which is to be chained to the card punch load. If a
load is to be chained to the punch routine load, P2 is a permanent tag naming the load
definition line of the chained load. If no load is to be chained to the card punch load, P2
is a space.

P3 is the numeric file designation for the card punch file, and is a unique number, 1
through 41 ••

P4 is the number, 1 through 4, of reserve storages to be allocated by the routine.

Ps specifies the use of automatic translation. It is .NT if the cards are to be punched with­
out translation. It is a space if the cards are to be punched with translation.

SECTION:

UNIVAC ill SALT I Up·

I

PAGE:
2558

P6 is a permanent tag naming the first line of the recovery coding supplied by the source
program. If such coding is not supplied, P6 is to be left blank but the terminating comma is
to be retained.

P7 is a number, 2 through 15, specifying the communication index register to be used by the
m * ADV macro-instruction. Note that Index Register 1 may not be specified.

PUA p 4 Ps; the parameters P 4 and PSi described above, are combined without punctuation to
form a configuration name used internally by the routine. For example, if P.4 has been
specified as 4, and Ps as .NT, this designation is PUA4NT. If P 4 is 3, and Ps is ~ (space),
this designation is PUA3,. If the SLCT line is omitted, a routine providing for four reserve
areas and automatic translation will be supplied. It will be as though PUA4,had been
supplied.

3. Integrating The Card Punching Routine With The Source Program

A few SALT Assembly System directives must be provided in the source program to effect
the proper integration of the Card Punching program load.

a. Positioning the Load.

The card punching program load is identified by the name, m * $NAM1,.

Using this name it may be read in as an overlay. More frequently, it will be chained to a
load of the source program and be read into memory along with it. This is accomplished
by writing a LOAD statement in the source program as follows:

\ TAG C FORM CONTENT\

I AIN I YI TIAIGI I L IOIAID 5 I , I m I * I $ I N I A I Mill , I I I
)

I i I I I I il - -- --

ANYTAG names a load of the source program whose first segment is s. The Card
Punching program load m*$N AM 1, is a successor to the load AN YT A G and will be read
into memory when ANYT AG is read.

S-D

5

SECTION:
5-D

PAGE:
6

up- UNIVAC m SALT
2558

b. Positioning Segments.

The first segment of the Card Punching program load is always m*SEG1,.

The user may establish a single predecessor to this segment by simply specifying
SEGn, or m*SEGn, as a parameter (p1) of the subroutine call, where n is the number
of the predecessor segment. The form m*SEGn, is used when the predecessor segment
belongs to another subroutine called into the source program. The first segment of the
Card Punching Routine will be assembled relative to the last line of the specified
predecessor.

The user may establish more than one predecessor segment by specifying parameter P1
as /!i,. This in effect defers specification to a statement that must appear somewhere in
the source pro gram as follows:

~ FORM CONTENT \

~ S IG, R, T m, *, S ,E ,G , 11 ' I S I E I G, n I ' I S IE ,G , PI' , . 1 . 1 ., I , I
I - .-J " -

m*SEG1, names the first segment of the Card Punching Routine and SEGn, and SEGp,
are its predecess ors.

In this case m*SEG1, will be assembled relative to the last line of the longest of its
predecessor segments.

The last segment of the card punching program load is always m*SEG2,.

This segment may be named as the predecessor of a segment of the source program or
another subroutine. If required, segment definition is accomplished by specifying
m*SEG2,in the appropriate SGMT or SGRT line of the source program or parameter in a
successor subroutine.

UNIVAC m SALT
I SECTlON~_D

PAGE:
7 2558

4. Card Punch Macro-Inst1'llctions

Im*INIT,1

Each coding line used by the programmer to call this macro-instruction results in four source
coding lines actually being included in the program. The calling line may be coded as follows:

Entrance
Conditions: None.

FORM CONTENT

Results: m*INIT, opens the card punching routine by setting up the starting conditions.

Discussion: m*INIT, must be executed once and only once prior to the execution of the
m* ADV, macro-instruction. It will not in itself make a storage area available
for editing a card image.

Im*ADV,1

Each coding line used by the programmer to call this macro-instruction results in four coding
lines actually being included in the object program. The calling line may be coded as
follows:

Entrance
Conditions: None.

Results: m*ADV, causes a reserve storage area to be made available for editing data to
be punched. The address of the first word of this reserve storage area is placed
in the specified index register.

Discussion: This macro-instruction is used to make successive work areas available to the
programmer. It does not cause a card image to be punched. The macro-instruc­
tion m*INIT, must be executed prior to using m*ADV,. For each use of m*ADV,
there should be a corresponding use of m*PUNCH,.

)ECTION:

S-D

'AGE:
8

up- UNIVAC m SALT
2558

I ... *PUMCH, I
Each coding line in the source program calling this macro-instruction results in four source
coding lines being included in that program. The calling line may be coded as follows:

Entrance
Conditions: None.

Results: m*PUNCH, causes the punching of data from a reserve storage area into a card.
After its contents have been punched, the reserve area is returned to the pool
of available areas. It will then be delivered to the source program for possible
reuse via m*ADV,.

Discussion: The sequence of the work areas to be punched is inflexible. The punching will
be accomplished from each work area in the same sequence as delivered by
m*ADV,. Each of the storage areas will be punched in rotation according to the
number of areas designated.

It may be necessary for the programmer to provide for the runout of the card
punch after the last card has been advanced. His program must execute enough
m*PUNCH, instructions to get all the work areas punched as well as the
moving of the last of the punched cards out of the card punch and into the
stacker. Normally, two additional m*PUNCH, instructions will suffice.

The subroutine program will direct the correctly punched cards to card stacker
number 1. When punching errors are detected, they will be directed to card
stacker number O.

I SECTION: 5-D

UNIVAC m SALT
2558

5. General Considerations When Using Card Punching Macro .. lnstruction

All of the input-output macro-instructions currently available in UNIVAC III SAL T Library
are subject to the same general considerations with regard to use.

a. Program Requirements.

Macro-instructions nfoduce coding lines that become an integral Dart of the orOgram-.... ------ -------- --- r------ ------0 ------ ------ -- ---- -o.a. - ... t,,;II

mer's own program. The call on these instructions must be provided by the programmer
in his own program lines. Index registers are unspecified in the lines of coding result­
ing from macro-instructions. When brought into a program, the index register mapping
of the segments into which they are inserted must apply to them also. Therefore, a MAPS
statement for both code and pool segments must be present in the calling program
statement prior to the insertion of the macro-instruction coding.

b. Program Restriction.

No. macro-instruction may be included in a segment whose pool is mapped with Index
Register 1.

c. General Exit Conditions.

(1) Index Registers

Except for the case where a specified index register is to contain the address of a
current item, no other index registers are altered by the execution of a macro-
ins truc tion.

(2) Arithmetic Registers

The contents of the arithmetic registers are altered by the execution of the macro­
instructions.

(3) Indicators

The status of the Low, High, and Equal indicators may be altered by the execution
of the macro-instructions.

UNIVAC ill SALT

E. 90-COLUMN CARD PUNCH CONTROL SUBROUTINE

I up­
I

2558

I

'SECTION:

, S-E
! PAGE:
! 1
I

A control system for the punching of data into 90-Column Punch Cards from the UNIVAC III
Punch is available through a routine of the SALT Data Processing Library. This routine,
PUN90PZZ, is called from the library into the source program. The call includes a parameter
set which modifies the control routine to conform to and provide options required by the source
program. The modified control routine is assembled with and becomes an integral part of the
user's program.

The control system represents a single program load and thus will occupy a unit of the memory
area required by the assembled program. This load includes the card punching control sub­
routines and storage areas from which the punched card data is punched. In addition a single a
set of macro-instructions is defined by the subroutine.

Macro-instructions provide complete control over the punched card control subroutines. The
programmer will use these instructions within the source routine at the points where their
specified functions are needed. Macro-instructions of the routine are assigned names in the
form m* functions. The Card Punch routine is made unique by assigning a marker, m, to the
call on PUN90PZZ. This marker is in the form of a SALT Tag. The function is as defined
by the subroutine.

1. General

a. Storing Data for Punching

Multiple storage areas provide the Card Punching subroutines with the means of achiev­
ing efficiency in card punching. These storage areas are used by the subroutine on a
rotating basis. Reserve storage areas are made available to the programmer for assembling
card format when advanced, at his direction, to bring the next area into a current
status. The advancement of each of the storage areas is accomplished through the use
of an index register which is designated by the programmer using the subroutine. The
index register is loaded with the address of the first word of the current storage area.
When the current storage area is a dvanced, the address of the first word of the next storage
area is placed in the specified index register by the subroutine.

A maximum of four reserve storage areas may be used by the programmer to edit and
assemble card format punched under control of the card punching subroutine PUN90PZZ.
The programmer is responsible for writing the instructions to assemble punched card
data into these storage areas. A simple means of addressing the storage areas is
available to him.

The subroutine has been designed to provide the programmer with the possibility of us­
ing the same set of instructions to assemble a particular format without regard as to the
work area being used. The words within the storage areas are addressed during the
assembly of the card format on a relative basis. This relative address is converted to a
valid address by modifying the relative address with the contents of the designated
index register.

SECTION:

!UPO

5-E

PAGE:
2

UNIVAC m SALT
2558

The storage areas for assembly of data to be punched into 90-column cards are 24
words in length. When data is punched from these areas into the cards, most of the words
deli ver four alphanumeric characters. Two words, located, a t relative addresses 11
and 23 receive special treatment. A single alphanumeric character is delivered by each
of these words to columns 45 and 90 respectively. The character punched is that
stored in the most significant digit of the word, the data in the rest of the word is not
punched. It is the responsibility of the programmer to edit the data assembled in the
storage area to conform to the described punching pattern.

Instructions in the source program may use the decimal form of address to access words
of the current storage area. The actual address of a word within the storage area is
developed automatically by modifying the decimal number used in the m position of the
SAL Tins truction line by the contents of the designated index register. (The index
register contains a value equal to the address of the first word of the current storage
area). For example, assume that the starting address of the first word of the current
ima ge area has been loaded into Index Register 4. Assume also that a programmer wishes
to store four words of data (16 columns) in the last four words of a storage area that is
being edited for punching 90-column cards. These words have already been loaded into
the arithmetic registers. The instruction will appear as follows:

CONTENT

If he wishes to store the contents of ARI in the 24th word of a storage area being edited
for punching without translation, the instruction would look like this:

It is assumed in this case that only the most significant character of the word is to be
punched. Another way to address words within a storage area is by tags through the use
of the SALT form EQDX. A tag naming a particular storage area word is equated with an
index register and the decimal designation of the storage area's relative address.
Noting that the first word of the storage area has a relative address of zero, the follow­
ing is an example of the EQDX form equating tags to the first and tenth words of the
storage area:

FORM CONTENT

UNIVAC m SALT
UP-

2558

An instruction to store ARI in the first word of the storage area could then appear
as:

CONTENTI~

I~-~~j

I SECTION:

I PAGE:

An instruction to store the contents of AR2 into the tenth word position of the storage
area could be written in the following two ways:

CONTENT

b. The Current Card Storage Areas.

Only one storage area is current, or normally accessible to the programmer at anyone
time. The data is to be stored for punching in an area only when that area is current.

c. Opening the Card Punching File.

The card punching file is opened when the user program executes a macro-instruction
m*INIT ,. The card punching file must beopened before any other macro-instruction
can be used. The source program must be constructed in a way that permits the execu­
tion of this macro-instruction at the start or restart of a program. This action does not
in itself make a work area available for editing card data for punching.

d. Advancing the Card Storage Areas.

The address of the first word of the current storage area is .obtained by executing the
macro-instruction m*ADV,. Each time a new storage area is desired, the m'*ADV,
instruction must be executed. The execution of this iqstruction will cause a new
storage area to be advanced for the assembly of data for punching. The address of the
first word within the next current storage area is supplied automatically by the card
punching subroutine in an index register designated by the programmer.

e. Punching Cards from Storage Areas.

The contents of a storage area are punched into a card and the area is made avaiiabie
for reuse by the execution of the macro-instruction m*PUNCH ,0 The storage areas are
punched in the same sequence that they become current through execution of m*ADV,

The punching of cards may be delayed if so desired by the programmer. In normal
practice, the execution of a m*PUNCH,macro-instruction should occur immediately

5-E

3

SECTION:

5-E
PAGE:

4

'0.
\,

II

,

.,

I
I up- 2558

UNIVAC m SALT

following the completion of moving the data to be punched into the work area. This
practice insures the most expeditious program treatment for efficient card punching.

2. Calling s.tatement

The general form of the calling statement for the 90-Column Card Punch routine is shown
below.

It should be noted that the INDX and SLCT lines, although a part of the calling statement,
are not hyphenated. Parameters P1 through P6 may take as many lines as necessary, and
all of these lines following the first line are hyphenated as shown.

ITEM NO. TAG C FORM CONTEN1\.

~I~ ~I ~
marker

S IU,B,R P,U,N ,9, 0 I PI ZI Z" IP'1 ' IP, 'I
1 nln nln I I I I I I I I I I I I I I ,

!

I I I I I I I I i I I - 1 11 Pl ',P.4i 'P 51 ' IP ~ , I , I , , I I I I I I , I 1\
I

I I I I , I , I I , I IIN1DIX P7I 'I I I I I , I , , I I I I I I I I I I I ~

I I I I I I I I I I I S ILJC,T PI U I A ,p AlP 51 'I I I I , I , , , , , , I I I I)

\:~ --- --- / -- -

The item number field contains a two level item number as indicated; the lower levels are
restricted to use by the subroutine coding. The entry, marker, is a permanent tag making the
coding produced by PUN90ZZ unique.

The parameter PUN90PZZ specifies that the 90 ... Column Card Punch routine is being called.

Pl defines the location in memory of the first segment of the punch routine coding by spe ..
cifying its predecessor. If the predecessor segment is part of the source program, this
parameter is of the form SEGn, where n is the segment number of the predecessor. If the
predecessor segment is part of a routine produced by the SALT system, this parameter is of
the form m * SEGn, where m is the marker used in calling the routine, and n is the number
of the last segment in the routine. If more than one predecessor is needed to define the
location of the punch routine coding, Pl is a ~ (space). In this case, a SGRT line naming
the predecessors is to be included elsewhere in the source program. (Refer to heading
A-2 of this section.)

P2 defines the successor load, if any, which is to be chained to the card punch load. If a
load is to be chained to the punch routine load, P2 is a permanent tag naming the load­
definition line of the chained load. If no load is to be chained to the card punch load, P2
is Il (space).

P3 is the numeric file designation for the card punch file, and is a unique number,
1 through 41.

UNIVAC ill SALT

SECTION:

5-E

PAGE:
2558

P.4 is the number, 1 through 4, of reserve storages to be allocated by the routine.

Ps specifies the use of automatic translation. It is .NT if the cards are to be punched with­
out translation. It is a space if the cards are to be punched with translation.

P6 is a permanent tag naming the first line of the recovery coding supplied by the source
program. If such coding is not supplied, P6 is to be left blank but the terminating comma
is to be retained.

P7 is a number, 2 through 15, specifying the communication index register to be used by
the m * ADV, macro-instruction. Note that Index Register 1 may not be specified.

PUA P.4 PS' the parameters P.4 and PS, described above, are combined without commas to
form a configuration name used internally by the routine. For example, if P.4 has been spe­
cified as 3, and Ps as .NT, this designation is PUA3NT. If the SLCT line is omitted, a
routine providing for four reserve areaS will be supplied. It will be as though PUA.4 had
been supplied.

3. Integrating the Card Punching Routine with the Source Program

A few SALT Assembly System directives must be provided in the source program to effect
the proper integration of the card punching program load.

a. Positioning the Load.

The card punching program load is identified by the name, m*$NAM1,.

Using this name it may be read in as an overlay. More frequently it will be chained to a
load of the source program and be read into memory along with it.

This is accomplished by writing a LOAD statement in the source program as follows:

\ TAG C FORM CONTENT\ ,
I)

L101A,D 5 1 ' j mj * j $ j NJ A 1 M 1 1 , ' , A1N,Y1T1A1G, , , I I , 1 1 I I I I I I
L \ - --J

ANYT AG names a load of the source program whose first segment is s. The Card Punch­
ing program load m *$NAM 1, is a successor to the load AN YT A G and will be read into
memory when ANYT AG is read.

b. Positioning Segments.

The first segment of the card punching program load is always m*SEG 1,.

The user may establish a single predecessor to this segment by simply specifying
SEGn, or m*SEGn, as a parameter (Pl) of the subroutine call, where n is the number of
the predecessor segment. The form m*SEGn, is used when the predecessor segment
belongs to another SUM&lltine ealled·int~ the source program. The first segment of the
card punching routine will be assembled relative to the last line of the specified
predecessor.

5

SECTION:
5-E

PAGE:

6
I Up· 2558 I

UNIVAC m SALT

The user may establish more than one predecessor segment by specifying parameter P l'
as 11,. This in effect defers specification to a statement that must appear somewhere in
the source program as follows:

FORM CONTENT

m*SEG 1, names the first segment of the card punching routine and SEGn, and SEGp,
are its predecessors.

In this case m*SEG1, will beassembled relative to the last line of the longest of its
predecessor segments.

The last segment of the card punching program load is always, m*SEG2,.

This segment may be named as the predecessor of a segment of the source program or
another subroutine. If required, segment definition is accomplished by specifying
m*SEG2, in the appropriate SGMT or SGRT line of the source program or parameter in a
successor subroutine.

4. gO-Column Card Punch Macro-Instructions

I .. *IHIT,\

Each coding line used by the programmer to call this macro-instruction results in four object
coding lines actually being included in the program. The calling line may be coded as follows:

FORM CONTENT

Entrance
Conditions: None.

Results: m*INIT, opens the card punching routine by setting up the starting conditions.

Discussion: m*INI T, must be executed once and only once prior to the execution of the
m* ADV, macro-instruction. It will not make a storage area available for editing
a card image.

UNIVAC ill SALT
I

I up·
2558

\m*ADV,1

Each coding line used by the programmer to call this macro-instruction results in four-object
coding lines actually being included in the object program. The calling line may be coded
as follows:

~I FORM I

Entrance
Conditions: None.

Results: m*ADV, causes a reserve storage area to be made available for editing data to
be punched. The address of the first word of this reserve storage area is placed
in the specified index register.

Discussion: This macro-instruction is used to make successive work areas available to the
programmer. It does not cause a card image to be punched. The macro-instruc­
tion m*INIT, must be executed prior to using m*ADV,.For each use of m*ADV,
there should be a corresponding use of m*PUNCH,.

I

SECTION:

5-E

I PAGE:

I 7

SECTION:
5-E

PAGE:
8 I UP- 2558

UNIVAC m SALT

\m*PUNCH,\

Each coding line in the source program c aIling this macro-instruction results in four object
coding lines being included in that program. The calling line may be coded as follows:

1C FORM

M,C1R1O

1,..0-

Entrance
Conditions: None.

- -

CONTENT\
I

ml* IPIUINICIHI/I I I I I I I I I I I I I 1J

-- -

Results: m*PUNCH , causes the punching of data from a reserve storage area into a card.
After its contents have been punched, the reserve area is returned to the pool of
available areas. It will then be delivered to the program for possible reuse via
m*ADV/ •

Discussion: The sequence of the work areas to be punched is inflexible. The punching will
be accomplished from each work a rea in the same sequence as delivered by
m* ADV I. Each of the storage areas will be punched in rotation according to the
number of areas designated.

It is necessary for the programmer to provide for the runout of the card punch
after the last card has been advanced. His program must execute enough
m* PUNCH I instructions to get all the work areas punched as well as the moving
of the last of the punched cards out of the card punch and into the stacker.
Normally, two additional m*PUNCH , instructions will suffice.

The subroutine program will direct the correctly punched cards to card stacker
number 1. When punching errors are detected, they will be directed to card
stacker number O.

UNIVAC ill SALT
SECTION:

5-E

, Up·
2558

5. General Considerations When Using Card Punching Macro-Instructions

a. All of the input-output macro-instruction currently available in UNIVAC III SALT
Library are subject to the same general considerations with regard to use.

(1) Program Requirements.

PAGE:

Macro instructions produce coding lines that become an integral part of the pro­
grammer's own program. The call on these instructions must be provided by the pro­
grammer in his own program lines. Index registers are unspecified in the lines of
coding resulting from macro-instructions. When brought into a program, the index
register mapping the segments into which they are inserted must apply to them also.
Therefore, a MAPS statement for both code and pool segments must be present in the
calling program prior to the insertion of the macro-instruction coding.

(2) Program Restriction.

No macro-instruction may be included in a segment whose pool is mapped with Index
Register 1.

(3) General Exit Conditions.

a. Index Registers

Except for the case where a specified index register is to contain the address of a
current item, no other index registers are altered by the execution of a macro­
instruction.

b. Arithmetic Registers

The contents of the arithmetic registers are altered by the execution of the macro­
ins tructions.

c. Indicators

The status of the Low, High, and Equal indicators may be altered by the execution
of the macro-instructions.

9

I SECTION:

UNIVAC m SALT I 5-F

2558
i PAGE:

I 1

up·

F. PAPER TAPE READER CONTROL SUBROUTINE

A control system for the reading of data from the UNIVAC III Paper Tape Reader is available
through a routine of the SALT Data Processing Library. This routine, RDPTTZZ, is called
from the library into the source program. The call includes a parameter set which modifies
the control routine to conform to and provide options required by the source program. The
modified control routine is assembled with and becomes an integral part of the user's program.

The control system represents a single program load and thus will occupy a unit of the
memory area required by the assembled program. This load includes the paper tape reader
control subroutines and storage area into which data is to be read from paper tape. In
addition a single set of macro-instructions is defined by the subroutine.

Macro-instructions provide complete control over the paper tape reader control subroutines.
The programmer will use the se instructions within the source routine at the points where
their specified functions are needed. Macro-instructions of the routine are assigned names in
the form m* function. The Paper Tape Reader routine is made unique by assigning a marker,
m, to the call on RDPTTZZ. The marker is in the form of a SALT Tag. The function is as
defined by the subroutine.

1. General

a. Processing Paper Tape Character Words.

Multiple storage areas can be used to provide the Paper Tape Reader subroutines with a
means of achieving efficiency in Paper Tape Reader usage. When multiple storage areas
are available, successive paper tape characters are read into the first storage area until
that area has been filled. Subsequently, another storage area will be referenced and the
next reading of paper tape will bring paper tape character images into a second area.
Storage areas are used on a rotating basis to s tore various quantities of paper tape
character ima ges.

The advancement of each storage area into current status is accomplished through the
use of an index register. This register is designated by the source program during the
call of the Paper Tape Reader subroutine. The designated index register contains the
program relative address of the first word of the current paper tape character storage
area. As each storage area is advanced, the address of the first word of the current
image area is supplied by the Paper Tape Reader subroutine in the specified index
register.

One or more sets of coding designed to process paper tape data is written by the pro­
grammer. The code sets address words of the paper tape character storage area relative­
ly. A valid address to a paper tape character word in a storage area is derived by
modifying the relative address of the word within the current storage area with the index
register containing the address of the first word of the work area.

SECTION:
5-F

PAGE: up·
2

FORM

•

UNIVAC m SALT
2558

Each paper tape character storage area is of equal length, but the length must be speci­
fied by the programmer at the time of call. The words are numbered relatively from 0
through n-1. (n = the specified number of characters to be stored in a work area).

Instructions designed to process paper tape character words in a current storage are'a
use the relative position of the words in the area as a SALT decimal address. These
addresses are then modified by the specified index register which has been loaded with
the address of the first word of the current image area.

For example, assume that the current storage area address has been loaded into IR4.
To load a tape character that has been read into the first position of the storage area
into AR1, this instruction would be used: 4, L, 1, 0,.

To load two characters into AR's 1 and 2 from the 16th and 17th positions of the storage
area, the first position of the storage area being zero, the instruction word would be:

4, L, 12, 16, .

An alternate method of addressing any current storage area is available through use of
the SALT form EQDX. A tag, naming a particular area word, is equated with an index
register and the decimal designation of the storage area's relative address. Noting that
the first word of the storage area has a relative address of zero, the following is an
example of the EQDX form equating tags for the first and 16th word of a storage area.

CONTENT

The instructions illustrated in the above example could now be written as:

CONTENT

UNIVAC ill SALT
I Up·

i

b. Special Programming Considerations.

2558

I SECTION,
5-F

I PAGE, 3

Paper tapes are read into the UNIVAC III by the Paper Tape Reader one character at a
time. Variable input conditions can result in the termination of a paper tape read opera­
tion before the storage area into which the tape is being read is completely filled. The
paper tape reader subroutine has provided for this contingency by adding one additional
word to each specified storage area. This status word immediately follows the
storage area with which it is associated and is accessed at relative address n. (See
examples of the use of decimal addressing above.)

The status word provides the programmer with a means for determining the number of
characters actually read into its associated storage area. It also provides a signal indi­
cating the reason for termination of reading. It is the responsibility of the calling pro­
gram to provide coding to test status word data and to provide for the conditions
encountered.

The status word is made up of the following two parts. Bit positions 1-15 contain the
address of the last cha racter read into the storage area. Bit positions 21-25 indicate the
reason for termination of reading.

A list of reasons for terminating conditions, and the corresponding codes is shown below:

Termination Condition

Normal, storage filled

Wired stop character
sensed.

Parity check failed
(3 times)

Code
(bits 21.25)

00000

00010

00001

Last Character Read Counter
(bits 1.15)

Address of n-l

Address of stop character

Address of last character read
(the bad character)

Paper tape characters are brought into the central processor under control of the Format
Connector (see paragraph h below). Each character occupies the lower order bits of a single
word; the number of bit positions used depends on the number of channels in the tape
that is being read. The paper tape code is not automatically converted to UNIVAC III code.
It is the responsibility of the calling program to provide for this translation.

SECTION:

5-F

PAGE:
4

UNIVAC m SALT
2558

c. The Current Paper Tape Character Storage Area.

Only one storage area is current at any time.

d. Opening the Paper Tape Reader Routine.

The Paper Tape Reader routine is opened by executing the macro-instruction m*INIT,.
The routine is opened at the start or restart of a program before any paper tape
character storage area is requested.

e. Advancing Paper Tape Character Storage Areas.

The address of the first word of the current storage area is obtained by executing the
macro-instruction m*RDPT,. After each execution of the macro-instruction, a new paper
tape character storage area is s elected and becomes the current storage area. The
address of the first word of the current storage area is automatically supplied in a
specified index register by the Paper Tape Reader routine.

f. Retaining Access to a Paper Tape Character Storage Area.

Processing may dictate that information from one storage area will not in itself com­
prise a complete record and must be held over until a complete record can be assembled
from data contained in a subsequent area. In this case the programmer must make

provision to retain access to the required information fields. This is accomplished when
the first storage area is current by moving the information from the current storage area
to another storage area in the source program.

g. Bypass of Bad Records.

The Paper Tape Reader control routine will make three attempts to read a record when a
parity error is encountered. If the error persists after the third try, the reading to the
storage area will be discontinued. The bad character will be the last character read into
the partial block. The character following the bad character will be the first character
read into a new storage area upon execution of m* RD PT, macro-instruction.

The status word of the storage area which was being filled when the parity error
occurred will contain 00001 in bit positions 21·25 and will indicate by a binary number
in bit positions 1-15, the address of the last character read.

UNIVAC ill SALT I
I Up· 2558

h. Format Connector.

The programmer must be aware of the specifications used in the wiring of the Format
Connector. The wired stop code, parity check bits, and possible rearrangement of
channels are controlled by this device. All tests within the Paper Tape Reader for
conditions controlled by the Format Connector must be based on the specific re­
quirements.

2. Calling Statement

The calling statement for RDPTT ZZ is shown below.

SECTION:

: PAGE,

Parameters P1 through P6 may take as many lines as required; all lines after the first aIe
hyphenated. The INDX and SLCT lines, although part of the calling statement, are not
hyphenated.

TAG C FORM

I I I I I I I

The item number field contains a two level item number as indicated; the lower levels are
restricted for use by the subroutine coding. The entry, marker, is a permanent tag making the
coding produced by RDPTTZZ unique.

The designation R 0 PTT ZZ is the fixed routine name.

Pl defines the location in memory of the first segment of the RDPTTZZ coding by specify­
ing its predecessor. If the predecessor segment is part of the source program, this parameter
is of the form SEGn, where n is the segment number of the predecessor. If the predecessor
segment is part of a routine produced by the SALT system, this parameter is of the form
m*SEGn, where m is the marker used in calling the routine, and n is the numberof the last
segment in the routine. If more than one predecessor is needed to define the location of
the RDPTTZZ coding, Pl is L\ (space). In this case, a SGRT line naming the predecessors
is to be inciuded elsewhere in the program. (Refer to heading A-2 of this section).

P2 defines the successor load, if any, which is to be chained to the RDPTTZZ load. If a
load is to be chained to the RDPTTZZ load, P2 is a permanent tag naming the load
definition line of the chained load.

5-F

5

SECTION:

5-F

PAG E:
6

up· UNIVAC m SALT
2558

If no load is to be chained to the RDPTTZZ load, P2 is ~ (space).

P3 is the numeric file designation for the Paper Ta;pe Reader file, and is a unique number,
1 through 41.

P 4 is the maximum number of characters an item of the file may contain. It may be 256, or
any number in the range 4 throu gh 126.

Ps is the number of item areas, 1 through 4, that are to be allocated to the routine.

P 6 is a permanent tag naming the first line of the recovery coding supplied by the source
program. If such coding is not supplied, P6 is to be left blank but the terminating comma is
to be retained.

P7 is a number, 2 through 15, specifying the communication index register to be used by
the routine. This is the index register that will be loaded with the program relative address
of the first word of the current area.

RDA P 5' parameter PS' without its terminal comma, is combined with the letters RDA to
form a configuration name used internally by the routine. For example, if Ps has been
specified as 3, this designation is RDA3. If the SLCT line is omitted, a routine providing
for only one read area is supplied. It will be as though PT A 1 had been specified.

If the maximum number of characters specified inP 4 is less than four, it will be considered
as though four had been specified. If the maximum number specified is greater than 126 and
less than 256, 126 words will be provided, although the status word will be at the location it
would have occupied if the specified words had been allocated. It will be at n, where n
equals the number of characters actually specified, instead of at relative address 126.

3. Integrating The Paper Tape Reader Routine With The Source Program

A few SALT Assembly System directives must be provided in the source program to effect
the proper integration of the Paper Tape Reader program load.

a. Positioning the Load.

The Paper Tape Reader program load is identified by the name, m*$NAM 1,. Name this
name it may be read in as an overlay. More frequently it will be chained to a load of the

source program and be read into memory along with it. This is accomplished by writing
a LOAD statement in the source program as follows:

TAG C FORM CONTENT

ANY TAG names a load of the source program whose first segment is s. The Paper Tape
Reader program load m*$NAM1, is a successor to the load ANYTAG and will be read into
memory when ANYTAG is read.

UNIVAC ill SALT
I

I SECTION:

5-F
I

up·
2558

b. Positioning Segmen ts

The first segment of the Paper Tape Reader program load is always m*SEG1,.

The user may establish a single predecessor to this segment by simply specifying
SEGn, or m*SEGn, as a parameter (Pl) of the subroutine call. Where n is the number
of the predecessor segment. The form m*SEGn, is used when the predecessor segment
belongs to another subroutine called into the source program. The first segment of

: PAGE:

i

the Paper Tape Reader routine will be assembled relative to the last line of the specified

predecessor.

The user may establish more than one predecessor segment by specifying parameter P 1
as ~,. This in effect defers specification to a statement that must appear in the source
as follows:

FORM CONTENT

m*SEG1, names the first segment of the Paper Tape Reader routine and SEGn, and SEGp,
are its predecessors.

In this case m *SE G 1, will be assembled relative to the last line of the longest of its
predecessor segments.

The last segment of the Paper Tape Reader program load is always, m*SEG2,.

This segment may be named as the predecessor of a segment of the source program. If
required, this is done simply by specifying m*SEG2, in the appropriate SGMT or SGRT
line of the source program.

7

SECTION:
S-F

PAG E:
8

I

I
I up·

UNIVAC m SALT
2558

4. Paper Tape Reader Macro-Instructions.

Each coding line in the source program calling this macro-instruction results in four object
code lines being included in that program.

\m*INIT,\

Entrance
Conditions: None.

FORM CONTENT

Results: m*INI T, opens the Paper Tape Reader routine by setting all initial conditions.

Discussion: m*INIT, must be executed once, and only once, prior to the execution of the
m*RDPT, macro-instruction. m*INIT, does not deliver the first block of
characters to the worker program.

\m*RDPT,\

Entrance
Conditions: None.

FORM CONTENT

Results: m*RDPT I causes the reading of paper tape in the Paper Tape Reader. m*RDPT I
places in a specified index register the starting address of the current read
area. Each time the read macro-instruction is used, the previously current
area is freed and made available for new data.

Discussion: The programmer should provide a routine for testing and processing an end-of­
tape file condition. Coding must also be provided to check the condition of the
status word. When less than the full capacity of the storage area has been
used, due to parity, error, fault, or wired stop character, the programmer's cod­
ing must recognize the limits of the valid information read.

i SECTION:
I
! 5-F

UNIVAC ill SALT up- I PAGE:
2558

5. General Considerations When Using Paper Tape Reader Macro-Instructions

All of the input-output macro-instructions produced are subject to the same basic consider­
ations with regard to use.

a. Program Requirements.

Each macro-instruction must be assigned an item number in the range encompassed by
both code and pool segment definitions (SGMT). An index register mapping statement
MA PS for both the code and pool segments is rna de before any macro-instruction is
included in the program.

b. Program Restriction.

No macro-instruction may be included in a segment whose pool is mapped with Index
Register 1.

c. General Exit Conditions.

(1) Index Registers

Except for the case where a specified index register is to contain the address of a
current item, no other index registers are altered by the execution of a macro-
ins truction.

(2) Arithmetic Registers

The contents of the arithmetic registers are altered by the execution of the macro­
ins tructions.

(3) Indicators

The status of the Low, High, and Equal indicators may be altered by the execution
of the macro-ins tructions.

9

up·

I SECTION:

, 5-G

I PAGE:
UNIVAC m SALT

2558 I 1
I

G. PAPER TAPE PUNCH CONTROL SUBROUTINE

A control system for the punching of data onto Paper Tape from the UNIVAC III Paper Tape
Punch Unit is available through a routine of the SALT Data Processing Library. This
routine, PUN PTT ZZ, is called from the library into the source program. The call includes a
parameter set which modifies the control routine to conform to and provide options required
by the source program. The modified control routine is a ssembled with and becomes an
integral part of the user's program.

The control system represents a single program load and this will occupy a unit of the
memory area required by the assembled program. This load includes the paper tape punch
control subroutines and storage area from which the data is to be punched into paper tape.
In addition, a single set of macro-instruction is defined by the subroutine.

Macro-instructions provide complete control over the paper tape punch control subrou tine.
The programmer will use these instructions within the source routine at the points where
their specified functions are needed. Macro-instructions of the routine are assigned names
in the form m* function. The paper tape punch routine is made unique by assigning a marker,
m, to the call on PU N PTT ZZ. This marker is in the form of a SALT Ta g. The function is as
defined by the subroutine.

1. General

a. Punching Paper Tape Character Words.

Two storage areas are always used to provide the Paper Tape Punch subroutine with a
means of achieving efficiency in using the Paper Tape Punch. These storage areas are
used by the subroutine on a rotating basis.

The advancement of each storage area into current status is accomplished through the
use of an index register. This register is designated by the source program during the
call of the paper tape punch subroutine. The index register provides the address of the
first word of the current storage area. When the current storage area is advanced, the
address of the first word of the next storage area is automatically placed in the speci­
fied index register.

One or more sets of coding designed to assemble paper tape data for punching is written
by the programmer. The code sets address words of the paper tape character storage
area relatively. A valid address to a paper tape character word in a storage area is
detived by modifying the relative address of the word within the current storage area
with the index register containing the address of the first word of the work area.

Each paper tape character storage area is of equal length, but the length must be speci­
fied by the programmer at the time of cali. The words are numbered relatively from 0
to n-1. (n = the number of words specified to be stored in a work a rea).

Instructions designed to assemble paper tape characters in a current storage area will
use the relative position of the words in the area as a SALT decimal address. These
addresses are then modified by an index register loaded with the first word of the
current storage area.

SECTION:
5-G

PAGE:
2

u P-
UNIVAC m SALT

2558

For example, assume that the current storage area address has been loaded into Index
Register 4 (IR4). To store a character into the first position of a work area using Arith­
metic Register 1 (AR1), the ins truction would be written as follows: 4, S T, 1, 0,.

To store two characters into storage positions 16 and 17 using AR's 1 and 2, the
instruction would be written as follows: 4, ST, 1, 16,.

An alternate method of addressing any current storage area is available through use of
the SALT form EQDX. A tag, naming a particular storage area word, is equated with an
index register and the decimal designation of the storage area's relative address.
Noting that the first word of the storage area has a relative address of zero, the
following is an example of the EQDX form equating tags to the first and 16th words

of a storage area.

FORM CONTENT

The instruction illustrated in the above example could now be written as shown below.

CONTENT

}

These lines will

t-+---L--L",--,---'-~~---L---L---L-----l'---.l.-.l.--'----'---.....I.....---'----'----'--......L---'---'----\ a ceo mp I i sh th e

some result.
rr~~~~~~~~~~~~~~~~

b. Special Programming Considerations.

The Paper Tape Punch punches one cha racter for every UNIVAC III word. It is the
responsibility of the calling routine to edit characters into the format expected by the
punch and format connector.

The first word following each punch area is a status word. This word is accessed by
modifying the decimal address of the status word at location n(n = the number of
characters to be punched) with the contents of the specified index register. The status
word provides a si gnal to indicate a low paper condition. It is composed of two parts:
The address of the most recently punched character is found in bit positions 1-15.

UNIVAC ill SALT up-
2558

The status control code is indicated in bit position 21~25 as follows:

Control Condition

Normal Punching

Low Paper Condition

Code
(bits 21-25)

00000

00010

I Address
(bits 1-15)

Address of last character punched

Address of last character punched

I SECTION:

I PAGE:

It is the responsibility of the calling program to test the status word each time a new
storage area is received to check for low paper condition. A low paper code in the status
word indicates that a low paper signal was encountered when that area was last punched
out. A typeout notifies the operator to change paper tape reels when the area is returned

to PUNPTTZZ for punching. The calling program must provide for an end-of reel pro­
cedure and any desired signals to be placed on the tape before the change-reel message.
is typed.

This subroutine always attempts to punch an entire storage area. The calling program
should provide a wired stop character and plan for certain wiring of the Format Con­
nector, if it is desired to punch less than the entire storage area.

c. The Current Paper Tape Character Storage Area.

Only one storage area is current at any time.

d. Opening the Paper Tape Punch Routine.

The Paper Tape Punch routine is opened by executing the macro-instruction m*INIT "
This routine is to be entered at all the start or restart points of a program before any
work area is requested. At this time the starting address of the first reserve storage
area is placed in a specifiable index register.

e. Paper Tape Characters.

Paper tape characters are read from memory to the Paper Tape Punch under the control
of the Format Connector (see g, bel-ow). One word in memory must be used for each
paper tape character to be punched. The UNIVAC III code is not automatically translated.
The paper tape characters must be edited by the calling routine in the low order positions
of the words from which they are to be punched. The number of positions used will depend
on the number of channels in the tape to be punched.

f. Punching Paper Tape from Storage Areas.

The contents of a storage area are punched into paper tape and the area is made avail­
able for reuse by the execution of the macro-instruction m*PUNPT,. After each execu­
tion of the macro-instruction, the next paper tape character storage area is selected
and becomes the current storage area.

The address of the first word of the current storage area is supplied in a specified index
register by the Paper Tape Punch routine.

g. Format Connector.

The programmer must be aware of the specifications used in the wiring of the Format

S-G

3

SECTION:

5-G

PAGE:
4

\0.

I
II

\
I
(I

-

I I Up· 2558

UNIVAC m SALT

Connector. The wired stop code, parity check bits, and possible rearrangement of
channels are controlled by this device. All tests within the paper tape punch, for condi­
tions controlled by the Format Connector must be coded based on the specific
requirements.

2. Calling Statement

The calling statement for PUN PTTZZ Paper Tape Punch Routine is shown below.

Parameters P 1 through P S may take as many lines as required; all lines after the first are
hyphenated. The INOX line, although part of the calling statement, is not hyphenated.

ITEM NO. TAG C FORM CONTENT\

nln n In ~I~ ~I~ I I I I I 1 I SIUIBIR
P P P

3t P I U I NIP I TIT I Z I Z I, I 11 , I 2, , 1- , I I i I I I I

I I I I I I I I I I I - I I I P 4 , IPSII I I 1 I I I I I I I 1 I I I I I I I

P
I I I I I I I I I I I IIN,OI X ~'I I I I 1 I I I I 1 I 1 1 1 1 1 1 1 1 1

- """'- --- -
The item number field contains a two level item number as indicated; the lower levels are
restricted for use by the subroutine coding. marker is a permanent tag making the coding
produced by PUNPTTZZ unique.

The designation PUN PTT ZZ is the fixed routine name.

P1 defines the location in memory of the first segment of the PUNPTTZZ coding by spe­
cifying its predecessor. If the predecessor segment is part of the object program, this
parameter is of the form SEGn, where n is the segment number of the predecessor. If the
predecessor segment is part of a routine produced by the SALT assembly, this parameter
is of the form m*SEGn, where m is the marker used in calling the routine, and n is the
number of the last segment in the routine. If more than one predecessor is needed to
define the location of the PUNPTTZZ coding, P1 is ~,(space). In this case, a SGRT line
naming the predecessors is to be included elsewhere in the program. (Refer to heading
A-2 in this section.)

P2 defines the successor load~ if any, which is to be chained to the PUNPTTZZ load. If
a load is to be chained to the PUNPTTZZ load, P2 is a permanent tag naming the load
definition line of the chained load. If no load is to be chained to the PU N PTT ZZ load,
P2 is ~,(space).

P3 is the numeric file designation for the Paper Punch Tape file, and is a unique number,
1 throu gh 41.

P 4 is the maximum number of characters an item of the file may contain. It may be either
256, or any number in the range 4 through 126.

\
J

l

UNIVAC ill SALT
[UP- 2558

p5 is a permanent tag naming the first line of the recovery coding supplied by the source
program. If such coding is not supplied, p5 is to be left blank but the terminating comma is
to be retained.

p6 is a number, 1 through 15, specifying the communication index register to be used by
the routine. This is the index register which will contain the program relative address of
the first word of the current storage area.

3. Integrating the Paper Tape Punch Routine with the Source Program

A few SALT Assembly System directives must be provided in the source program to effect
the proper integration of the Punch Paper Tape program load.

a. Positioning the Load.

The Paper Tape Punch program load is identified by the name, m*$NAM 1 I.

Using this name it may be read in as an overlay. More frequently it will be chained to a
load of the source program and be read into memory along with it. This is accomplished
by writing a LOAD statement in the source program as follows:

\ TAG C FORM CONTENT\

AINI YI TIA1G I I L10IAID 5 I I I ml * 1$1 N 1 AI Mill I I I I I I I I I I I I
)

1 - ~ - - - -- -
ANY TAG names a load of the source program whose first segment is s. The Paper Tape
Punch program load, m*$NAM 1 I is a successor to the load ANY TAG and will be read into
memory when ANYTAG is read.

b. Positioning Segments.

The first segment of the Paper Tape Punch program load is always m*SEG1 , •

The user may establish a single predecessor to this segment by simply specifying
SEGn, or m*SEGn, as a parameter (Pl) of the subroutine calling statement. n is the
number of the predecessor segment. The form m*SEGn, is used when the predecessor
segment belongs to another subroutine called into the source program. The first
segment of the Paper Tape Punch routine will be assembled relative to the last line
of the specified predecessor.

The user may establish more than one predecessor segment by specifying parame ter (1)
as tJ. , • This, in effect, defers specification to a statement that must appear somewhere
in the source program as follows:

FORM CONTENT

I SECTION'5_G

PAGE:
5

SECTION:

S-G

PAGE:

6
up- UNIVAC m SALT

2558

m*SEG1, names the first segment· of the Paper Tape Punch routine and SEGn, and SEGp,
are its predece sso rs.

In this case, m*SEG1, will be assembled relative to the last line of the longest of its
predecessor segments.

The last segment of the Paper Tape Punch program load is always m*SEG2,.

This segment may be named as the predecessor of a segment of the source program or
another subrou tine. If required, se gment definition is accomplished by specifying
m*SEG2, in the appropriate SGMT or SGRT line of the source program or parameter in
a successor subroutine.

4. Paper Tape Punch Macro-Instructions

Im*INIT,\

Each coding line used by the programmer to call this macro-instruction results in four source
coding lines actually being included in the program. The calling line may be coded as follows:

Entrance
Conditions: None.

FORM CONTENT

Results: m*IN IT, opens the Paper Tape Punch routine by setting up the starting conditions,
and places the starting address of the first reserve area in a specified index
register.

Discussion: m*INIT, must be executed once and only once prior to the execution of the
m*PUNPT, macro-instruction.

\m*PUNPT, \

Each coding line used by the programmer to call this macro-instruction results in four coding
lines actually being included in the program. The calling line may be coded as follows:

Entrance
Conditions: None.

FORM CONTENT

Results": m*PUNPT, causes the initiation of a paper tape punch instruction to punch data
from the reserve area onto paper tape.

Discussion: After its contents are punched, a reserve area is returned to the pool of avail­
able areas maintained by the PUN PTTZZ routine and is then available for
reuse.

UNIVAC m SALT
I

SECTION:

S-G

•

up·
, 2558

I PAGE: 7

S. General Considerations when using Paper Tape Punch Macro-Insturctions

A11 of the input-output macro-instructions currently available in UNIVAC III SALT Data
Processing Library are subject to the same general considerations with regard to use.

a. Program Requirements.

Each macro-instruction must be assigned an item number in the range encompassed
by both code and pool segment definitions (SGMT). An index register mapping state­
ment (MAPS) for both the code and pool segments is made before any macro-instruc­
tion is included in the program.

b. Program Restriction.

No macro-instruction may be included in a segment whose pool is mapped with index
register 1.

c. General Exit Conditions.

(1) Index Registers.

Except for the case whe re a specified index register is to contain the address of
a current item, no other index registers are altered by the execution of a macro­
instruction.

(2) Arithmetic Registers.

The contents of the arithmetic registers are altered by the execution of the
rna cro-ins truc lions.

(3) Indicators.

The status of the Low, High, and Equal indicators may be altered by the execu­
tion of the macro-instructions.

UNIVAC ill SALT

SECTION:

5·H

up- PAGE:
2558

H. PRINTER CONTROL SUBROUTINE

A control system for the printing of data on the UNIVAC III Printer is available through a
routine of the SALT Data Processing Library. This routine, PRNTOlll, is called from the
library into the source program. The call includes a parameter set which modifies the control
routine to conform to and provide options required by the source program. The modified control
routine is assembled with and becomes an integral part of the user's program.

The control system represents a single program load and thus will occupy a unit of the memory
area required by the assembled program. This load includes the printer control subroutines and
storage area for the printer line data to be printed. In addition a single set of macro·instructions

is defined by the subroutine.

Macro·instructions provide complete control over the printer control subroutine. The pro·
grammer will use these instructions within the source routine where their specified functions
are needed. The macro-instructions are assigned names in the form m* function. The Printer
routine is made unique by assigning a marker, m, to the call on PRNT01ZI. This marker is
in the form of a SALT Tag. The function is as defined by the subroutine.

1. Functional Description

The SALT printer routine, PR NTOl II, provides coding to print data from memory on the
High-Speed Printer. One call on this routine controls one printer file. Each item of a
printer file represents a print line, and occupies 32 consecutive words in memory. The
data contained in these words is represented in the UNIVAC III alphanumeric character
code as defined in Appendix H.

Horizontal spacing of the print line is controlled by the placement of the data in the item
area. Every 10 characters equals one inch on the print line. The print routine always
assumes that an entire print line of 128 characters will be printed. Areas of the line that
are not to be printed are expected to contain spaces, or other non-printing characters,
in the positions that are to be blank.

Several options are available for the manipulation of items in memory and the positioning
of these items on the printed form. These options are described in the paragraphs immedi·
ately below. Detailed descriptions and formats follow in the succeeding paragraphs.

a. Item Manipulation. For each call on PRNTOl II, the routine must be initialized by the
execution of the macro-instruction m*INIT,.

Following initialization, the address of an item area is made available by executing
the macro-instruction m*SE L EeT,o

The program assembles an item in this area, and then delivers the item for printing by
executing the macro-instruction m*PRINT,.

b. Area Retention. It is not necessary to print an item as soon as it has been assembled
in a work area. Rather than immedia tely delivering the item for printing, the program
may execute another m*SELE CT, to obtain the address of another item area. In

1

SECTION:

5-H

PAGE:
2 [

' up·
2558

UNIVAC m SALT

!

addition, m* PR INT has an item-retention option; after an item is printed, its area may
be either released to PRNT01ZZ for assignment to a subsequent item or withheld and
kept accessable to the program. If the item area is retained through the item-retention
option, the item can be used for further processing or for subsequent reprinting. Thus,
through the use of m*SELECT, and the item-retention option of m*PRINT, the program
may have access to a number of item areas at one time.

The content of a retained item area may be altered by the program after each printing.
However, it may not be altered or resubmitted for printing until the print routine has ful-
filled the previous print request for this item area. The routine uses the sign of a word in
a three-word control packet (called an Item Descriptor) to indicate the status of a retained
item area. When an item area is initially supplied by m*SELECT, this word is positive and
m*P RINT, may be executed for the item area when an item has been assembled. When retention
of the item area is specified, the execution of a m*P RINT, macro-instruction will make
this word negative. It will remain negative until printing of the item has been com-
pleted. At this time, the print routine will make the word positive. The source program
must test the word, and find it positive before the item area is altered or resubmitted
for printing.

Retention of an item area is specified by a special information word (X LST word
described in Appendix M) prepared by the source program and loaded into an arithmetic

register before entering m*PRINT,.

c. Storage Areas. A calling statement parameter specifies the number of item areas to be
used by the print routine; this number may range from one through five. However, if the
printer is to be kept running at maximum speed, within the limits imposed by the paper
advance and the composition of the data, and if no items a re retained by the program,
three or more areas are recomm ended.

d. Item Description Packet. Since items need not be printed in the order in which their
areas were obtained, and since the contents of an item area may be printed many times
before the area is released, the particular item to be printed must be identified for each
execution of the m*PRINT, macro .. instruction. In addition to an item area address,
each execution of m*SELECT, supplies the routine with the address of the third word
of a three-word item-descriptor packet. When the item is to be printed, the routine supplies
m*PRINT, with the address of the descriptor packet.

e. Paper Positioning. The length of the paper form or page to be used in printing a file is
specified in the routine calling statement in terms of the total number of print lines that
the form can accommodate. Vertical spacing of the printer, which is set at the control
panel by the operator, may be six or eight lines per inch. An item to be printed is
vertically positioned on the form in one of two ways:

An explicit line number of the form may be specified, or
the number of lines that the form is to be advanced before printing may be specified.

This information is specified as part of the special information word (X LS T word) that
is delivered to m*PRINT, (described later).

UNIVAC ill SALT
UP.

2558

I SECTION:
5-H

I PAGE:

I 3

In addition, two macro-ins tructions provide options for advancing the paper wi thout print­
ing. The macro-instruction m* P ADN,n, advances the paper n lines. The macro-instruction
m*PADTOL,I, advances the paper to the Ith line of the form.

Margins at the top and bottom of the paper form are specified in the calling statement of
the routine. These margins are automatically observed by the routine for every m*PRINT,
that is executed with the advance n lines option. That is, if the number of lines is such
that the printed line would fall within the lower margin; of the form; or the upper margin
of the next form, paper is advanced automatically so that the line is printed as the first
line on a new form. Its position, relative to the last printed line, is n plus the sum of
the lines in both margins. When m* P RI NT, is used with the a dvance to line I option, the
margins of the form are ignored by PRNTOIZZ and the line can be printed in either margin.
If this is done, it should not be followed by m*PRINT, in combination with the advance n
lines and print XLST word.

The advancement of the form from a variable starting point (somewhere in either margin)
could adversely affect accurate placement of the next printing line.

If the automatic treatment of new page conditions described above is not satisfactory,
the programmer may include his own new page coding. This coding is to be in the form
of a closed subroutine. (Refer to New Page Condition, in Appendix M.) It will be
entered by the print routine whenever the execution of m* PRINT I using the advance n
lines option would result in printing a line within either rna rgin or in the last print line
of a form (that is, in the line immediately a bove the lower margin). Several options may
be incorporated into the new page subroutine:

• Control may be returned directly to the print routine, which will then print the line
under control of its own automatic new page coding.

• One or more m*PRI NT I macro-instructions may be executed, the first of which must
use the a dvance to line I option. These additional macro-ins tructions will be exe­
cuted in the order submitted, and after they release control to the print routine, the
original macro-instruction will be executed.

• The number of lines to be a dvanced may be changed by altering the value of n in the
special information word (XLS T word which is described later) associated with the
macro-instruction. The macro-instruction will be executed when control is returned to
the print routine. Control will not be returned to the new page subroutine until the
next page is reached.

f. Printer Malfunction. One additional section of coding may be included in a program
using PRNT01ZZ. This is coding to be executed if a printer malfunction occurs. The
coding is assigned a permanent tag, to which transfer of control can be initiated by the
console operator through a type-in message. The tag of this recovery coding must
be specified in the calling statement for the routine when such coding is included in
the source program. The format of this coding and the conditions under which it can be
executed are described under the heading Recovery Coding, in Appendix M.

SECTION:

5-H
PAGE:

4 I Up· 2558 I
UNIVAC m SALT

2. Calling Statement

The calling statement for this routine is shown below.

The parameters P
1

through P9 may take as many lines as required. All lines after the first
are hyphena ted. The SLC T line, although a part of the calling statement, is not hyphena~ed.

The item number field contains a two level item number as indicated; the lower levels are
reserved for use by the subroutine coding. marker is a permanent tag making the coding
produced by PRNT01ZZ unique.

The PRNT01ZZ designation is the fixed routine name.

P 1 defines the location in memory of the first segment of the PRN TOl ZZ coding, by defin­
ing its predecessor. If the predecessor segment is part of the source program, this
parameter is of the form SEGn, where n is the segment number of the predecessor. If the
predecessor segment is part of a routine produced from the SALT library, this parameter
is of the form m*SEGn, where m is the marker used in calling the routine, and n is the
number of the last segment in the routine. If more than one predecessor is needed to define

the location of the P RNTOl ZZ coding, P1 is a t1 (space). In this case, a SGRT line naming
the predecessors is to be included elsewhere in the source program. (Refer to heading A~2

of this section.)

P2 defines the successor load, if any, that is to be chained to the PRNTOl ZZ load. If a
load is to be chained to the PRN TOl ZZ load, P2 is a permanent tag naming the load
definition line of the chained load. If no load is to be chained to the PRNTOl ZZ load, P2
is t1 (space) and the terminating comma must be retained.

P3 is the numeric file designation for the printer file, and is a unique number in the range
of 1 through 41.

P 4 is an input-output channel designator for the file. When the assignment of the channel
is to be left to the routine, P 4 is !1 (space). When the programmer wishes to control this
assignment, P 4 is a number, 3 through 10, deSignating a general purpose channel.

Ps specifies the size of the print form in terms of the number of lines that it can
contain. (See Appendix M for additional options in paper advance and new page
coding.)

UNIVAC ill SALT
I UP-
i 2558
!

P 6 specifies the size of the upper margin of the print form in terms of the number of print
line s that it must contain. If no upper margin is required, P 6 is O.

P7 specifies the size of the lower margin of the print form in terms of the number of print
lines that it must contain. If no lower margin is required, P7 is O.

Ps is a permanent tag naming the first line of the new page subroutine supplied by the
programmer. If such a subroutine is not supplied, Ps is 11 (space).

P9 is a permanent tag naming the first line of the recovery coding supplied by the pro­
grammer. If such codingis not supplied, P9 is 11 (space).

PR P10 P1 1 P12 P13' is a configuration name used internally by the routine. Note that
these parameters are not separated by commas.

[

I SECTION:

I PAGE:

P10 is N if the program uses the advancen lines option of m*PRINT,. If this option is not

used, P lOis omitted.

P11 is L if the program uses the advance to line I option of m*PRINT. If this option is
not used, P1 1 is omitted.

P 12 is S if a new page subroutine is included in the program. In this case, P S must be
a permanent tag and P10 must be N. If a new page subroutine is not included, P12 is
omi tted.

P13 specifies the number, 1 through 5, of item storage areas that are to be used by the
routine.

If the SLCT line is omitted, a routine providing for both modes of printing, end of page
determination, and five printer storage areas will be furnished. It will be as though
PRNLS5 were specified.

3. Integrating the Printer Control Routine with the Source Program

A few SALT Assembly System directives must be provided in the source program to effect
the proper integration of the Printer Control program load.

a. Positioning the Load.

The Printer Control program load is identified by the name, m*$NAM1,. Using this name
it may be read in as an overlay. More frequently it will be chained to a load of the
source program and be read into memory along with it. This is accomplished by writing

a LOAD statement in the source program as follows:

\ TAG C FORM CONTENT\
I

I ! A/NjY, TJA1G, ! LIOIAID s I ' I ml * 1$1 N j Al M J 11, I I I i I I I I I , I /

..... 1 -

5-H

5

SECTION:

5-H

PAGE:
6 I U p- 2558

UNIVAC m SALT

!

ANYT AG names a load of the source program whose first segment is s. The Printer
Control program load m*$NAM 1, is a successor to the load ANY TAG and will be read
into memory when ANYT AG is read.

b. Positioning Segments

The first segment of the Printer Control program load is always m*SEG 1,.

The user may establish a single predecessor to this segment by simply specifying

SEGn, or m*SEGn, as a parameter (Pl) of the subroutine call. Where n is the number
of the predecessor segment. The form m*SEGn, is used when the predecessor segment
belongs to another subroutine called into the source program. The first segment of
the Printer Control routine will be assembled relative to the last line of the specified
predecessor.

The user may establish more than one predecessor segment by specifying parameter P
1

as 11,. This in effect defers specification to a statement that must appear in the source
program as follows:

\C FORM CONTENT'
I

SIG,R,T ml * I S I E, Gil l ' ,S I E I Gin I ' I S I E I G I PI' I' I' , " I I
\

i:o""'~- - -

m*SEG 1, names the first segment of the Printer Control, routine and SEGn, and SEGp,
are its predecessors.

In this case m*SEG 1, will be assembled relative to the last line of the longest of its
predecessor segments.

The last segment of the Printer Control program load is always, m*SEG2,.

This segment may be named as the predecessor of a segment of the source program. If
required, this is done simply by specifying m*SEG2, in the appropriate SGMT or SGRT
line of the source program.

UNIVAC ill SALT
SECTION:

5-H

up-
2558

4. Printer l\{acro-Instr..lctions

The macro-instructions provided by PRNT01ZZ are described below. The content field,
parameters, entrance requirements, and exit conditions are given for each macro-instruc­
ticfn. Each macro-instruction results in four lines of object code in the assembled program.

I I
\m*INIT,1

Entrance
Conditions: None.

FORM CONTENT

Results: m*INIT, opens the Printer routine by setting all initial conditions.

Discussion: m*INIT, must be executed once, and only once, prior to the execution of any
other printer macro-instruction.

Im*SELECT,1

Entrance
Conditions: Parameters: (Pl) is a number 1-15 designating the communicating index register

for this macro-instruction. This macro-instruction is executed only when the
number of current items being retained is less than the number of item storage
areas specified in the calling statemen t.

Results: m*SELECT, selects the next 32-word printer storage area and makes it the

PAGE:

current storage area. It places the address of the first word of the storage area
in the specified index register (Pl)' and in AR 1, and in a memory location tagged
m*AREA,. It also places the address of the third word of a print packet associated
with the printer storage area in AR3.

Discussion: A print line is assembled in the current printer storage area which is accessed
using the specified Index Register. The address of the print packet as
supplied in AR3 must be saved. This address must be passed on when the
content of the printer storage area is to be printed.

7

SECTION:
5-H

PAGE:

8
up· UNIVAC m SALT

2558

I m*PRINT '\

FORM CONTENT

Entrance
Conditions: The address of a Print Packet obtained from the execution of m*SELECT,

must be in AR3. An XLST word, specifying the printing mode, must be provided
by the source program and be stored in AR4.

Results:

The format of the XLST coding line is explained below.

\c FORM

X1L1S1T 6 14 1'I P i'i""1 I I I I I I I I 1

L-- -
Where: 64,

P

is always present
is a printer control specification

• MR to advance to line I and print
• R to advance" lines and print

(See New Page Condition in Appendix M)
• MRS to advance to line I, print, and

retain the printer storage area.
• RS to advance" lines, print and

retain the printer storage area.
(See New Page Condition in Appendix M)

" is a decimal number in the range of 1-1023
setting the number of lines for the action
controlled by p.

CONTENT\
I

j 1 1 I I, ,
-

m*PRINT, causes printing of the contents of the storage area, whose print
packet address has been submitted in AR3. If the source program provides new
page coding and printing of this line would cause an advance to a new page,
printing may be deferred until the source program is executed. (See New Page
Condition in Appendix M.)

I

UNIVAC m SALT
I

· SECTION:

S-H
I

I UP- ! PAGE:
I 2558
! i

Discussion: Normal Printing.

I m*PADN, I

If the content of the printer storage area is not retained, the area is returned
after printing to the pool of areas maintained by the print routine.

Retained Printer Storage Areas.

If the content of the printer storage area is retained, access to the storage area
must be kept in the source program. In order to provide this access, the address
of the third word of the print packet and also the address of the first word of
the printer storage should be stored in the source program.

A retained printer storage area may be resubmitted for printing via m*PR INT ,.
It may also be altered before it is resubmitted. Neither additional printing nor
alteration should be attempted before the retained area is free. The status of a
retained area is maintained by the printer routine. Status is indicated by the sign
of the first word of the print packet associated with the retained printer
storage area. When the sign is positive, the area is free and may be submitted
for printing or altered. When the sign is negative, the area may not be sub­
mitted for printing nor be altered. Access to the first word of the print packet
may be obtained by executing the two instructions given below. For example,
while the address of the print packet is still in AR3, as a result of executing
m*SELECT, the source program executes the instruction ST, 3, PACKET,.

Access to the packet's first word may now be obtained by executing
IA" L, i 23, PACKE T,.

After execution of the second ins truction, the first word of the packet is in AR 1.

The retained printer storage area may be released by submitting it
for printing with the p designation of the XLST word equal to MR or R.

FORM CONTENT

Parameters: n = the number of lines (O:s;n:s;1023) the paper is to advance.

Entrance
Conditions: None.

Results: m*PADN j causes the advancing of paper n lines (O~n~1023)

Discussion: (See Alternate Method Paper Advance) in AppendixM.)

9

SECTION:

S-H

PAGE:
10

uP· UNIVAC m SALT
2558

I m*PADTOL, I
FORM CONTENT

Parameters: I = the line number to which the paper will advance.

Entrance
Conditions: None.

Results: m*PADTOL, causes the advancing of paper to line I. If current line position
2:1, the advance will be to line I of the next page.

Discussion: (See Alternate Method of Paper Advance in Appendix M.)

5. General Considerations when using Printer Macro-Instructions

a. All of the input-output macro-instructions produced are subject to the same basic
considerations with regard to use.

(1) Program Requirements.

Each macro-instruction must be assigned an item number in the range encompassed
by both code and pool segment definitions (SGMT). An index register mapping state­
ment (MAPS) for both the code and pool segments is made before any macro-instruc­
tion is included in the program.

(2) Program Restriction.

No macro-instruction may be included in a segment whose pool is mapped with Index
Register 1.

(3) General Exit Conditions.

(a) Index Registers

Except for the case where a specified index register is to contain the address of
a current item, no other index registers are altered by the execution of a macro­
ins truction.

(b) Arithmetic Registers

The contents of the arithmetic registers are altered by the execution of the macro­
instructions. Arithmetic Registers 1 and 3, when pertinent, will contain useful
informa tion.

(c) Indicators

The status of the Low, High, and Equal indicators may be altered by the execu­
tion of the macro-instructions.

UNIVAC ill SALT

SECTION:

6-A

, up- PAGE:
2558

6. TAPE ROUTINES

A. UNISERVO IIA TAPE UNIT CONTROL SUBROUTINE

A control system for the transfer of data between the UNIV AC III memory and magnetic tape
mounted on UNISERVO IIA tape transports is available through a routine of the SALT Data
Processing Library. This routine, SE RV02ZZ, is called from the library into the source
program. The call includes a parameter set which modifies the control routine to conform to
and provide options as required by the source program. The modified control routine is
assembled with and becomes an integral part of the user's program.

The control system represents a single program load and thus will occupy a unit of the memory

area required by the assembled program. This load includes the UNISERVO IIA control subroutines
and storage areas into which the data is read or assembled for writing. In addition, a single set

of macro-instructions is defined by the subroutine.

Macro-instructions provide complete control over the UNISERVO IIA magnetic tape file pro­
cessing subroutines. The programmer will use these instructions within the source routine at
the points where their specified functions are needed. Macro-ins tructions of the routine are
assigned names in the form m* function. The UNISERVO IIA routines are made unique by
assigning a marker, m, to each call on SERV02ZZ. The marker is in the form of a SALT Tag.
The function of each macro-ins truction is as defined by the subroutine.

1. General

a. Reading or Writing Magnetic Tape

The SERV02ZZ control routine has been designed to fit into the coding patterns and
conventions presently established for magnetic tape files maintained by UNIVAC
customers. In order to provide a maximum of flexibility in the use of this control system,
the subroutine has been restricted to the control of UNISERVO IIA functions. It is called
into the source program through the use of separate calling lines for each file read or
written by UNISERVO II tape units. SE RV02ZZ reads or writes magnetic tape records
through the con trol of the SALT Executive Routine.

SE RV02ZZ tests for the existence of parity error or hardware fault during each read or
write operation. The calling program is thereby assured that the data read or written are
accurate to the extent of the error detection capability of the hardware.

The calling program must provide for program housekeeping functions such as label
checking, end-of-reel, end-of-file, sequence checking, etc. The programmer of the call­
ing routine has been provided with access to the five-word control packets required for
each UNISERVO IIA tape file. Therefore, the information normally stored in this packet
can be used in housekeeping instruction statements. Pertinent data can be stored in
the packet through source program coding lines.

In the case of an output file, the source program must contain coding f()r assembly of
data in the work area defined by the subroutine, prior to wri ting that information on
magnetic tape. If a file is being used for input, any information left in the storage area

1

SECTION:

6-A
DAG E:

2
up·

UNIVAC m SALT
2558

defined by the subroutine will be destroyed when a subsequent read instruction causes
a new record to be read into that area. If any of the data from the original record is
needed for latter processing, coding is required to move the needed data from the storage
area into an area of the calling program.

b. The Storage Area

SE RV02ZZ defines a single storage area for processing input-output tape records.
(One area for each call on the subroutine). The address of the first word of the storage
area is loaded by the subroutine into an index register designated by the calling routine.

A word in a storage area is accessed by using its relative address within the area as

a decimal address and designating the index register specified in parameter p 12 as the
index register address modifier.

The size of the storage area is always the same for record blocks read or written by
UNISERVO IIA. The pulse density or the fact that records can be read or written in
blockettes have no bearing on storage requirements. The storage area is always 720
alphanumeric characters or 180 memory words in length.

The 180 words within a work area may be addressed by source program instructions using
the SAL T decimal address. The valid address of a word within the storage area is
developed by modifying the decimal address with the content~ of the designated index
register. For example, assume that Index Register 4 has been loaded wi th a number
representing the starting address of the current storage area. Assume also that a pro­
grammer wishes to store four words of data in the last four words of the storage area.
These words have already been loaded into the arithmetic registers. The instruction
will be written as follows:

Another way to address words within a storage area is by tags through the use of the
SAL T form EQDX. A tag naming a particular storage area word is equated with an index
register and the decimal designation of the storage area's relative address. Noting that
the first word of the storage area has a relative address of zero, the following is an
example of the EQDX form equating tags to the first and tenth words of the storage area:

FORM CONTENT

SECTION:
I

UNIVAC ill SALT
UP-

i 6~A
! PAGE:

2558

An instruction to store the contents of ARl in the first word position of tIle storage area could

then be written as:

CONTEN~I

--------------------- -=--------=~

An instruction to store the contents of AR2 into the tenth word position of the storage
area could be written as:

CONTENT

Both instructions will produce the same result.

c. Opening the Magnetic Tape File

The magnetic tape file is opened when the user program executes a macro-instruction
m*INIT I. The magnetic tape file must be opened before any other macro-instruction can
be used. The source program must be constructed in such a way as to permit the execution of
this macro-instruction at the start or restart of a program. This action makes the work
area available for editing tape data prior to writing a record. The first record will be
read into the current storage area if the parameters given by the programmer specify an
input file.

d. Input File Records

A record block is read into the input storage area at the outset of the processing by the
execution of the m*INIT I macro-instruction. Subsequent record blocks are read by exe­
cuting m*REAO, macro-instructions. SERV02ZZ delivers record blocks of 180
UNIVAC III computer words to the storage area defined in the subroutine. The address
of the first word of the storage area is supplied in the specified index register by the
subrou tine.

e. Output File Records

The contents of the output storage area are written on magnetic tape and the area is
made available for reuse by the execution of either of two macro .. instructions. The
execution of a m*BWRITE, macro-instruction will cause the records to be written on
magnetic tape a t a density of 250 pulses per inch with an inter-record gap size of 1.5
inches. The execution of a m*SWRITE, macro-instruction writes the storage area to magnetic
tape in six blockeUes at a density of 125 pulses per inch. The size of the gaps between

blockeUes is 1.5 inches; the inter-record gap is 2.4 inches. The storage area is equally

3

SECTION:
6-A

:lAGE:
4

u p-
UNIVAC m SALT

2558

subdivided so that 30 UNIVAC III words are written in each blockette. Normally this tape
writing mode is selected when the data written on the tapes is to be printed using an off­
line buffered printer. The calling program must arrange information in the storage area in
the desired print line format.

f. Rewinding Magnetic Tapes

There are two modes of tape rewind available to the programmer:

(1) Rewind with interlock is accomplished by executing m*RWI macro-instruction.

(2) Rewind without interlock is accomplished by executing m*RWO macro-instruction.

g. Tape Control Packet

A five-word control packet is developed during assembly for each rna gnetic tape file.
This packet is stored in the tape control area of the calling program and contains informa­
tion to be used in routine processing of magnetic tape files. The SE RV02ZZ Data Pro­
cessing Library subroutine causes certain information to be placed in this control
packet, as a result of the parameters specified by the programmer when calling the sub­
routine. Generally, it will be necess ary for the calling program to provide coding to
supplement that information. All the information in the five-word tape file packet is
available to the calling program for use in program housekeeping.

h. Servo Swap

When needed, the calling routine must provide coding to accomplish Servo swap. In order
to accomplish this, the address of the area in memory in which the specific servo numbers
will be stored must be available. The designation of the file number is made by the calling
program in a parameter specification at the time of calling the SERV02ZZsubroutine. The
location of this information along with a set of sample coding which may be used to
accomplish servo swap is explained in Subsection 6-A-7.

'v.
I
Ii ,
)1

\
\
\

UNIVAC m SALT

I SECTION:

I 6-A

I UP-

I
2558

I PAGE: 5

!

2. SE RV02ZZ Calling Statement

~j~

I

I

I

The general form of the calling statement for this routine is:

ITEM NO. TAG C FORM CONTENT

marker
~ j~ .1. j .1. .1. j.1. j i i i i i SiUiBi R S i E I R I Vi 0 i 2 i Z I Z,; ,P 1 : p 2 I: ,P3, : ,

I
I

I I I i I I I I - I I I P~IIP51' iP6111P71' IPSII,P91 ,~Q, flJl" I
I I

IHDX ~1~'1 1 I I I I I 1 I I I I I I L 1 1 I J I i I I I I I I I , I I

I
S L C T HI TIP I S I P~ t I 'I I I I I I I I I I I I I I I I ! I I I I I I i

-
The item number field contains a two-level item number as indicated; the entire range of
numbers through its two-level Dewey successor is restricted to use by coding produced by
SERV02ZZ, marker is a permanent tag making the coding produced by SERV02ZZ unique.

Parameters P1 through P11 may take as many lines as required; all lines after the first are
hyphenated. The IHDX and SLCT lines, although part of the calling statement,are not
hyphena ted.

The designation SERV02ZZ is the fixed routine name.

Pl defines the location in memory of the first segment of the SE RV02ZZ coding by speci­
fying its predecessor. If the predecessor segment is part of the source program, this
parameter is of the form SEGn, where n is the segment number of the predecessor. If the
predecessor segment is part of a SALT routine, this parame ter is of the form m*SEGn,
where m is the marker used in calling the SALT routine, and n is the number of the last
segment in the routine. If more than one predecessor is needed to define the location of
the SERV02ZZ coding, Pl is ~ (space). In this case, a SGRT line naming the pre­
decessors is included elsewhere in the program. (Refer to heading A-2 in this section.)

P2 defines the successor load, if any, which is to be chained to the SE RV02ZZ load. If a
load is to be chained to the SE RV02ZZ load, P2 is a permanent tag naming the load­
definition line of the chained load. If no load is to be chained to the SERV02ZZ load, P2
is a space.

P3 is the numeric file designation for the file, and is a unique number, 1 through 41.

i

P.4 is a four-character alphanumeric label used to identify the file. This designation must be
preceded by a period.

I
I)

I I

I I
I

I I

'1

SECTION:

6-A
PAGE:

6

up- UNIVAC m SALT
2558

Ps designates the input or output status of the file. If the file is an input file, Ps is .R EA D,
if the file is an output file, Ps is .WRITE,.

P6 is a four-character alphanumeric field to be inserted in the DA TE form associated with
this file. This designation must be preceded by a period.

P7 is a permanent tag naming the first line of the recovery coding supplied by the source
program. If no recovery coding is supplied, P7 may be a space but the limiting comma must
be present.

P8 specifies the number of tape units to be assigned to the file. It is I, if the file requires
one tape unit; 2 if the file requires two tape units; or 3, if the file requires three tape units.

P9 is the servo number to be assigned to this file if absolute designation is (0-5) required.
Leave blank if allocation is to be left to the Executive Routine but include the terminal
comma. If only one servo is to be assigned to this file, parameters P10 and P11 may be
omitted, but the commas must be present.

P 10 is the servo number to be assigned to this file, if a second servo is to be given an
absolute designation (0-5). If less than two servos are required, or if allocation is to be
left to the Executive Routine, P

10
through P11 may be omitted, but the comma must be

present.

P 11 is the servo number to be assigned to this file if a third servo is to be given absolute
designation (0-5). If less than three servos are required, or if allocation is to be left to the

Executive Routine, P11 may be omitted, but the comma must be present.

P12 is a number, 2 through 15, specifying the communication index register to be used by
the routine.

In the final designation, NTPSPat, t designates the input or output status of the file. It is
R, if the file is an input file, or W, if the file is an output file. This designation and the
parameter Pa, without its terminal comma, are combined with the letters NTPS to form a
name used internally by the routine. For example, if Pa has been specified as 2, and the
file is an input file, this designation is NTPS2R.

3., Integrating The UNISERVO IIA Magnetic Tape Control Routine With The Source Program

A few SALT Assembly System directives must be provided in the source program to effect
the proper integration of the SERV02ZZ magnetic tape control program load.

a. Positioning the Load

The SERV02ZZ magnetic tape control program load is identified by the name, m*$NAM1,.

i SECTION:

I 6-A UNIVAC m SALT
I PAGE: i UP-

I 2558
j

Using this name,it may be read in as an overlay. More frequently it will be chained to a
load of the source program and be read into memory along with it. This is accomplished
by writing a LOAD statement in the source program as follows:

\ TAG C FORM CONTENT\

) A,N, y, T, A, GI I L,O,A,D 5 I • I ml * I $ I N I AI Mil I • I I I I I I I I I I I I I I I

~---------I_I -
I I ! ! 1 • I I I - I I I I I I __ -:-----=--:1

ANYT AG names a load of the source program whose first segment is s. The
SERVQ2ZZ magnetic tape control program load m*$NAM 1, is a successor to the load
ANY TAG and will be read into memory when AN YT A G is read.

b. Positioning Segments

The first segment of the SE RV02ZZ magnetic tape control program load is always
m*SEG1,.

The user may establish a single predecessor to this segment by simply specifying

SEGn, or m*SEGn, as a parameter (P
1
) of the subroutine call, where n is the number

of the predecessor segment. The form m*SEGn, is used when the predecessor segment

belongs to another subroutine called into the source program. The first segment of the

magnetic tape routine will be assembled relative to the last line of the specified

predeces sor.

The user may establish more than one predecessor segment by specifying parameter P1
as 11. This in effect defers specification to a statement that must appear somewhere in
the source program as follows:

~ FORM CONTENT
)

m1 * lSI E i Gill' 1 S lEI GJ n L' 1 S lEI G1 PI' i • I • I· i I

~~--..... --~----..... --------..... --------------------------------
m*SEGl names the first segment of the SERV02ZZ control routine and SEGn and
SE Gp are its predecessors.

In this case m*SEGl will be assembled relative to the last line of the longest of its
predecessor segments.

The last segment of the SE RV02ZZ magnetic tape control program load is always,
m*SEG2,.

This segment may be named as the predecessor of a segment of the source program
or another subroutine. If required, segment definition is accomplished by specifying

7

SECTION:
6-A

PAGE:

8

I I Up· 2558

UNIVAC m SALT

4. UNISERVO IIA Macro-Instruction Set

SE RV02Z Z defines rna cro-instructions in two sets, one set for each file according to
the specification of parameters at the time of call. The two sets are as follows:

INPUT OUTPUT

Macro Action Macro Action

m*INIT, Initialize, read 1st record m*INIT, Initialize
m*REAO, Read a record m*BWRITE, Write 720 character block
m*RWI, Rewind with interlock m*SWRITE, Write six 120-character
m*RWO, Rewind without interlock blockettes

m*RWI, Rewind with interlock
m*RWO, Rewind without interlock

Detailed explanation of these macro-instructions will be found in the following text.

a. Input Macro-instructions.

I ... *INIT ,1

The use of this macro-instruction results in the placement of four coding lines in the source
program. The macro-instruction line may be coded as follows:

~ FORM CONTENT),
)

M1C,R,O m, * ,I ,N,I , T, ' I 1 I , I I L I 1 I I , , I I

L--..- \ - -
Entrance
Conditions: None.

Results: m*INIT, opens the tape file processing routine by setting up the starting condi­
tions. The first record is read into the storage area from tape.

Discussion: m*INIT, must be executed once and only once prior to the execution of any of
the other macro-instructions defined by the SERV02ZZ subroutine. The address
of the stora ge area is loaded into a specified index register. This index
register is indicated in the coding lines of the calling program to process
data read into the storage area. The record is read forward and at normal gain.
It will have been checked for parity error and tape fault. All program housekeep­
ing functions are the responsibility of the calling program.

I SECTION:

UNIVAC m SALT
! 6-A

I PAGE:

I m*REAO, I

I up·

I
2558

The use of this macro-ins truction results in the placement of four coding lines in the source
program. The macro-instruction line may be coded as follows:

FORM

Entrance
Conditions: None.

CONTENT

Results: m*REAO, causes the reading of one record block, 180 UNIVAC III words in
length, from a specified UNISERVO IIA tape file. The tape record block is
read into the storage area defined by the SERV02ZZ subroutine. Data in the
storage area from the previous record are destroyed by the execution of each
new m*REAO, macro-instruction.

Discussion: The m*REAO, macro-instruction reads rna gnetic tape records forward at normal
gain. The subroutine will automatically perform the rocking of tape and change
of gain when it is necessary to reread records. Program housekeeping functions
such as testing for end-of-file, label checking, sequence checking, etc., are left
to the source program in order that practices and conventions used in existing
files can be continued. When servo swap is desired for input files, the source
program is to provide the coding for it.

9

SECTION:

6-A

PAGE:
10 I

uP-
2558

UNIVAC m SALT

Im*RWO,1

The use of this macro-instruction results in the placement of four coding lines in the source
program. The macro-instruction line may be coded as follows:

Entrance
Conditions: None.

Results: The specified UNISERVO IIA tape transport will rewind the magnetic tape
mounted on it. The tape will be rewound without interlock.

Discussion: The reel of tape mounted on the specified tape transport will be rewound with­
out interlock and, therefore, can be read or written upon without operator inter­
vention. This type of rewind can be used for input tape files when the file is
to be reread without a change of tape reel or UNISERVO designation.

I m*RWI, I
The use of this macro-instruction results in the placement of four coding lines in the source
program. The macro-instruction line may be written as follows:

Entrance
Conditions: None.

___ C_1o=:!
~ ~

Results: The specified UNISERVO I1A tape transport will rewind the magnetic tape
mounted upon it. The tape will be rewound with interlock.

Discussion: m*RWI, is normally used in those instances where a change of tape reels is
expected before processing is to continue. After this instruction has been exe­
cuted, the tape mounted on the specified tape transport cannot be read until
the operator goes through the tape reel change procedure.

If the source program a ttempts to execute a read instruction before the inter­
lock has been manually released, an indication of fault will be received.

UNIVAC ill SALT
I

SECTION:

, 6-A

I up- I PAGE:
2558

b. Output Macro-instructions

I m*INIT,!

The use of this macro-instruction results in the placement of four coding lines in the source
program. The macro-instruction line may be coded as follows:

Entrance
Conditions: None.

Results: m*INIT, opens the tape file processing routine by setting up the starting condi­
tions. If the parameters inserted by the calling program specify an output file,
the storage area is made available for the assembly of tape record blocks.

Discussion: m*INIT, may be executed once and only once prior to the execution of any of
the other macro-instructions defined by the SERV02ZZ subroutine. The
address of the storage area is loaded into a specified index register. This index
register is to be indicated in the coding lines of the calling program when
assembling data in the storage area in preparation for writing on magnetic tape.
All program housekeeping functions are the responsibility of the calling
program.

11

SECTION:
6-A

PAGE:
12

u P-
UNIVAC m SALT

2558

I m*BWRITE,\

The use of this macro-instruction results in the placement of four coding lines in the source
program. This instruction may be coded in the following manner:

Entrance
Conditions: None.

~ FORM
J

I M1C1R1O

-.... --

CONTENT
I

ml*lB1W[RIIITIEI'1 I I I I I I I I I I I I

--.l -- -

Results: m*BWRITE, causes the storage area defined by SERV02ZZ subroutine to be
written on a rna gnetic tape mounted on a specified UNISERVO IIA tape unit. One
block of records containing 180 UNIVAC III words is written on tape at a density
of 250 pulses per inch. An interrecord gap of 1.5 inches is placed between
record blocks.

Discussion: m*BWRITE, macro-instruction causes the contents of the output storage area to
be written on magnetic tape. The calling program is assumed to have provided
the coding to assemble blocks of data in the storage area prior to writing.

All program housekeeping routines are to be provided by the calling program. If
the number of records to be written on an output file can exceed the capacity of
a single reel of tape, the source program should provide for end-of-reel detection
and processing. The programming for servo-swap is to be coded by the calling
program if it is desired. (see Subsection 6-A-7.)

No special provisions are needed to write the last record out of storage when
end-of-job is reached. Only one storage area is used by the subroutine and it is
written on tape each time m*BWRITE, is executed. However, it will be the
responsibility of the calling program to assemble any information for editing a
sentinel block in the storage area prior to writing it on tape.

UNIVAC ill SALT
2558

I m*SWRITE, I

I

, SECTION:

6-A

I PAGE: 13

The use of this macro-instruction results in the placement of four coding lines in the source
program. The macro-ins truction line may be coded as follows:

Entrance
Conditions: None.

FORM CONTENT

Results: m*SWRITE, causes the storage area defined by SERV02ZZ subroutine to be
written on a magnetic tape that has been mounted on a UNISERVO IIA tape unit.
Six blockettes each of which contain 30 UNIVAC III words, are written on tape
at a density of 125 pulses per inch. The interrecord gaps are 1.5 inches between
each blocke tte and 2.4 inche s between record blocks.

Discussion: m*SWR ITE, is normally used to edit tape records for subsequent off-line print­
ing. The 720 alphanumeric character storage area is written out in uniform
length records of 120 characters each. The calling routine must provide coding
to cons truct each blockette in the desired print line format.

All program housekeeping routines are to be provided by the calling program.
When the number of records to be written on an output file can exceed the
capacity of a single reel of tape, the source program should provide for end-of­
reel detection and processing. The programming for servo-swap is to be provided
by the calling program if it is desired.

No special provisions are needed to write the last record from storage when end
of job is reached. A single storage area is used by the subroutine, and it is
written on tape each time m*SWRITE, is executed. However, the calling program
must provide coding for the assembly of a sentinel block in the storage area if
it is to be the last record written on a particular reel of tape.

SECTION:

6-A

PAGE:
14

up· UNIVAC m SALT
2558

I m*RWO, I
The use of this macro-instruction results in the placement of four coding lines in the source
program. The macro-instruction line may be coded as follows:

Entrance
Conditions: None.

Results: The specified UNISERVO IIA tape transport will rewind the magnetic tape
mounted on it. The tape will be rewound without interlock.

Discussion: The reel of tape mounted on the specified UNISERVO IIA wi,ll be rewound with­
out interlock and, therefore, can be written upon without operator intervention.
This type of rewind is normally used for "scratch tape" operations where the
data written on output tapes are no longer significant.

I m*RWI, I
The use of this macro-instruction results in the placement of four coding lines in the source
program. The macro-instruction line may be written as follows:

Entrance
Conditions: None.

FORM CONTENT

Results: The specified UNISERVO IIA tape transport will rewind the rna gnetic tape
mounted upon it. The tape will be rewound with interlock.

Discussion: m*RWI, is normally used in those instances where a change of tape reels is
expected before processing is to continue. After this ins truction has been
executed, the tape mounted on the specified UNISERVO IIA can neither be
written upon nor read until the operator goes through the tape reel change
procedure.

If the source program a ttempts to execute a write instruction before the interlock
has been manually released, an indication of fault will be received.

UNIVAC ill SALT
I UP- 2558
i

I SECTlON'6_A

PAGE:

I

S. General Considerations when using UNISERVO IIA Magnetic Tape Control Routine Macro-instructions

a. Basic Considerations

All of the input-output macro-instructions are subject to the same basic considerations
with re gard to use.

(1) Program Requirements

The item number assigned to a macro-instruction must be within a range which is
assigned to either a pool or coding segment.

Macro-instructions produce coding lines that become an integral part of the pro­
grammer's own program. The call on these instructions must be provided by the pro­
grammer in his own program lines. Index registers are unspecified in the lines of
coding resulting from macro-instructions. When brought into a program, the index register
mapping of the segments into which they are inserted must apply to them also.
Therefore, a MAPS statement for both code and pool segments must be present in the
calling program prior to the insertion of the macro-instruction coding.

(2) Program Restriction

No macro-instruction may be included in a segment whose pool is mapped with Index
Register 1.

(3) General Exit Conditions

(a) Index Registers

Except for the case where a specified index register is to contain the address of
a current item, no other index registers are altered by the execution of a macro­
ins truction.

(b) Arithmetic Registers

The contents of the arithmetic registers are altered by the execution of the macro­
ins tructions.

(c) Indicators

The status of the Low, High, and Equal indicators may be altered by the execu­
tion of the macro-instructions.

15

SECTION:
6-A

PAGE:

16
up· UNIVAC m SALT

2558

6. Explanation of the Tape Control Packet.

The subroutine includes a line of coding using the TAPE form, obviating the need for
the inclusion of such a line in the calling routine. The calling program will address the
words within the packet using the permanent tag form of address. The first word of the
tape packet has been named TAPE by a permanent tag. The calling program can, there­
fore, access this word using the designation m*TAPE.

where:

m

*
TAPE

the unique marker or permanent tag used in the SUB R line when the program
was called
is alway s used.
is the specified tag to be used by the calling program to access the proper
tape packet. It is assigned by SERV02ZZ.

The tape control packet appears in five consecutive words of memory in the following
format;

ffff,dddd,txOrrr, y-y b-b, 0-0,

which is explained in detail below.

Designation Explanation

ffff a four-character alphanumeric file iden-
tifier, to be supplied as a parameter at
the time of the call on the subroutine.
(It can be accessed through the tag
m*TAPE).

dddddd a six-character numeric config-
uration to be used in combination with
a DA TE form. The configuration
assigned here must be unique in
order that it can be identified and

replaced with a date during the Object
Code Service Run (0 C S). 0 C S pre-
pares master instruction tapes for
operational use. (The word may be
accessed using the tag and address
modifier m*TAPE+l).

Word II It bits Inserted By

1 24 SERV02ZZ

2 24 calling
program

UNIVAC ill SALT

Designation Explanation

t a one-character decimal num ber
(2) meaning UNISERVO IIA tape
units.

x a one-character decimal number
designation developed by interpre-
tation of a parameter supplied at the
time of the call on the subroutine; a
(0) will be supplied when write is
specified; a (1) results from the
specification of read.

0 a one-character decimal zero, having
no specific use.

rrr a three-character decimal number
serving a s a counter to indicate the
number of reels used for a particular
file at any point in the processing.
This information can be used for
checking or writing tape file label
records. It will also serve to
identify the specific reel in
messa ges edited for typeouts on
the console typewriter. (The word
may be accessed using the tag and
address modifier m*TAPE+2).

y-y the internal file number assigned
as one of the parameters at the time
of call on the subroutine. The spe-
cified decimal number is inter-
preted by the Executive Routine
and converted to a sixobit binary
number.

Word It It bits

3 4

3 4

3 4

3 12

4 6

up·
2558

Inserted By

SERV02ZZ

SERV02ZZ

SERV02ZZ

calling
program

SERV02ZZ

SECTION:

6-A

PAGE:
17

SECTION: I

6-A I

I
PAGE: I Up·

18 2558

UNIVAC m SALT

De s ignati on E xplanati on Word It It bits Inserted By

b-b an 18 binary position counter indi- 4 18 SERV02ZZ
cating the number of 720 character
blocks read or written a t any point
in the execution of the program.
This counter is increased by one
for each record successfully
brought into memory by execution of
the m*READ macro-instruction, or
for each record written from memory
by executing either m*BWRITE or
m*SWRITE macro-instructions. Note
that this counter does not count
the number of blockettes read or
written. The counter will be reset
to zero a fter the execution of each
m*RWO or m*RWI rewind macro-
instruction. This counter provides
the calling program with information
needed for determining the point at

I I

which to institute end-of-reel pro-
cessing for output tapes. It can
also provide data for control of the
number of records read from an in-
put file.

0-0 24 binary zeroes to reserve an area 5 24 SERV02ZZ
in memory for optional use by
UNIVAC III customers who ha ve
addi tional tape file control re-
quirements. If an error log tape is to
be incorporated into the system,
this area can be used to accumulate
data to be written on the log tape.

up·

I SECTION:
, 6-A

I PAGE:
UNIVAC ill SALT

2558 I 19

7. Servo-Swap for UNISERVO IIA Units

The servo control word of the UNISERVO IIA tape control packets provides for 1 - 3
separate servo numbers. The servo numbers are retained in the word as binary coded
decimal numbers, with different configurations depending on the number of servos specified
for use by a given file. The chart below illustrates the three separate configurations on a
relative basis. (Any servo number from 0 - 5 may be used).

CONDITION BIT POSITIONS
No.Of 21 17 13 9 5 1
Files Cur-

rent
No. Relative position

BEFORE SERVO SWAP 1 1 1 1 1 1 1 of servo numbers
AFTER SERVO SWAP 1 1 1 1 1 1 trol word changes
BEFORE SERVO SWAP 2 1 2 1 2 1 2 as indicated.
AFTER SERVO SW AP 2 1 2 1 2 1
BEFORE SERVO SWAP 3 1 2 3 1 2 3
AFTER SERVO SWAP 2 3 1 2 3 1

The Servo number stored in bit positions 21 - 24 of the servo control word represents the
current servo. All of the binary coded decimal numbers in the word are shifted four bit
positions to the left to accomplish a servo swap; the old number is brought back into the
word in the least significant position.

SECTION:

6-A

PAGE:
20

; U P-
UNIVAC m SALT

2558

Sam ple Coding:

An indirect address control word containing the address of the servo control word has been

given the tag SE RVOWD. Therefore the calling program can access the servo control word

by means of the tag m*SE RVOWD.

where:

\
)

j
I

!
\

I
\

m

*

SERVOWD

TAG

I I I 1 ,

I I I

\ 1 \ 1

I I I I

I I I I

I I I I

I I I

I I I. I

I I , '

I I

;

\ ,

I

i

,

the unique rna rker or permanent tag used for the SU B R call line
is always used.

the specified tag given the INAD control word by SERV02ZZ to make

the servo word accessible to the calling program.

C FORM CONTENT

(I N AD: I A, , m * S E R VOW D) , Pick up word
I I I IIAI' lXI', L" 14 1' I 1 I 1 ' I I 1 I I Iii I I I I I I I I I I I I I I

containing the servo numbers

1

I ~
- I i I : I I I I I I I I I I ' I I I I j I I I I I I I I I I I I I 1

Justify current servo numbers

\ \ \ S \ B \C \ ' 14 \ ' \ 2 \ 0 I ' \ : \ 1 I \ \ \ \ \ \ I I I I I I II I I I I I I I \ I

X\ ,\S IT
Store servo control word temporarily

I , 14 1' I T, 1",: I I I I ' I I I I I I I I I lJ I I I I I I I I

Pos ition the mos t sign ificant 20 bits (
' I I SIBIC 1'1 4 1' \ 1 1 , I : \ I I I I I I I I \ I I I I I I I I I I I I I I , I

to compensate for pass through the sign position
1

- 1 I :, I I I I I I I I I i I ,\

F IS I ' I XI' I E I XI T I , ,4! ,
Buff on four least significant bits

I I iFIS IEILIWIDI'I: I I I I I I I I I I I I I I I I i

Remove sign
,

I I I XI' I E I R, S I' 14! , is I P jA I TITiE\R\N I :\ I \ I I I I I I I I I I I I I I I I
)

II

, \ \
IIAI'IXI,~TI'14111(,IIN,A ~:,I,A" , m * S E R VOW D) I Replace servo word l

' I I I I I I I I I I I i' I I I I I I

S,P,AITIT:E, RN * °ITIOIB
Sign pattern word

71717171717171,1:1 I ' I I I I I I I \ I I I I I I I I I I I I I ~ I I i

Field select control word ,) FISIEIL,W,D j : * FISIEIL XI '1 4 "1 1 I I I Tilil I: I i

(
~ J - - -

i SECTION:

UNIVAC m SALT
I UP- 2558

I 6-B

I PAGE: 1

B. UNISERVO IlIA TAPE UNIT CONTROL SUBROUTINE

Complete input-output control systems for files using UNISERVO III Tape Units are provided
by a routine of the SALT Data Processing Library. This routine, -SE R3ZZ, is called from the
library into the source program. The call includes a parameter set to be used to describe the
tape files to be controlled. This system is assembled with and becomes an integral part of
the user's program.

The generated input-output system represents a single program load and thus will occupy a
single consecutive portion of the total memory area required by the assembled program. This
load includes tape handling subroutines and storage areas for processing input and output
files. In addition, a set of item handling macro-instructions is defined for each file.

Macro-instructions provide complete control over the input-output system. The programmer
will use these instructions within the source program at the points where their specified
functions are needed. The macro-instructions are assigned names in the form m* function f.

Both m and f are variable designations to be supplied by the user. The coding brought into a
program by an input-output subroutine is made unique by assigning a marker, m, to the call
on -SER3ZZ,. This marker is in the form of a SALT tag. The function is as defined in the
subroutine. Each file to be controlled is to be assigned a unique one- or two-character
alphabetic designation. This designation is used in the macro-instruction in place of f.

1. File Description

-SER3ZZ, recognizes data files as three &eparate categories; input files, delivered output
files, and copied output files. Extra memory areas, independent of those used for data
files, will be provided by the routine on request. The item sizes of input, internal and
delivered output files may range from 1 to 4093 words. Copied output files may have items
ranging from 1 to 511 words. All items of a single file need not have the same item size.
Each type of file and the routine functions available for it are described separately below.
A single call on the routine can control from one to forty-one data files.

a. Input File.

-SER3ZZ, will supply one item at a time from a UNISERVO lilA input file for
processing. The first item of each input file is supplied by the macro-instruction
m*ST ART f,.

SECTION:

6-8

PAGE:
2

up· UNIVAC m SALT
2558

This macro-instruction is executed once for each input file, and must be the first macro­
instruction executed for the file. It will make available the address of the first item of
the file to the processing program. Subsequent items are accessable to the program through
the macro-instruction m* ADV f,.

This macro-instruction is executed each time a new input item is required, and will
supply the address of the new item.

If, in the execu tion of eithe r of the a bove macro-instructions, the input-output routine
discovers an end-of-file sentinel (refer to the conventions in Appendix F), -SE R3ZZ
will transfer control unconditionally to the end-of-file routine provided by the source
program for any processing required by the program when the file has been exhausted.
No further macro-instructions may be executed for the file after control has been trans­
ferred to the end-of-file tag.

When the processing of an input file is to be terminated before the end-of-file sentinel
is encountered; this termination is effected by the execution of the macro-instruction
m*END f,.

This macro-instruction may be executed only once for an input file. No further macro­
instructions may be executed for the file after it has been executed.

b. Delivered Output File.

A delivered output file is file made up of items which are placed in an output item
area by the processing program. These items may then be delivered, one at a time,
to -SE R3ZZ, for writing them on tape. The memory area in which the first such item
is to be placed is supplied by the macro-instruction m*START f,.

This macro-instruction is executed once for each delivered output file, and must be the
first macro-instruction to be executed for the file. After each item is assembled in the
work area by the source program, it is delivered to -SER3ZZ, by the macro-instruction
m*ADV f,.

In addition to accepting one item for output, this macro-instruction will supply the
source program with the address at which the next item is to be placed.

Termination of reels of a multireel delivered output file can be controlled by the macro­
instruction m*END R f,.

UNIVAC ill SALT
SECTION:

6-B

up·
2558

The use of this macro-instruction is optional; if it is not used, -SER3ZZ, will auto­
matically terminate intermediate reels of the file as they become full.

When used, this macro-instruction does not accept the delivery of an item, it merely
terminates the current output reel and prepares to place the next item on a new reel. It
should be executed after all items for the first reel have been advanced an:d before an
item for the next reel is assembled. This macro-instruction supplies the current item
address for the placement of the first item on the succeeding reel.

After all the items of a delivered output file have been delivered to -SER3ZZ, the file
is terminated by the macro-instruction m*END f,.

PAGE:

This macro-instruction is executed once for each delivered output file. It does not accept
the delivery of an item, and no further macro-instructions may be executed for the file
after it has been executed.

c. Copied Output File.

A copied output file is one that is created by delivering to -SE R3Z Z, the addresses
of the items to be written on the output file. (No actual movement of items from the
input area(s] to the output area occurs in producing a copied output file.) One or more

input files may supply items to a single copied output file. Also, a single input file

may be a source of several different copied output files. The source files for a copied
output file are listed in the parame ters of the calling statement.

The macro-instructions m*START f, and m*ADV f, of an mput file designated as the
source of a copied output file develop an Area Descriptor word. The address of this control
word as well as the item address are available to the source program after the execution
of these macro-instructions.

A copied output file is initiated by the execution of the macro-instruction m*START f,.

This macro-instruction is executed once for each copied output file, and must be the
first macro-instruction executed for the file.

Items to be copied from an input area onto the output file are made available to
-SER3ZZ, by one of two macro-instructions. If all items to be copied are of the same
size, the macro-instruction m*COPY f, is used. After an item has been copied for one output
file, it may be copied to other output files but may not be changed.

3

SECTION:

6-B

PAGE:
4

uP- UNIVAC m SALT
2558

If the items to be copied onto the output file vary in size, the macro-instruction
m*COPY V f, is used.

The programmer may institute end-of-reel processing of a multireel copied output file by

the macro-instruction m*END R f,. As in the case of a delivered output file, the use of

this macro-instruction is optional; if it is not used, -SER3ZZ, will perform end-of-reel

processing of intermediate reels automatically.

After all items of a copied output file have been released to -SE R3ZZ, the processing
of that file is terminated by the macro-instruction m*END f,. This macro-instruction is
executed once for each copied output file.

2. Program Logic

a. Addressing Words of Items.

Successive items of the same file occupy different positions in memory. As each item is
advanced, the address of the first word of the current item area is obtained. This is a
function of the generated input-output system.

A single set of coding designed to process one item of the file is supplied by the pro­
grammer. This coding addresses words of the item relatively. The valid address of a word

in the current item is derived by modifying its area relative address using an index

register containing the current item area's starting address obtained from the input­
output system.

(1) The n words of an item, from first to last, are numbered relatively from 0 through n-1.
Ins tructions coded to access words of the item use these numbers as a SALT decimal
address. These instructions are modified by an index register (IR) loaded with the
address of the first word of the current item area.

For example, with the address of the first word of any current item area for FILE AA
loaded in IR4, to load the con ten ts of the item's first word in AR 1, use the instruction:
4,L,l,O,.

To store the contents of ARl into the item's fifth word, use the instruction: 4,ST,l,4,.

UNIVAC ill SALT
SECTION:

6-B

up-
2558

(2) Another way to construct item processing coding is available through use of the
SALT form EQOX. A tag, naming a particular word of the item, is equated with an
index register number combined with the word number (0 through n-1). For example,
to equate tags for the first and fifth words of an item with IR4, use,

CONTENT 7

The two instructions shown in (1) above could now be written as follows:

or

L,l, AMOUNT,
ST, l,CASH,

L, 1, AMOUNT,
ST, 1, AMOUNT + 4,

b. The Current Input Item Area.

PAGE:

Only one input item area for each file is current at any time. The words of an input item
are available for processing when its area is current.

c. The Current Output Item Area.

Only one output item area for each file is current at any time. An output item is
assembled word by word in the current output area. For example, a current input item is
moved into a current output area.

d. Advancing Item Areas.

The address of the first area for either an input or an output file, f, is obtained by exe­
cuting the macro-instruction m*START f,. The address of the next item area for file fis
always obtained by supplying the previous item address to and executing the macro­
instruction m*ADV f,. By each execution of this macro-instruction, the following item

of the file is advanced and becomes the current item. The address of the first word of
the area is made available.

e. Copying Input Item Areas.

A current input item can be copied to an output file directly from its area. No movement
of the item to an output area is required. An input file processed in this manner is listed

5

SECTION:
6-B

PAGE:
6

u p-
UNIVAC m SALT

2558

as a source for an output file f specified in the parameter statement, COPY. An input
file may be a source for more than one such output file. One such output file can have
more than one input source.

The m*ST ART f, and m* ADV f, macro-instructions provide two words of information for
each current input item of a file named as a source for output. They are the address of
the first word of the item area and the address of an Area Descriptor.

The Area Descriptor is used internally by the input-output system to keep track of
items which take on dual status. For example, in the case of an input item being
copied to an output file or files the system must prevent the con tents of the current
item area from being altered after the next item of the file is advanced (m* ADV f,)
until the first item is actually copied to all specified output files. The programmer

is concerned only with passing the Area Descriptor address on from one part of the

input-output system to another when necessary.

If the current input item is to be copied, the necessary addresses are loaded into the
appropriate registers and the macro-instruction m*COPY f, is executed. Before submitting
the first item for copying, the output file is opened by executing the macro-instruction
m * ST AR T f,. Once an item is submitted for copy in g, no further alteration of the item is
possible.

f. Item Storage Areas.

Items copied to an output file via m * CO PY f, need not belong to an input file source. On
occasion additional items may be developed through processing. A working storage area,
f, can be established to accommodate an item of a specified size. The storage area f is
listed as a source for an output file.

Access to the storage area, f, is obtained by executing the macro-instruction m*ADV f,.
Both the address of the first word of the area and the address of an Area Descriptor
are available to the source program after m* ADV f, is executed.

To have the item area copied, supply both addresses in the appropriate registers and
execute the macro-instruction m*COPY f,.

g. Retaining Item Access.

Input file items are not always processed successively. Certain items govern the pro­
cessing of succeeding items of the file. Access to these items must be retained while
successive items are advanced. This could be done by moving the item word by word
from the input area to a separate area. For larger items, this might be costly in both
time and memory space. The system outlined below requires only the transfer of two
words and space for storing these words.

Input files to be processed in this manner may be listed as a source in the parameter
statement, HOLD. The input file is started (m*START f,) and advanced (m*ADV f /).
(The current item area is identified both by the address of the first word of the area
and also by the address of an Area Descriptor.)

UNIVAC ill SALT
I SECTION~_B

PAGE: 7
2558

To prevent the current input item area from being overlaid when the file is advanced,
the address of the Area Descriptor is loaded into the appropriate register and the
macro-instruction m * HO L D, is executed. The addresses of both the first word of the
area and Area Descriptor must be stored some where in the source program prior to
advancing the next item of the file. These addresses constitute the link to the held item.

When the held item is no longer required, it must be released. This is accomplished by
supplying the address of its Area Descriptor to and executing the macro-instruction
m*FREE,.

If the input file is also a source for output, a held item of the file rna y be submitted
for copying to an output file (m*COPY f,) any time before it is released.

h. Accessing Memory Areas Within The Subroutine.

Information concerning a particular item of a file may be present in two locations in the
body of the control sys tern. The locations are ta gged in the form m *f l' and m *f2,. Where
m and f are res pecti vely the marker and file identifier. These words occupy consecutive
memory locations. Their contents are addressed indirectly by the source program using
a LO CA of the tag. For exam pIe, the instruction:

CONTENT

will load the contents of these consecutive locations into Arithmetic Registers 1 and 2.

iECTION:
6-B

'AG E:
8

UNIVAC m SALT
up·

2558

3. System Parameters

The parameters for -SER3ZZ, are submitted in the form of a group of statements. These
statements set forth information concerning the tape files to be controlled by the generated
input-output system. Each file is described both in respect to its external block and
internal item formats and to the in tern al item handlin g required.

There is always a single statement which effects the call on -SER3ZZ,. This precedes all
other statements.

The remaining statements follow a rigid order which is outlined below (only statement
headers are illustrated):

Number of Statements
Group Name Per Group Genera I De scri pti on

-SER3ZZ One Header, and information locating the
routine in object program memory.

ADV One for each input, External file characteristics, and
delivered output, and general information about the file
internal file. concerning the overall routine

processing.

SORT LP One if method 2 has Size of sorted items.
been selected for

-SOR TZZ.

MERGE LP One if method 2 has Size of merged items.
been selected for
-MERGEZZ.

SORT FP One if method 2 has Size of items to be sorted and the
been s electe d for source designations for these items.

-SORTZZ.

COpy One for each copied- External file characteristics and
ou tpu t file. source designations.

HOLD Variable Maximum number of areas to be
(See below) retained, and their sources.

PRESELECT One for each set of two Identification of files that may be
or more input files, preselected in each set.
defined in the ADV
group which may be
preselected.

FILE
One for each input file Internal file characteristics and
and deli vered output file gene ral information of concern in
defined in the ADV the processing of the specific
group, and one for each file.
copied output file de-
fined in the CO PY group.

\0.

) n In

l.,-

UNIVAC ill SALT
I SECTION:

, 6-B

2558 I PAGE: 9

a. General Rules for Writing Statements

Classes of statements may be omitted when not pertinent.
For example, a system defining a single input file might include only the following:

(1) -SER3ZZ, Group Call Statement

,"', ... "' " \..L.) ALI T,

(3) FILE,

A system defining one input file which is a source for two output files might include only
the following:

(1) -SER3ZZ,

(2) ADV,

(3) COPY,

(4) COPY,

(5) FILE,

(6) FILE,

(7) FILE,

Every statement includes a group of parameter designations each of which is terminated
by a comma. When, within a given -SER3ZZ statement, a consecutive group of parameters, inc1ud­

including the last, are satisfied by a space code, the entire group including the commas

may be omitted.

For example each AD V, statement has seven parameters numbered P1 through P7•
Parameters P S through P7 may be satisfied by spaces. In the event that Ps through P7
are to be spaces, the ADV statement may be written as, ADV, P1, P2' P3' P4' or
ADV,P 1, P2' P3, P4""

b. The -SE R3ZZ Group Call Statement

This group appears once for each calling statement and contains one statement per

form.

ITEM NO. TAG C FORM CONTENT \

nln
marke r

-IS lEI R I 3 I I, ZI, 'P 11 1IP21 ,I ,11~ ~I~ I I I I I I I SIUIBIR I I I I I I I

-- --- .---
The item number field contains a two-level item number as indicated; the entire range
of numbers through its two-level Dewey successor is restricted to use by the coding
produced by -SE R3ZZ,. marker is a SALT tag making the coding produced by this
call on -SER3ZZ, unique.

I 1/ ,

SECTION:

6-B

PAGE:
10 I UP· 2558

UNIVAC m SALT

The -SER3ZZ, designation is the fixed routine name.

Pl defines the location of the first segment of the -SER3ZZ,coding in memory by
specifying its predecessor. If the precedessor segment is part of the source program,
this parameter is of the form SEGn, where n is the segment number of the prede­
cessor. If the predecessor segment is part of a routine produced by the SALT system
this parameter is of the form m*SEGn, where m is the marker used in calling the
routine, and n is the number of the last segment in the routine. If more than one

predecessor is needed to define the location of -SER3ZZ, Pl is a space, and a SGRT
line naming the predecessors is included elsewhere in the source program. (Refer to
heading A-2 of Section 5.)

P2 defines the successor load, if any, which is to be chained to the -SE R3ZZ, load. If
a load is to be chained to the -SER3ZZ, load, P2 is a permanent tag naming the load
definition line of the chained load. If no load is to be chained to the -SER3ZZ, load,P2
is ~ (space).

c. The ADV Group Call Statement

This statement is written for each input file, assembled output file and independent
working storage area source.

FORM CONTENT

Pl is the one- or two-character alphabetic designation, f, assigned to the file.

P2 specifies the type of file: it is I for an input file, 0 for a delivered output file, or A
for an internal file.

P3 specifies the method to be used in communicating with the macro-instructions for
this file: IR or space specifies the index register method, AR specifies the arithmetic
register method.

UNIVAC m SALT

I
up·

, 2558

p 4 specifies the item size of the file, and is a decimal number, 1 through 4093. If the
item size is fixed, p 4 is the number of words in an item. If the item size is variable,
p 4 is the maximum number of words in an item.

I SECTION~_B

Ps specifies the block size of an external file in terms of the number of items per block,
and is a decimal number, 1 through 4093. For most files, the number of items per block
is fixed, and P

5
is this number. Input files that were created as copied output files may

have a variable number of items per block. (Refer to the parameters for the CO PY group,
paragraph c below.) For this type of file, Ps is the maximum number of items in a
block. For internal files, Ps is a space.

P6 indicates the manner in which scatter-read/gather-write control words are to be used
in reading or writing the file, An input file may be read into memory using one of two
modes: it may be read by items (scatter-read) or by blocks (block-read). For output
files, the comparable modes are gather-write by items and gather-write by blocks. In
ga·ther-writing by items, data is transferred to tape in terms of items. There is a SCA T
control word for each item and the maximum item size is 511 words.

In gather-writing by blocks, data is transferred to tape in blocks, that is, in terms of a
given number of words, regardless of the item structure. Thus, there is not necessarily
a one-to-one correspondence between the SCAT control words and the items placed on
tape. The maximum item size, and the maximum block Size, is 4093 words.

If the item size is 511 words or less, the choice of a writing mode for an output file may
be left entirely to the routine by specifying in P 6 that one item will be written for each con­
trol word. The selection of this option is recommended for all files which have an item size

of less than 512 words.

For output files, P 6 is ONE, or a space, when one item is to be written with each con­
trol word. This designation allows the routine the choice of writing mode for the file,
since either mode may be used.

P6 is MAX, when a maximum number of data words are to be written with each control
word, regardless of item units. This file will be block-written and must be later block­
read when used as an input file.

For input files, P 6 is ON E, or a space, when the file was written with one item for each
control word. Such a file may be either block-read or scatter-read and the routine will
control the choice of mode.

, 6 is MAX, when the file was written with a maximum number of data words for each
control word. The file will be block-read.

'6 is VAR, when the file was created as a copied output file with variable item sizes.
(Refer to the parameters for the COpy group, paragraph c below.) The file will be
scatter-read.

P6 is always a space for internal files.

SECTION:
6-B

PAGE: UP·
UNIVAC m SALT

12 2558

P7 allow s the programmer to apply a space or time priority with regard to the amollnt of
memory storage space that is to be allocated for the file. It is 0 when the amount of
space is to be scaled down toward the minimum, possibly at some cost in processing
time. It is a space when the amount of storage to be allocated is left to the determina­
tion of -SER3ZZ,. In general, this designation is used when the speed of processing is
to take priority over the use of memory space.

d. The SORT LP, Group Call Statement

I

One of these statements is required if -SER3ZZ, is called into the last pass of -SORTZZ,
routine in which method 2 has been selected. The statement line appears in the
following format.

C FORM CONTENT

- SORTLP,P1': SORT L P W 0 S PER lIJTjE1Mj'J I I I I I I I I If' I I I I I I I I j' I , , , i I I I

-
where:

P1 is the item size of the data being sorted. It is a decimal number in the range of
1 through 511.

1

\

e. The MERGE LP, Group Call Statement

One of these statements is required if -SER3ZZ is called into the last pass of -MERGEZZ,
routine in which method 2 has been selected. The statement line appears in the follow-
ing format:

C FORM CONTENT

- M IE j R IG I LIP I ' IP11 ' I : I M I E I RIG I E I I LiP I ' i W j 0 1 S 1 I PIE I Rl 1 I I TI EI Mt ' I I L 1 j

where:

PI is the item size of the data being mer ged. It is a decimal number in the range of
1 through 511.

--'

f. The SORT FP, Group Call Statement

I

One of these statements is required if -SE R3ZZ is called into the first pass of -SOR TZZ,
routine in which method 2 has been used. The statement line appears in the following
format:

C FORM CONTENT

- , , I S 101 RITI IF I PI' ,P11' I: I SIOI RJTJ IF I Pi' 1 WJD1S1 I P1 E1R j ill TI EIM I , I

-
-

I I

I 1 I P2 ' I: I F ,I I L, E, ,IIDIEIN,T,IIFIIIE,R1Sj(jf 1) j'J I I , I , I , I I I

I

f
I

- - --

UNIVAC m SALT up-
2558

where:

P, is the item size of the data being sorted. It is a decimal number in the range of
1 -through 511.

SECTION:

PAGE:

P
2

is one or more file identifiers each followed by a comma. These identifiers are specified
through the use of a unique one or two-character alphabetic designation (f) which has been

assigned to the file. These designations represent the input or internal files defined in ADV,
statements, and with which method 2 is used. These files cannot have item sizes larger than

P •• and P, of the ADV. statement must have been ON E, tl, or VAR.
1- - 0 -

g. The COPY, Group Call Statement

One of these statements is required for each output file to be written from a specified
source or sources. This group, if needed, immediately follows the ADV, group,.

C FORM CONTENT

Pl is the one- or two-character alphabetic file designation, f, assigned to the file being
described by this statement.

P2 specifies the item size of the file, and is a decimal number, 1 through 511. For files
with a fixed item size, it is the number of words in each item. For files with a variable
item size, it is the maximum number of words an item may contain.

P and P 4 determine the maximum and minimum block sizes that the file may contain. As
s~ated previously, a copied output file always is written and read using one control word
per item. The control coding for this mode of writing operates independently of the
number of words in a block. Therefore, for these files, the block size may be allowed to
vary. -SER3ZZ, sometimes can use this flexibility to effect a saving of memory space
in the storage areas for these files.

P3 specifies the maximum block size. It is a decimal num ber, 1 through 4093, and
specifies the maximum number of items per block.

P4 specifies the minimum blo-Ck size-as a decimal numbet in the range of 1 through
4093.

6-B

13

SECTION:
6-B

PAGE:
14

I

I
1 UP·

I

UNIVAC m SALT
2558

P4 may specify that the choice of minimum block size is to be left to -SER3ZZ, This
option (the recommended practice) is specified by a space.

P 5 allows the calculation of memory storage space that is to be allocated for the file.
lt is D when the amount of space is to be scaled down toward the minimum, possibly
at some cost in processing time. It is a space when the amount of storage to be allocated
is left to the determination of -SER3ZZ,. In general, a space indicates that the speed
of processing is to take precedence over minimization of memory allocated.

P 6 specifies the variability of item size of the file, and is ONE, or a space, when all
items of the file are the same size, as specified in P2 above. When this designation is
chosen, the macro-instruction m*COPY f, applies to the file.

This parameter is VAR, when the items of the file vary in size. When the VAR,
designation is chosen, the macro-instruction m*COPY V f, applies to the file, When
this parameter is VAR, the m*CO PY f macro-instruction may be used to copy items
of the length specified in parameter P2·

P7 specifies one or more source files from which the items of this file are copied. It is
a series of one or more alphabetic file identifiers, each terminated by a comma. If
SORT LP or MERGE LP, statement has been made, this parameter may be SORT, or
MERGE, if their last pass is a source for copied items. The source files may be any
input of in ternal files defined in the ADV, group.

h. The HOLD, Group Call Statement

This statement relates directly either to input files or temporary storage areas desig­
nated underADV,. It will be written when processing dictates that a given item area
or temporary storage area be used after the source of that area is advanced. An
example of such a situation is the case where a file has header items which contain
rates to be applied to a group of successive trailer items.

The form of a HOLD, statement is: , C FORM CONTENT ~

- HOLD: HOLD
I I I I I 11'1 L 1 1 1 1', 1 ILl I 1 1 1 I I I I j I I , I

- ~ :MAXIMUM NUMBER o F AR EAS,
I I I 11 ' I

- ~. , : 0 E S I G NAT ION 0 F SOU R C E S ,
IlL '3. 1 I

- ,
where:

J

HOLD, is a statement header that always appears for each HOLD statement submitted.

P l' is a decimal number to specify the number of areas that may be retained
from the files described in P

2
, o ••• 0 > 1.

I SECTION:

UNIVAC m SALT
I 6-B

I PAGE:
2558

is one or more file identifiers, each in the form of a one or two-character
alpha-numeric file identifier. Each file identifier designation is terminated

by a comma. These sources are always defined in the ADV, statement as
input files (I) or area sources (A).

If a SORT LP, or MERGE LP, statement has been made; this parameter
may be SORT, or MERGE, if their last pass is a source for copied items.

Each HOLD statement wili cause -SE R3ZZ, to create additionai storage areas for the

sources specified. The minimum number of storage areas so created is equal to the sum

of the areas specified in each statement. The maximum number of storage areas so created

is equal to the sum of the products obtained by multiplying the number of areas specified

by the number of sources in each statement.

For example, given the sources A and B it is known that a maximum of two areas may
be held for each at anyone time. In addition, it is known that for both A and B together
no more than three areas will be held at one time. The HO LD, statements could be sub­
mitted in one of three ways:

HOLD
STATEMENT MINIMUM AREAS MAXIMUM AREAS

(1) -HOLD,
-2, 2 + 2 = 4 (2 x 1) + (2x1) = 4
-A,
-HOLD,
-2,
-B,

(2) -HOLD,
-3, 3 = 3 (3 x2) = 6
-A,B,

(3) -HOLD,
-1, 1 + 1 + 1 = 3 (1 x1) + (1 x1) + (2x1) = 4
-A,
-HOLD,
-1,
-B,
-HOLD,
-1,
-A,B,

Case 3 is the desirable since it combines the smallest minimum and maximum

and therefore, approxima tes most closely the real requirements for the situation
described.

PRESELECT, Group Call Statement

This group contains one statement for each set of input files (described in the ADV,
group) that is to be processed using the preselection technique. Each statement has the
format:

15

SECTION:

6-B
PAGE:

16
u P-

UNIVAC m SALT
2558

FORM CONTENT

p 1 specifies the alphabetic file designations of two or more input files, each termin­
ated by a comma. A priority among "the files is established by specifying the file
designations in the order of precedence. This priority is used to "break ties" when
two or more current items in the set have identical keys. The definition of the key for
each file is specified in the statement for the file in the FI LE, group.

j. FILE, Group Call Statement

This group of statements is the last group in the -SE R3ZZ, calling statement and con­
tains one s tatemen t for each file that has been named in the AD V, and CO PY , groups.
Each statement has the format:

C FORM CONTENT

• The first subgroup is preceded by the header FILE,.

Pl is the alphabetic file designation of the file being described by this statement.

P2 is the numeric file desi gnation for this file, and is a unique number, 1 through 41.

UNIVAC ill SALT
UP-

2558

P3 is a one- to four-character alphabetic file label. If the file is an input file, this
label will be compared with the label appearing in the label block of each reel read in.
If the file is an output file, this label will be placed in the label block of each reel
written. (Refer to Tape File Conventions in Appendix F.)

I SECTION:

I 6-B

I PAGE:
I 17

P 4 is a one- to four-character alphabetic dating constant for the file. This constant will
be replaced in the program by an actual date at the time the Master Instruction Tape is
prepared by the oes run (refer to Section 9). If the file is an ou tput file, this date
will be written in the label block of each reel written. If the file is an input file, the
date will be compared with the date in the label block of each reel read in.

Ps specifies the disposition to be made of the final reel of the file. It is RW, when the
final reel is to be rewound without interlock, RWI, when the final reel is to be rewound
with interlock, and NON E, when the final reel is not to be rewound. The NONE, designa­
tion may not be used for input files which will be processed with the macro-instruction
m*END f,. It should be noted that intermediate reels of a multireel file will be
rewound with interlock, regardless of the option specified in PS'

P6 specifies the kind of label checking that is to apply to the file. It is a space when
conven tionalla bel handling is to apply. (Refer to Tape File Conventions in Appendix F.)
It is a permanent tag when coding for label handling has been included in the source
program. The specified tag names the first line of the coding to be executed for check­
ing input labels or writing output labels. The designation of a permanent tag for this
parameter automatically overrides the label-handling coding normally supplied by
-SER3ZZ,. Further information concerning the coding for label handling can be found in
Appendix L, Own Code Label Routines.

P7 specifies the type of control that is to be exercised over input file sentinels. For an
input file, it is a space when the detection and interpretation of sentinels is to be
handled automatically by-SER3ZZ,. Itis MAN,when the computer operator must control
the treatment of end-of-file and end-of-reel sentinels. In this case, -SER3ZZ, will re­
quest direction from the operator each time a sentinel is encountered. It is PROG, when
the control of the above is left to the program. The operator must respond with a type­
in, indicating whether the sentinel is to be treated as an end-of-file sentinel or as an
end-of-reel sentinel. When the third option is selected, -SER3ZZ, will treat all sentin­
els as if they were end-of-reel sentinels. It is necessary for the program to decide from
the input data, when the file is to be terminated. Termination is effected by use of
macro-instruction m*END,. This parameter is a space for all output files .

• The second subgroup is preceded by the header FACILITIES,. For most files, each
parameter in this subgroup may be satisfied by a space. If this is the case, the entire sub­
group, including the header, may be omitted.

Ps specifies a synchronizer. It is 1, or a space, for the basic UNISERVO IlIA synchron­
izer, or 2, for the additional UNISERVO IlIA synchronizer.

P9specifies cnannelllsa:ge.Itis a space w-nen:the read channel is tobe selected for
an input file or when the write channel is to be selected for an output file. It is
WRITE, when an input file is to be read through the write channel.

P10 specifies the number of UNISERVO tape units to be assigned to the file. It is 1, or
a space, if the file requires one tape unit; 2, if the file requires two tape units; or 3, if
the file requires three tape units.

SECTION:

6-B

PAGE:
18

u P-
UNIVAC ill SALT

2558

p 11 specifies the assignment of UNISERVO IlIA tape units to the file. It is a space when
this assignment is to be made by -SE R3ZZ,. When this assignment is made by the program­

mer, P11 consists of from one to three tape unit designations, depending on parameter
P10. Each designation is a decimal number, 0 through 15, followed by a comma. When
the tape units a ssigned to some other file in the program are to be reassigned to the file
being described, Pl1 is FI L E f, where f is the numeric file designation of the refer-
enced file. The facilities statement of file f may not contains a FILE f designation
for P11 • This statement is the only one within a -SER3ZZ call which is defined beyond
the limits of the call •

• The third subgroup is preceded by the header KEY,. This subgroup must appear for an
input file that is to be read using the preselection technique, as specified in the PRE­
SE LEeT, group. (see subsection 12. Preselect File Groups, for additional information).

P 12 either explicitly defines the key by which the file will be preselected or names
another input file with an identical key for which the key is explicitly defined. The key
is defined beginning with its most significant bit through to its least significant bit.
It may be composed of whole words, partial words, or any combination of these. Seven
formats are provided for defining the fields which make up the key; these formats may
be used singly or in any combination. The formats are:

(a) FROM, w, bb, THRU, w, bb, q,

(b) FROM, w, bb, THRU, w, q,

(c) FROM, w, THRU, w, bb, q,

(d) FROM, w, THRU, w, q,

(e) FROM, W, THRU, w, q, 5,

(f) WORD, w, q,

(g) WORD, w, q, 5,

In these formats, w is a number designating a word in the item. The words in the item
are numbered 0 through n-1, where n is the item size. Designation bb is a number, 1
through 24, designating a bit position in a word, where bit 1 is the least significant bit
position. In formats (c) through (e), where bb is omitted after FROM, w, the bit position is
assumed to be 24. Similarly, in formats (b), (d), and (e), where bb is omitted after THRU, w,
the bit position is assumed to be 1. Formats (f) and (g) are used to describe one word
fields.

The ordering sequence of the field is designated by q,. It is A, or a space, when the
field sequence is ascending, and is D, when the field sequence is descending.

Designation 5 is a sign indicator. It is S when the sign of the least significant word of
the field is to be considered in testing the field. Only a field composed of four or
less full computer words may be considered signed. When the sign of the field is not to
be considered in testing the field,s is a space.

When parameter P12 names another file, the alphabetic file designation aSSigned to the
other file is given, where the key of the specified file is identical to the key of this
file. The key must be explicitly defined.

I SECTION,

UNIVAC ill SALT
II

up·
, 2558

PAGE:

4. Input-Output Macro-Instructions

-SER3ZZ, defines macro-instructions of the form m*function f in sets, one set for each
file or area source. The seven sets are:

for input (two types): m*START f, m*ADV f, m*END f,.
for output (two types): m*START f, m*ADV f, m*ENDR f, m*END f,.
for output: m*START f, m*COPY f, m*COPYV f, m*END R f, m*END, f.
for area source (two types): m*ADV f,.

For example, the marker m is assigned to the c all on -SE R3ZZ, for a system controlling
input file A. -SER3ZZ, will define the following macro-instructions for the programmer's
use:

m*START A

m*ADV A
m*END A

The text is arranged such that macro-instructions of a set are described together in a
single section. Thus, for any given file or area source, one section of the text can
furnish the reference material.

For any input file, any area source, and any output file for which the ADV function is used,
there is a choice between two types of macro-instruction sets. Type one supplies the address

of the next item area in an index register. Type two supplies the address of the next item

area in memory location m*f l' and Arithmetic Register 1. The choice of type is indicated to
-SE R3ZZ, in P30f the ADV statement. The type used must be consistant as pertains to any
single file.

The macro-instructions m*H OLD and m* F RE E are defined if the parameters for -SE R3ZZ,
include any HOLD statement. They are generally applicable as described above and are
not particularized to any single file or area source.

a. All of the input-output macro-instructions are subject to the same basic considerations
with regard to use.

(1) Program Requirements.

Each macro-instruction must be assigned an item number in a range encompassed by
both code and pool segment definitions (SGMT). An index register mapping statement
(MAPS) for both the code and pool segments must appear in the source program be­
fore any macro-instruction is included in the program.

(2) Program Restriction.

The pool segment must not be mapped with Index Register 1.

(3) General Exit Conditions.

(a) Index Registers

Except for the case where a specified index register is to contain the address of
a current item, no other index registers are altered by the execution of a macro­
ins truc tion.

6-B

19

SECTION:
I 6-B I
I

PAGE: I UP-20

UNIVAC m SALT
2558

(b) Arithmetic Registers

The contents of the arithmetic registers are altered by the execution of the macro­
instructions. Arithmetic Register 1, when pertinent, will contain useful information.

(c) Indicators

The status of the Low, High and Equal indicators are altered by the execution of
the macro-instructions.

b. The input macro-instructions, m*S TART f, and m* ADV f, require one additional con­
sideration. A special exit to a tag of the source program is made from the macro-instruc­
tions when the input file is exhausted. This exit is in the form, TUN, tag,.

Thus the tag specified must be located in a segment for which a mapping statement is
provided. That segment's starting address must be present in the appropriate index
register at the time either of the two macro-instructions is executed.

. SECTION:

UNIVAC m SALT
I I

I Up. I
I PAGE:

I
2558 I

I

5. Input Macro-Instruction Set - Type One - Index Register Communication

Im*START f,l File Type: Input

WI FORM I CONTENT)

::::1 I~
Communication Method: Index Register

Parameters:

Entrance

Pl is a permanent tag naming the line to which control is to be transferred
when an end-of-file sentinel is encoun teredo

P
2

is a number, 1 through 15, designating the communication index register
for this macro-instruction.

Requirements: Tag Pl is located in a segment of the program that is under the control of a
MAPS statement. The index register mapping the segment is loaded with the
starting address of the segment.

Exit
Conditions:

Discussion:

Purpose:

This macro-instruction is executed once for the file and must be executed
prior to the execution of any other macro-in structions for the file.

The label of the first reel of the file is read and checked.

If an end-of-file sentinel is not encountered, Index Register P
2

contains the
address of the first item of the file.

If the file is a source file for a copied output file or for retained items, the
address of the Area DeSCriptor word is in memory location m* f

2
,

If the first item of the file is an end-of-file sen tinel, con trol is uncondition­
ally transferred to tag Pl and no further macro-instruction s may be executed
for the file.

m*ST ART f, must be executed once, and only once, prior to the execution of
any other macro-instruction involving file f. No macro-instruction involving
file f can be executed after control has been transferred to the end-of-file tag.

m*-STAR T f, reads and checks the label on the first reel-of-file f (see Appendix L,
Own Code Label Routines).

6-B

21

SECTION:
6-B

PAGE:
22

•

I up-
2558

UNIVAC m SALT

I m* ADV f, I File Type: Input

FORM CONTENT

Communication Method: Index Register.

Parameters:

Entrance

Pl is a permanent tag naming the line to which control is to be transferred when
an end-of-file sentinel is encountered.

P2 is a number, 1 through 15, designating the communication index register for
this macro-instruction.

Requirements: Tag P1 is located in a segment of the program that is under the control of a
MAPS statement. The index register mappin g the segment is loaded with the
starting address of the segment.

Exit
Conditions:

Discussion:

Purpose:

Index Register P2 con tains the current item address of the file.

If an end-of-file sentinel is not encountered, Index Register P2 contains the
address of the next item of the file.

If the file is a source file for a copied output file or for retained items, the
address of the Area Descriptor is in memory location m*f

2
•

When an end-of-file sentinel is encoun tered, control is unconditionally trans­
ferred to tag Pl' and no further macro-instructions may be executed for the file.

None.

m*ADV f Pl' P2 advances the next input item into current status.

I I
Im*ENDf,1

UNIVAC ill SALT
2558

I SECTION:
I 6-B

I PAGE:
23

File Type: Input

\C FORM CONTENT \

\ M1C1 RIO m I * I E I N I D I f i I I P 11 I I I I I i I I I I i I I I(
~~-------~~--------J

Communication Method: Index Register.

Parameters:

Entrance

P1 is a number, 1 through 15, designating the communication index register
for this macro-instruction.

Requirements: Index Register PI contains the current item address of the file.

Exit
Conditions:

Discussion:

Purpose:

Parameter Ps of the file statement for this file cannot be NON E.

No further macro-instructions may be executed for the file.

The current reel of the file is rewound according to the specification in
parameter Ps of the FI L E statement for this file.

No macro-instruction involving file f can be executed after m*END f,
is executed.

m*END f, is used, when appropriate, to terminate a file before all data has
been read. m*END f, rewinds the current reel of file f. m*END f, can be
used only when RW or RWI is specified for parameter PS' of the file f
FILE statement.

SECTION:
6-B

PAGE:
24 I

up·
2558

UNIVAC m SALT

6. Output Macro-Instruction Set - Type One - Index Register Communication

I m*START f,1
File Type: Delivered Output

FORM CONTENT

Communication Method: Index Register.

Parameters: Pl is a number, 1 through 15, designating the communication index register
for this macro-instruction

Entrance
Requirements: None.

Exit
Conditions:

Discussion:

Purpose:

IM*ADV f, ,

The label of the first reel of the file is written.

Index Register P
1

contains the address at which the first item of the file is to be
assembled.

m*ST ART f, must be executed once, and only once, prior to the execution
of any other macro-instruction involving file f.

m*STAR T f, writes the label on the first reel of file f (see Appendix L, Own Code
Label Routines).

File Type: Delivered Output

FORM CONTENT

Communication Method: Index Register.

Parameters:

Entrance

Pl is a number, 1 through 15, designating the communication index register for
this macro-instruction.

Requirements: Index Register P 1 must contain the current item address of the file.

Exit
Conditions: The current item of the file is written.

Index Register Pl contains the address at which the next item of the file is
to be assembled.

Discussion: None.

Purpose: m* ADV f, P
1

advances the next delivered output area into current status.

UNIVAC ill SALT
I SECTION:

6-B

I

PAGE:
I 2558
! !

Im*ENO R f, I

File Type: Delivered Output

CONTEN~~

Communication Method: Index Register

Parameters:

Entrance

Pl is a number, 1 through 15, designating the communication index register
for this macro-instruction.

Requirements: Index Register P 1 con tains the current-item address of the file, and no new
item has been placed in this address.

Exit
Conditions:

Discussion:

Purpose:

Index Register Pl contains the same current item address.

No item is written by the macro-instruction.

The block count and end-of-reel sentinel are both written on the current reel which
is then rewound with in terlock.

The file label is written on the next reel.

m*ENO R f, does not cause the writing of an item of file f. Thus the item
current prior to the execution of m*ENO R, is not and cannot be written.

m* E NO R f, is used, when appropriate, to terminate the current reel of file f
and to write the label on the next reel of file f. The n ext execution of the
macro-instruction m* AOV f, will cause the current item of file f to be the
first item written on the new reel.

25

SECTION:

6-B

PAGE:
26

up· UNIVAC m SALT
2558

I m*ENO f, I
File Type: Delivered Output

FORM CONTENT

Communication Method: Index Register

Parameters:

Entrance

P, is a number, 1 through 15, designating the communication index register
for this macro-instruction.

Requirements: Index Register P, must contain the current item address of the file, and
no new item has been placed in this address.

Exit
Conditions:

Discussion:

Purpose:

The block count and sentinel for the file are written, and the last reel is
rewound according to the specification in param eter P

5
of the FI LE

statement for this file.

m*ENO f, does not cause the writing of an item of file f. No macro­
instruction involving file f can be execu ted after m* END f, is executed.
m*ENO f, must be executed once.

m * E NO f, is used to terminate file f. Termination includes the writin g of
control information (block count and sentinel) and the rewind (optional see
P 5' of F I L E statement) of the last reel of file f.

UNIVAC m SALT up-
2558

7. Area Source Macro-Instruction Set-Type One - Index Register Communication

Im*ADV f, I
File Type: Internal

\CI FORM I CONTENT\

\ 1M C R 0lm * A 0 V f p l! I I I I I I I I I' III • ~ ~

Communication Method: Index Register.

Parameters: Pl is a number, 1 through 15, designating the communication index register
for this macro-instruction.

Entrance
Requirements: None.

Exit
Conditions: Index Register P

1
contains the current item address of the file.

If the file is a source file for a copied output file or for retained items, the

address of the Area Descriptor for the current item is in memory location m*f
2

Discussion: None.

Purpose: m* ADV f, Pl advances the next input item into current status.

SECTION:

6-B

I PAGE:

I
27

SECTION:

I
6-B

PAGE: I Up· 28 2558
UNIVAC m SALT

8. Output Macro-Instruction Set - Copy - Arithmetic Register Communication

Im*START f, I
File Type: Copied Output

FORM CONTENT

Entrance
Requirements: None.

Exit
Conditions:

Discussion:

Purpose:

I m*COPY f, I

Entrance

The label of the first reel of the file is written.

m*ST AR T f, must be executed once and only once, prior to the execution
of any other macro-instruction involving file f.

m*ST ART f, writes the label on the first reel of file f (see Appendix L,
Own Code Label Routines).

File Type: Copied Output

FORM CONTENT

Requirements: Arithmetic Register 1 must contain the address of the item to be copied.

Exit
Conditions:

Discussion:

Purpose:

Arithmetic Register 2 must contain the address of the Area Descriptor
word for the item to be copied.

The size of the item to be copied is as specified in parameter P2 of the
copy statemen t.

None.

The copied item must not be changed after the execution of this macro­
instruction

m *copy f copies the current item onto the output file.

I SECTION:

UNIVAC m SALT
I 6-B

I PAGE: 29
I

up·
, 2558

I m*COPY V f,1
File Type: Copied Output

Entrance
Requirements: The address of the item to pe copied is loaded into Arithmetic Register 1

and the instruction SU P, 1, (SCAT: ill), is execu ted. Designation i is the
number of words in the item to be copied.

Exit
Conditions:

Discussion:

Purpose:

Arithmetic Register 2 contains the address of the Area Descriptor word for
the item to be copied.

Parameter p of the COpy statement for this file is specified as VAR,.
6

The copied item must not be changed after the execution of this macro-instruction.

m*CO PY V f, copies the item addressed in Arithmetic Register 1 onto file f.

If the address of the item to be copied is in Arithmetic Register 1, the control
word can be fabricated by executing the instruction SUP, 1, (SCAT: ill),

where i is the number of words to be copied.

-SER3ZZ, defines the macro-instruction m*COPY V f, if, and only if,
parameter P6,of the COpy statement is specified as VAR. The item to
be copied must not be changed after m*COPY V f, is executed.

m*COPY V f, is used if the items to be copied onto file f are of varying sizes.
m*COPY f, may be used for those items of file f which are of maximum size
(See parameter P

2
of the COpy statement.)

SECTION:
6-B

PAGE:

30
u p-

UNIVAC m SALT
2558

m*END R f,1

File Type: Copied Output

FORM CONTENT

Entrance
Requirements: None.

Exit
Conditions:

Discussion:

Purpose:

Im*ENDf,1

The block count and end-of-ree1 sentinels are written on the current reel, which is
then rewound with interlock. The file label is written on the next reel.

None.

m*END R f, is used, when appropriate, to terminate the current reel of file f
and to write the label on the next reel of file f. Th e next execu tion of the macro­
instruction m*COPY, or m*COPY V f, will cause the writing of the first item
of the new reel.

File Type: Copied Output

FORM CONTENT

Entrance
Requirements: None.

Exit
Conditions:

Discussion:

Purpose:

The block count and sentinel for this file are written and the last reel is
rewound according to the specification in parameter PS' of the FILE
statement for this file.

No macro-instruction involving file f can be executed after m*END f, is
executed. m* END f, must be executed once.

m* EN D f, is used to terminate file f. Termination includes the writing of
con tro1 information (block count and sentinel) and the rewind (optional,
see PS ' of F IL E statement) of the last reel of file f.

UNIVAC ill SALT
I uP. 2558

I m*HOLD,1
I I

File Type: Not Applicable

I I 1

CONTEN"!

IIII{

--~ \
~----------~~- ~

Entrance
Requirements: Arithmetic Register 2 contains the address of the Area Descriptor word

for the item to be retained.

Exit
Conditions:

Discussion:

Purpose:

Im*FREE,1

Entrance

None.

The address of the Area Descriptor is available in location m*f2' where
f is the designation of the input file or area source from which the item
address was obtained.

m*HOLD prevents the item in the current area from being overlaid by
another item. It also furnishes the area's location for storage in the
calling program.

File Type: Not Applicable

FORM CONTENT

Re(fuirements: Arithmetic Register 2 con tains the address of the Area Descriptor word

Exit
Conditions:

Discussion:

Purpose:

for the item to be released.

None.

The area described by the Item Descriptor is returned to the pool of
available areas.

m*FRE£, releases an area previously retained through execution of

m*HOLD,.

I SECTION~_B
PAGE:

31

SECTION:
6-B

PAGE:
32

j
I

I
I up· 2558

UNIVAC m SALT

9. Input Macro-Instruction Set - Type Two - Arithmetic Register Communication

Im*START f,1
File Type: Input

FORM CONTENT

Communication Method: Arithmetic Register

P aram eters:

Entrance

P1ris a permanent tag naming the line to which control is to be transferred
when an end-of-file sentinel is encoun teredo

Requirements: Tag P1, is located in a segment of the program that is under the control of a
MAPS statement. The index register mapping the segment is loaded with the
starting address of the segment.

Exit
Conditions:

Discussion:

Purpose:

The label of the first reel of the file is read and checked.

If an end-of-file sentinel is not encoun tered, Arithmetic Register 1 and
memory location m * f l' con tain the current item address.

If the file is a source file for a copied output-file or for retained items, the

address of an Area Descriptor is in memory location m * f
2
,.

If the first item of the file is an end-of-file sentinel, control is unconditionally
transferred to tag P1, and no further macro-instructions may be executed for
the file.

m*START f, must be executed once, and only once, prior to the execution of
any other macro-instruction involving file f. No macro-instruction involving file
f can bE' executed after control is transferred to the end-of-file tag.

m*ST ART f, reads and checks the label on the first reel of file f (see
Appendix L, Own Code Label Routines).

UNIVAC m SALT up-
2558

Im*ADVf,1 Fiie Type: input

C FORM CONTENT

Communication Method: Arithmetic Register

Parameters:

Entrance

Pl is a permanent tag naming the line to which control will be transferred
when an end-of-file sentinel is encountered.

Requirements: Tag Pl is located in a segment of the program that is under the control of
a MAPS statement. The index register mapping the segment is loaded with
the starting address of the segment.

Exit
Conditions:

Discussion:

Purpose:

If an end-of-file sentinel is not encountered, Arithmetic Register 1 and
memory location m * f1' contain the address of the current item.

If the file is a source file for a copied output file or for retained items,
memory location m* f2, contains the address of the Area Descriptor.

When an end-of-file sentinel is encountered, control is unconditionally
transferred to tag Pl' and no further macro-instructions may be executed
for the file.

None.

m*ADV f, P1' advances the next item into current status.

II SECTION:
6-B

PAGE:

33

SECTION: 6-B

PAGE:

34
up- UNIVAC m SALT

2558

Im*ENDf,

File Type: Input

FORM CONTENT

Communication Method: Arithmetic Register

Entrance
Requirements: Parameter PS' of the F IL E statement for the file cannot be NON E.

Exit
Conditions:

Discussion:

Purpose:

The current reel of the file is rewound according to the specification
in parameter PS' of the F IL E statement for this file.

No macro-instruction involving file f can be executed after m*END f,
is executed.

m*END f, is used when appropriate, to terminate a file before all data has
been read. m*END f, rewinds the current reel of file f. m*END f, can be
used only when RW or RWI is specified for parameter PS' of the FILE
statement.

UNIVAC ill SALT
2558

10. Output Macro-Instruction Set - Type Two - Arithmetic Register Communication

I m*START f, I
File Type: Delivered Output

\I FORM I . . _ _ _ . CONTENT)

Communication Method: Arithmetic Register.

Entrance
Requirements: None.

Exit
Conditions:

Discussion:

Purpose:

Im*ADVf,1

The label of the first reel of the file is written.

Arithmetic Register 1 and memory location m *f1 con tain the address at
which the first item of the file is to be delivered.

m*START f, must be executed once, and only once, prior to the execution
of any other macro-instruction involving file f.

m*START f, writes the label on the first reel of file f (see Appendix L,
Own Code Label Routines).

File Type: Delivered Output

FORM CONTENT

Communication Method: Arithmetic Register.

Entrance
Requirements: None.

Exit

Conditions:

Discussion:

Purpose:

None.

The current item of the file is written.

m* ADV f, advances the next area to current status.

I
SECTION:

6-B

I

PAGE:

35 I

Arithmetic Register 1 and memory location m * fl contain the address to which
the next item of the file is to be delivered.

SECTION:

6-8

PAGE:
36

uP- UNIVAC m SALT
2558

Im*END R q
File Type: Delivered Output

FORM CONTENT

Communication Method: Arithmetic Register

Entrance
Requirements: None.

Exit
Conditions:

Discussion:

Purpose:

Arithmetic Register 1 and memory location m * f1 contain the new current item
address.

No item is written by the macro-instruction.

The block count and end-of-reel statements are written on the current reel
which is then rewound with interlock. The file label is written on the next
reel.

m* END R f, does not cause the writing of an item of file f. Thus the item
which is current prior to the execution of m* END R, is not and cannot be
written.

m*END R f, is used, when appropriate, to terminate the current reel of file f
and to write the label on the next reel of file f. The next execution of the
macro-instruction m*ADV f, will cause the current item of file f to be the
first item written on the new reel.

UNIVAC ill SALT
I
i SECTION:

6-B

I *Elo..'D' I
1m ~ "1

FORM

I
I PAGE:

2558
I

File Type: Delivered Output

CONTENT

Communication Method: Arithmetic Register

Entrance
Requirements: None.

Exit
Conditions:

Discussion:

Purpose:

The block count and sentinel for the file are written and the last reel is rewound
according to the specification in parameter PS' of the F I L E statem en t for this file.

m* END f, doe s not cause the writin g of an item of file f. No macro-instruction
involving file f can be executed after m*END f, is executed. m*END f, must be
executed once.

m*END f, is used to terminate file f. Termination includes the writing of con­
trol information (block count and sentinel) and the rewind (optional, see PS'
of F I L E statement) of the last reel of file f.

11. Area Source Macro-Instruction Set - Type Two - Arithmetic Register Communication

Im*ADV f,1 File Type: Internal

FORM CONTENT

Communication Method: Arithmetic Register

En trance
Requirements: None.

Exit
Conditions:

Discussion:

Purpose:

Arithmetic Re gister 1 and memory location m * f 1, con tain the current item
address of the file. .

If the file is a source file for a copied output file or for retained items, the
address of the Area Descriptor word for the current item is in memory location
m * f2,.

m* ADV f, advances the next area into current status.

37

SECTION:

6-B

PAGE:
38

I

up·
2558

UNIVAC m SALT

12. Preselect File Groups

a. Reason for Using the Preselect Statement

-SER3ZZ, provides the facility for a group of two or more input files to be read into
computer memory using a preselection technique. The sequential characteristic of data
is used to anticipate the program's demand for data from various inputs. A group of input
files is eligible for preselection if the items of each file are ordered in the same sequential
direction on equivalent keys.

b. The Constitution of a Preselect Group

Groups of input files which are to be processed in a preselection mode are specified in
the routine calling statement. More than one group may be specified, and each group is
composed of two or more input files. The keys on which the items of each file are ordered
may be composed of one or more fields. There must be corresponding fields in each file,
and the word-relative positions of the fields must be the same for items of all files. How­
ever, the item-relative position of the words containing these fields need not be the same
from file to file. The fields composing a key need not be sequenced in the same order:
ascending and descending fields may be combined. However, all keys in a group of files
being preselected together require identical sequencing. Any field consisting of one to four
whole computer words may be signed. If so, the corresponding field in the key for each file
in the group must be signed.

The example below illustrates a possible relationship of keys:

FILE A I FILE B

(w
2
)-(w

1
) = (w

2
)-(w

1
)

bb = bb
q = q
5 = 5

Only the actual word numbers (w , wJ' and w
2

) may vary. The number of bits bb, the field
sequence q, and the sign 5, mustnbe Identical.

For example, the following KEY, specifications in FILE, statements for files A and Bare
equivalent:

FILE A.

KEY, FROM, 1, THRU, 2" FROM, 3, 10, THRU, 3" WORD, 6"

FILE B.

KEY, FROM, 4, THRU, 5" FROM, 7, 10, THRU, 7" WORD, 9"

I SECTION:

UNIVAC m SALT
I I 6-B

I PAGE: I up-
I 2558
I

c. The Processing of Files of a Preselect Group

The source program establishes the relationship governing the order of processing of the
current items from various files. This relationship determines the sequence in which new
current items must be advanced via m* ADV f, macro-instructions.

For a group of preselectable input files, the sequence of replacement for current items of
the group must be determined by the value relationship among their keys. This relation­
ship must be such that the key of the item to be replaced is either always higher in
value or always lower in value than the keys of all other current items.

Should the keys of any current items be equal in value, the current item being replaced
must belong to that file whose identifier (f) is specified, in the Preselect statement,
prior to the iden tifiers of its equals.

d. Safeguards in the Method Employed

Should the processing of files in a preselect group not always follow the logic described
above, the control system for the files may not operate at optimum speed. However, all
files will continue to be controlled properly. In order to maintain or retain optimum speed,
processing should follow the logic described.

e. -5E R3ZZ, Requirements

Each file of a preselect group mus t be started (m * 5T AR T f,) before any single file of
the group is advanced (m* ADV f,). For all files of the group, no current item may have
its key altered in the curren t item area.

39

UNIVAC ill SALT
I
I up·

2558

SECTION:

7

PAGE:

7. SORTING AND MERGING

The SALT system contains a sort routine which can be used in combination with the Programmer's
own coding for ordering of data files. A merge routine for the consolidation of two or more
sequenced files into a single sequence is also available. Both of these routines are used in
combination with the UNISERVO IlIA control routine described in subsection 6-B •

This manual is being released prior to the completion of the detailed instructions for using the
sort and marge routines. The sorting and merging section of this manual will follow the current
release by approximately one month. When published, it will be forwarded to the holders of the
SAL T Manual (UP 2558). The Programmer's Reference Manual (SODA Sort/Merge, UP 2504)
as updated by Programming Information Exchange Bulletin 27, is suggested for use by the

Programmer during the interim period.

1

UNIVAC m SALT
I UP. 2558

~I' SECTION:
8-A

I PAGE: 1

8. MISCELLANEOUS ROUTINES

A. DIAGNOSTIC ROUTINES

A program must be capable of sharing the computer with other routines at the time of
testing as well as when it is being used to process data. Each individual program's

allocated memory area must be kept safe from infrigement by other programs. Program

testing should, therefore, include verification that each new program will access only

the memory areas assigned to it.

During the testing stages, it is often desirable to obtain a computer output that indicates the
processing path or sequence in which the instructions were executed. A program that can
produce such an output is called a tracing routine.

The execution of the entire program under control of a trace or memory guard routine can
verify that a program meets its environmental restrictions. Thus, the computer performs for
the programmer the task of analyzing each instruction under the varying conditions of
execution.

Since this type of program testing is considered essential for a11 programs, a diagnostic
subroutine has been placed on the Standard Super Library Tape. The diagnostic subroutine
can be called into a source program during assembly. The inclusion of the diagnostic
subroutine during assembly does not in itself impose the use of the routine when the program
becomes operational. The routine may be inactivated after testing has been completed.

1. General Concept

The diagnostic functions operate over a series of instructions in a processing path while
the program is being tested or is operational. When selecting the areas over which the
functions provided by DICON3ZZ, are to operate, the sequence in which the instructions
are performed is the prime consideration, rather than the memory area the instructions
occupy. It must also be recognized that the Executive Routine wi11 be in control of the
computer at the time the program is being executed. The Executive Routine, DICON3ZZ,
and the worker program, will generally participate in the control of the computer, depending
on the functions being performed and the areas specified for diagnostic control.

The three diagnostic functions available to the user programmer are memory guard, trace,
and memory print. Detailed instructions for implementing these functions are covered in a
later section; this section explains the manner in which they operate.

SECTION:
8-A

PAGE:
2

UNIVAC m SALT
I UP-
I 2558

a. Memory Guard

Memory guard analyzes each instruction prior to its execution to determine whether the address
accessed by it, or to which control is to be given, lies within the range of the addresses
assigned to the program. If the address is within the assigned range, the instruction is executed.
If it is not in the assigned range, it is further analyzed and processed according to the following
table:

Condition Action

Other than assigned range accessed (1) Message is typed out.
but contents of memory are not (2) Instruction is executed.
altered nor is control transferred (3) Processing continues.
outside of the assigned range.

Assigned memory range exceeded (1) Message is typed out.
and the contents of memory will be (2) Instruction not executed.
altered or control will be transferred (3) Further processing held up pending
outside of the program. typewriter response.

The memory guard function does not provide an output unless it encounters a probable error
condition.

b. Trace

Trace provides the memory guard function (described above),and also edits detailed in­
formation concerning the hardware conditions at the time of execution. This information is
written on an output tape provided for the exclusive use of the diagnostic routines. The
tape can be later re-edited and printed either in part or in its entirety according to the
specifications furnished to the Diagnostic Edit Run. The address occupied by an instruc­
tion, the contents of the instruction word, the contents of all of the index registers, the
contents of arithmetic registers, and the settings of the indicators are printed out as a
result of this function. The specific format is described in Appendix J.

c. Memory Print

The memory print function provides a "snapshot" of any area of memory assigned to the
program. This function causes the writing of the contents of memory on a consecutive
location basis rather than following a processing path as provided by the trace function.
When a program is terminated through instructions which are executed under the control of
either trace or memory guard functions, a memory print of most of the program's memory
area will be executed. The area printed will start with program relative address zero and
end with the diagnostic subroutine area.

d. Processing Considerations

There are several points at which the use of the diagnostics subroutine must be considered
by the programmer. He must provide coding to call the subroutine into his program at the
time of assembly so that the routine will become an integral part of the assembled program.

When trace or memory print are desired, an additional output servo must be allocated to the
worker program during its execution. This tape must be submitted to a utility program for
further editing before it can be printed by the tape-to-print routine.

UNIVAC ill SALT

e. Rules for Using the Diagnostic Routines.

• Calls on DICON3ZZ, are limited to one per program.

II

up·
, 2558

I

SECTION:

8-A

I PAGE: 3

• The word at the end of a bypass (an area blocked out at the time of call) must neither be
modified by another instruction nor overlaid while the bypass is in effect.

• Ten memory areas can be biocked out of the trace or memory guard functions through
parameter specification when the DICON3ZZ, subroutine is called. These areas can be of
any size, but the maximum number is ten.

• DICON3ZZ, must be placed in a higher m.emory location than the instructions over which
the functions of trace or memory guard are to operate. An attempt to process instructions
stored in a higher order of memory will be treated as violation of the allowable memory
range.

• Macro-instructions controlling input-output functions on the general purpose channels
must be excluded from the diagnostic routines.

• The STRT line must be omitted from the source program (DICON3ZZ, contains one). The
tag of the starting line is given to DICON3ZZ, as a parameter. When DICON3ZZ, is
inactivated, a STRT word can be included in the reassembly.

f. Additional Area for Corrections

It is recommended that additional space be provided in the assembled program for
corrections resulting from the program test. The organization of the program must be
reviewed to determine whether this additional space will be provided in segments
which are always in memory or in each overlay. The segments to be used to provide
the additional space, the loads in which these segments are contained, and the position
that each load will occupy in memory must all be considered. When the position of the
additional areas has been determined, an'y coding lines that will produce words in the
assembled object code program can be used to provide the desired space.

g. Program Areas to be Covered and Excluded

Parameters p 4' through p , of the DICON3ZZ, calling statement are tags which specify
ranges of program instrucrrions which may be skipped by the trace and memory guard
functions. Each pair of tags defines the beginning of an excluded portion and the point at
which the function will resume. A total of ten sets of instructions may be so excluded.

SECTION:

8-A

PAGE:
4

2

I
I Up· 2558

UNIVAC m SALT

The use of these parameters where applicable can increase the speed of the program
execution when it is in a diagnostic mode.

In selecting the portions of the program to be covered by or excluded from the diagnos tic
functions, it is necessary to identify the processing paths over which the diagnostic
functions are to be performed. The specific points at which each function is to start
and stop, and the areas which are to be permanently excluded from the diagnostic
functions, must also be identified. It will be helpful to prepare a worksheet describing
the areas to be covered, and to record the tags naming the source code lines that mark
the boundaries of the selected processing paths. The worksheet will provide information
which can later be used for specifying parameters of the DICON3ZZ, calling statement,

and in combination with the coded it listing output of the SALT assembly, to furnish
information that must be supplied to the OCS run.

2. DICON3ZZ Calling Statement

The subroutine DICON3ZZ, controls the execution of the program at the time the instructions
within the specified areas are being executed. The call on this routine does not in itself
cause any of the functions to be performed. It makes coding available for use by the specific
functions after they have been activated by block and word corrections when the MIT is
prepared.

DICON3ZZ, may be called into a program only once. The coding lines needed in the
source program to call the routine are:

ITEM NO. TAG C FORM CONTENT

Where: line 1 ITEM NO The entry in the item number field may contain four characters

specifying the two higher levels of Dewey decimal. (The two
lower levels are reserved for use by the subroutine coding.)

TAG Tag is any valid permanent tag used as a marker to make the
subroutine coding unique when it has been brought into the
calling program. This entry is to be used in any designation
where m* appears and refers to DICON3ZZ, coding. In the
example, DIAGNOS has been used.

C Any valid entry.

FORM Always SU B R.

I SECTION:

UNIVAC m SALT
, 8-A

I PAGE: 5

CONTENT

2558

DICON3ZZ, is the name given the subroutine when it was
placed on the Standard Library Tape. It must always be
specified.

defines the location in memory of the first segment of the
diagnostic routine coding by specifying its predecessor. If
the predecessor segment is part of the source program, this
parameter is of the form SEGn, where n is the segment number
of the predecessor. If the predecessor is part of a SALT
routine, this parameter is of the form m*SEGn, where m is
the marker used in calling the routine and n is the number of
the last segment in the routine. If more than one predecessor
is needed to define the location of the DICON3ZZ coding,
Pl' is a space. In this case, a SGRT line naming the predecessors
is included elsewhere in the source program.

The DICON3ZZ, coding must be in a higher order of memory than

the instructions over which the trace and memory guard functions
are to operate. An attempt to process instructions in a higher
order of memory will be treated in the manner described above
under the heading, Memory Guard.

is a decimal number in the range of 1-41. This is the external
file designation of the diagnostic output file as assigned in the

SER3 line. (Refer to subsection 9-D-4.)

is the tag naming the line in the program at which processing
is to start. This is the tag that would normally be designated
in the program's STRT line. The normal STRT line is eliminated
from the SOU1'ce program because DICON3ZZ contains it own
ST RT line. When the diagnostic coding is eliminated from the
program, the normal STRT line can be included in the reassembly.

line 2 - ITEM NUMBER and TAG are disregarded.

C is a hyphen, to link this line to the SUBR line.

is a permanent tag that names the first instruction of any area
to be excluded from the trace and memory guard functions (See

note on next page).

is the permanent tag naming the instruction following P 4 at
which the diagnostic functions may be resumed (See note

on next page).

is the permanent tag naming the first line of the nth area to be
excluded from the trace and memory guard functions.

SECTION: I

-PA-G-E-: -:~--lu-p---25-5-8--j UNIVAC ill SALT

Pm is the permanent tag naming the instruction following P
n

at
which the diagnostic functions may be resumed.

Note: Any number of coding lines may be used to supply these parameters to the
subroutine, but they must be linked to the SUBR line by a hyphen in the C field.
A maximum of ten areas may be bypassed by means of these parameters. The
diagnostic function bypasses work areas in the following manner: when the address
of the next instruction to be executed is equal to a parameter specifying the start
of a bypass area, a control is set up to reactivate the function when the end of
that bypass is reached. Control is then released to the program by DICON3ZZ
until the instruction marking the end of the bypass area is encountered. When this
instruction is reached, it becomes the first instruction on which a reactivated
function is performed.

3. Integrating DICON3ZZ Routine with the Source Program

A few SALT Assembly directives must be provided in the source program

to effect the proper integration of the DICON3ZZ program load.

a. Positioning the Load.

The DICON3ZZ program load is identified by the name, m*$NAM1,.

It should not be read in as an overlay. DICON3ZZ should be part of the first load of a
program or a load that is read into memory along with the first load. This is accomplished
by writing a LOAD statement in the source program as follows:

TAG C FORM CONTENT

ANYT AG names a load of the source program whose first segment is 5. The Diagnostics
program load m*$NAM 1, is a successor to the load ANYT AG and will be read into memory
when ANYT AG is read.

b. Positioning Segments.

The first segment of the Diagnostics program load is always m*SEG 1,.

The user may establish a single predecessor to this segment by simply specifying SEGn,
or m*SEGn, as a parameter (p 1) of the subroutine call, where n is the number of the

predecessor segment. The form m*SEGn is used when the predecessor segment belongs to

another subroutine called into the source program. The first segment of the Diagnostics

Routine will be assembled relative to the last line of the specified predecessor. The
diagnostic routine must follow in memory any of the instructions over which it is to
operate.

UNIVAC m SALT I
SECTION:

8-A

I PAGE: up·
2558 I 7

The user may establish more than one predecessor segment by specifying parameter p

as 11,. This in effect defers specification to a SGRT statement that must appear some~
where in the source program.

A line of the SGRT form is illustrated below:

j

C FORM CONTENT \

S ,G 1R1
T m,*,S,E,G,l,. ,SIE,G,n" ,S,E,G,p",. ,. ,., ,(

----1 --
ITEM NUMBER, TAG, and C are disregarded

FORM is always SGRT.

CONTENT m*SEG1 is the tag naming the segment in the subroutine for
which the specification of the preceeding segment
has been deferred to the calling routine, where m
is the marker used in the tag field of the SU B R line.

(In the example, this designation would be

DIAGNOS*SEG 1.)

m*SEG 1, names the first segment of the Diagnostics routine and SEGn, and SEGp,
are its predecessors. In this case m*SEG 1, will be assembled relative to the last
line of the longest of its predecessor segments.

SEGn,
SEGp

is a segment number or series of numbers (with
terminating commas) indicating the segments that
are to immediately precede the first segment of
DleON3ZZ, in memory. If the program contains
overlays, these must be taken into account when
writing this line. The programmer has the option of
indicating the segment which will occupy the highest
order in memory under any possible configuration of
loads. If that specific segment is unknown, he may
specify all of the possible predecessor segments. In

the latter case, the SAL T Assembler will make the
analysis for him.

The last segment of the Diagnostics program load is always m*SEG2.

This segment may be named as the predecessor of a segment of the source program or
another subroutine. If required, segment definition is accomplished by specifying
m*SEG2, in the appropriate SGMT or SGRT line of the source program or parameter in
a successor subroutine.

SECTION:
8-A

PAGE:

8

UNIVAC m SALT
I 2558
:

4. Diagnostic Output Tape Unit

If the trace and memory print functions are to be used, provision must be made for a
UNISERVO IlIA tape unit to be added to the normal output facilities of the program. The
use of this tape unit is restricted to the diagnostic functions, and it will not function
under the direct control of the -SER3ZZ routine. Because of this, a SER3 coding line
must be placed somewhere in the program. If it does not appear, the trace and memory
print functions will produce no tape output.

The SE R3 line has the following format:

j C FORM CONTENT I ,
1

SI EIRI 3 f I ' I WI RI I I TIE I ' I 1 I' I I I I I I I I I I I I)
\. --

Where: item number, tag, and C are not meaningful.

FORM must always be SER3

CONTENT is a decimal number in the range of 1-41. The number selected
is to be reserved for the external designation of this file.

WR IT E, signifies that an output channel is needed.

1, signifies that one tape unit is needed.

UNIVAC ill SALT
SECTION:

9-A

UP.
2558

9. SYSTEM PROCEDURES

A. SOURCE CODE SERVICE

Source Code Service Runs I and II prepare and service the input magnetic tapes for the
Assembly System. Source Code Service Run I is most significant to the Programmer from the
viewpoint of preparation of his original program for assembly.

PAGE:

Figure 9-1 illustrates the procedural flow for preparation of the SAL T Master Instruction Tape.

1. Library File

Source programs in the SALT system are stored and maintained on UNISERVO IliA tape
files called library files. Each library is preceded by a header, which gives the library a
name. The libraries appear on tape in alphabetic order by name, and the routines and
programs within each library are in alphabetic order by label. The lines of each program
remain in the sequence in which they were when originally converted from cards to tape.
The general format of a library file is shown in Fi gure 9-2.

A source program must be written on a library tape before it is assembled. The program is
then copied from this library onto a control tape which, in turn, serves as input to the
assembly process. In general, this control tape is discarded after each assembly; the
source program is retained on the library tape. When the source program is copied on to a
control tape, lines of coding may be changed, added, or deleted as required, and the library
file containing it may be updated.

The copying and updating functions are performed by a service program, Source Code Service
I (SCSI). The primary function of SCSI is to select from a library a source program to be
assembled, correct it as directed, and to prepare a SALT Assembly control tape.

While the library file may be updated at the same time a control tape is being prepared, this
updating function also may be performed independently. A second service program, Source
Code Service II (SCSII), is provided for this purpose. Upon request, both SCSI and SCSII
can produce output tapes listing the programs in a library file. These output tapes can be
printed subsequently by use of the standard tape-to-print program, TP TOP RO 1, provided as
part of the SALT system package.

The SAL T programming package supplied to each user includes a library file. It is called the
Standard Library and contains the input-output, sori, merge, and other system routines. The
routines which it contains are brought into the calling program during the assembly process.
The various roles of the library files in the operating system are indicated in the procedure
chart shown in Figure 9-1.

1

SECTION:

PAGE:

9-A
I
i

2 I UP.
2558

!

TPTOPROl

OCS CONTROL

DECK

CARD·TO·TAPE

SCS I

INDEX

UNIVAC m SALT

CARD·TO·T AP E

ASSEMBLY

UNIVAC III

SYSTEM

Figure 9·7. SAL T System Procedure Chart

TPTOPROl

CODEDIT

LISTING

CARD·TO·TAPE

TPTOPROl

SCS II

INDEX

UNIVAC ill SALT

SECTION:

9-A

up· PAGE:
2558

2. Punched Card Preparation

Card punched from lines of coding written on SAL T coding forms are converted to tape to
become input to the SAL T Assembly System. All input is in the SALT source code format.
The input sequence of punched cards must be the same as that of libraries and routines
as they appear on the library input tape. Cards containing coding for any new routines to
be placed on tape must be read in the sequence in which they are to be written on tapes.
Tape records converted from punched cards by the card-to-tape run serve three separate
functions.

a. Tapes prepared from punched cards are used to control the scope of SCSI. They bring
in commands to direct its processing. These control commands appear at three levels.

(1) Correction commands to adjust lines within a given routine as they are written on
an assem bly control tape.

(2) Routine commands to designate the name of the routine within a given library to be
processed.

(3) Library commands to indicate the specific library on a given tape to be processed.

b. Another use made of tapes prepared from punched cards is that of directing assembly
processing. The assembly directing cards must enter SCSI following a library command
(see a. 3 above). There must be at least one assembly directing control card for each
library to be processed. Up to six assembly cards can be used in each run.

c. A third function of the tapes prepared from punched card input is to supply new routines
to be included on the tapes for both SALT Assembly and updating the library tape.

3

SECTION:

PAGE:

i
9-A

I

I

I U P-
4 2558

UNIVAC m SALT

!

j. ITEM NO. TAG C FORM CONTENT\

\
L,I B,R A,R Y,

L\A BIE L, \

J

L ,I B IR AIR Y I

.. ,A B IE L, I

--

lib-name 1
, , , , I I I , 1 I

prog-na me 1
I 1 I 1 I 1 I I I I

prog-name 3 IT
111!ll~1

lib-name 2
I I I I [I I I j I

prog-name a
I I I I 1 I 1 1 J 1

...... -

I I I I , I I I I j I I I , I , L , I , ,

\ iii , \ I I ! \ \ \ I I \ I \ \ I i 1 (

1

I I

I I

-

Cod ing for prog-name 3, ••• ---_-J

Coding for macro-name 1 ----

Begin new library
I I I I I I I I I I I I I I I I I

I I I 1 11 I I I I I 1 1 I 1 I I

-
Cod 'ng for prog-name a, b, ...
Coding for macro-name a, b, •••

I I

I 1 \)
(

~~:~I:::I::R~ I ::ir~-:;:~:~: II ~ I I : :~: : : : : : : : : : : : : : : : : 'j
Coding for all other libraries

}lL~1 IB R IA R Iy I ~ II r = Library file se~1 ~ o II ~ I I ==== I :: I I L 1.1 I I I I I I ~ I :=J
NOTES

1. Library names appear in alphanumeric order.
2. Within library, program names appear in alphanumeric order.
3. Within library, following all programs, macro-instruction definitions appear in alphanumeric

order by macro-names.

Figure 9-2. Library File - General Format

, SECTION:

UNIVAC ill SALT
I 9-A

J...ABEL

I up- : PAGE:
2558

I

3. Card-to-Tape Conversion

The punched deck is converted to tape by one of two standard (80-column or 90-column)
Card-to-Tape conversion routines provided with the SAL T package. Card decks to be
converted by these routines require the first card to be a header-parameter card, describing
the deck to be converted; the last card must be a sentinel card. Six blank cards must
follow the sentinel card when the last of the deck is in the Card Reader input hopper. The
header-parameter cards for each of the three types of SAL T system input decks have the
formats shown below.

a. SCSI

DATE

SCSl mmddyy 6 ZZZZ 00000000

1 4 5 10 6 41 M - 73 80 --- --
b. SCSII

AABEL
I I

DATE

SCS2 mmddyy 6 llIl 00000000

1 4 5 10 ~6 41 44 73 80 - - .-----' -

The information is always as shown, except for the date field in columns 5-10.

The sentinel card for all decks is the same and has the form:

/

END~INPUT

- -- -1 9

~~----~--~----

5

SECTION:

9-A

PAGE:
6

i
I

i
I UP-

2558

UNIVAC m SALT
,

The functions of SCSI are specified on the source program input tape by a set of control
items. These control items, are written on the standard SALT codi ng form, and are
punched directly from it.

4. SCSI Functions

The functions provided by SCSI fa11 into three categories, according to their use:

• The creation of a new library file from new source program tapes and

the preparation of these programs for assem bly.

• The addition of new source programs to an existing library file and

the preparation for assem bly of one or more programs from this file.

• The preparation of programs from an existing library file for assembly.

In a11 cases, only one program may be selected from any given library to be prepared for assem bly.
The fo11owing paragraphs describe the control items for each category.

a. Creating aNew Library File

The source code lines for new library definition are written as follows:

CARD NO. ITEM NO. TAG C FORM ,
r

I

I I I i H,O L\, I NiPIUiT , i iii i I I 1 I i t

2 LII BIR AIR Y I
library name) I I I I I I I I I I I I I I i

3 I I I I AIS SI E MIB LIY ala t a ,alala lala 1 I I I

LIA BIE L,
,

I I I I I a i a i a la 1 a 1 a I a 1 a I I I I 1\ 4
- I - other source ram codin ro ..

Line 1 always appears as shown, and indicates that a new library file is to be created.

In line 2, the item number entry is fixed. The entry library name in the tag field is a one­
to eight-character alphabetic name assigned to the library being created.

UNIVAC ill SALT
I

I up·
2558

In line 3, the item number field entry is fixed, and indicates that a program is to be
prepared for assembly. The tag field entry 00000000, is the name of this program as
named by the tag field of its initial label line.

I SECTION:

I 9-A
I
! PAGE:

I
7

Line 4 is the label line of the source program, and the source coding lines for the re­
mainder of the program.

Line 5 follows the last line of the final source program and indicates the end of the
control tape.

Several programs may.be included in a library, but only one of these programs can be
prepared for assembly. Lines 1, 2, and 3, of the source program tape appear in the
format, shown above. The initial label line of a given program signals the end of the
preceding program.

If more than one library is to be included in the library file, each library line has the
form described in the preceding paragraphs, but there is only one end-of-library line.

A diagram of this SCSI process is shown below.

SCSI

Figure 9·3. SCSI O;agram fOf Creafing a

New Library File

SECTION:

9-A

PAGE:
8

up· UNIVAC m SALT
2558

b. Adding to an Existing Library File

SCSI generally uses two input tapes, a source program tape and a library file tape from
a previous run with which the source programs are to be combined. The source program
tape items are arranged as follows:

CARD NO. ITEM NO. TAG C .f\

LII BIR AIR YI
library name

I I I I I I I I t I I t j

1

2 I , , , A, S S,E M,B L,Y alalala,a,a ,ala I /

J
3 I I , , LIA BIE LI I alalala/alalala I ,j

....... --- - -

The Library entry illustrated in line 1 either defines the name to be applied to a new
library to be added to the library file, or names a library already existing in the
library file. In either case, SCSI will merge the named source programs in alphabetic
order on its library file output.

The Assembly entry illustrated in line 2 names the program (within the library named
by line 1) which is to be prepared for assembly. This program may be selected from
the source program tape or the previous library file tape. Only one program within
the library may be prepared for assembly.

Line 3 illustrates the Label line required for each source program to be added to the
library named in line 1. Source code lines for the remainder of the program immediately
follow the label line.

Line 4 follows the last of the source program lines and indicates the end of the final
library .

When two or more source programs are to be added to the library they must be read in
alphabetic order by program name (aaaaaaaa).

One source program for each referenced library must be prepared for assembly.

UNIVAC m SALT
I

SECTION:

9-A

I PAGE:

A diagram of this SCSI process is shown below.

r--
I
I
i
I
I
I L __

Figure 9-4. SCSI Diagram for Adding to or Correcting

an Existing Library File

c. Correcting Programs and Assembly from an Existing Library File.

2558

SCSI provides a means for changing programs stored on a library without rerunning the
entire source code card deck to tape. Corrections are applied to both the updated
library file and the corresponding control tape. If one is prepared. This procedure is
similar to that shown for adding programs to an existing library file. In the present
case, the source program tape contains CORR lines instead of label lines to name the
program followed by specific directives to SCSI. The items are arranged on the source
program tape as follows:

CARD NO. ITEM NO. TAG C Ii

library name
I

, , , , L,I B,R A,R Y, , 1 I , , I , ,\

2 A,S S,E M,B L,Y alala,ala lala la
I

I , I , I

3 J 1 1 I C10 RIR I I 1 ala,a ,a la ,a la ,a I -- - - . ---

9

SECTION:

9-A

PAGE:
10

\

(
)

~O. ,
I

Iup- 2558 I
UNIVAC m SALT

CIO

LII

The Library entry on line 1 names the library containing the program to be assembled.

The Assembly entry on line 2 names the program in this library that is to be assembled.

The CORR entries on line 3, 4, and so on, name the programs to be corrected. Following each
CORR line are the lines indicating the actual corrections to be made to the source program
named in the CORR line. The last line of the source program tape is a final end-of-library
line, as shown in line 5.

The CORR line has one additional function. It can direct SCSI to place an edited copy of a
program which is being corrected onto the index file output tape for later printing. This
references the program, as shown below:

ITEM NO. TAG C FORM CONTENT \

(
R,R I I alalalalalala,a I , I P, R, I I NI T1 ,I I I I I I I I I I I I I I I , \

-

A listing of all the programs contained in anyone of the libraries being processed will be
edited and placed on the index file output tape for later printing whenever the designation
INDEX, appears in the content field of its LIBRARY line, as sho.wn below:

ITEM NO. TAG C FORM CONTENT

library name
B,R A,R Y f I I I , I I I I , , IINIDIE, XI' I I I I I I , I I I I I I I I ,

}

1-_ ---

{NO.

I
~ I

I

The following correction commands can be used in SCSI:

1. Reference (RE F R)

RI E

I

-

ITEM NO. TAG C FORM 1

FIR I I I I ,t~g I , I 1 1 1 I I I ~
~

I I I I I , I I I I I I , I I I ,\

- J

This line names a permanent tag which is to be used as a reference point in the program
being corrected. It must name the first line to be corrected, or must be encountered in the
program before the first line to be corrected.

\).

1
(

NO.

t
I

or

\i I
I

UNIVAC ill SALT up-
2558

I SECTION:
9-A

11

2. Replace (REPL)

RIE

ITEM NO. TAG C FORM CONTENT\
I

PIL I I , , , I I 1 I I 1 J n1" j l I I JIll I I I I J I I J L 1 1

any source-code line I

, , I I , I I I , , , , I \

I ::::_' _--.'~

n is a decimal number.

The source code line following the REPL line will be substituted for the nth line following
the line named by the tag entry in the most recent REFR line.

3. Erase (ERAS)

ITEM NO. TAG C FORM CONTENT\
I

EIR AIS I I I 1 1 I I 1 I I 1 I n I' I m, I I I I , I I ILl I I j I I I I I ,I

EIR A1S I I I I I I I I I 1 1 J n"IE,NID"1 , , I I I I I , I I I 1 I I I)

~-- -- -

~O.

}I PIT

\1 I

(
1

- - - -
n is a decimal number.

In both lines, the n + 1 line following the line named by the tag entry in the most recent
REF R line is erased. In the first line of the example m, lines are erased. In the second line
shown, all lines in the program which follow line n, will be erased.

4. Patch (PTCH)

ITEM NO. TAG C FORM CONTENT\

CIH I I I I I I I I I I I I nl, Iml ,I I I I I i I I I I I I I I I I I " any source-code line~ t
I I I I I I I I I I I 1 1 I J I I I , 1 I I 1 I ~Jm IIi~e~ o~ , 1 I 11 , ,

ny source-code line --...., source code
1 I , , I

L,.---~ ---1 -----l./' --

SECTION:

9-A

PAGE:
12 I UP- 2558 I

UNIVAC m SALT

n, is a decimal number indicating a number of lines beyond a reference point.

m, is a decimal number indicating the number of source code lines following the PTCH
line that are to be inserted in to the program following line n.

As many correction commands as are desired may be included for a given source program.
Successive CORR lines follow the same sequence as the library tags they reference. The
COR R lines may be used to reference any number of the programs appearing in the library.
Lines 1 through 4 (as shown in the general form) are required for each successive library
referenced. Programs are to be referenced in alphabetic order by program name within a
library; libraries are referenced in alphabetic sequence by library name.

SCSI also provides the facility for deleting programs from an existing library. A deletion
line is included on the input source program tape. This line is written as illustrated below:

The program identified by aaaaaaaa in the tag field of its initial label line will not be
copied to the updated library file. This line must be preceded by a LIBRARY line referencing
the library containing the program. The DELE line must appear -on the source code tape in
combination with other lines in alphabetic order by program name.

A REPL, ERAS, or PTCH line may contain an additional designation in its content field.
This designation specifies, in parenthesis, the content field of the source program line n
being referenced. When this designation is used, SCSI compares the actual content of line it

with the specified content. Any discrepancies will be recorded on the index file output (if
such has been specified) for later programmer reference; the correction will not be made.

The following lines illustrate such coding:

UNIVAC ill SALT
I

i SECTION:
, 9-A

I uP. I PAGE:
2558

S. SCSII Functions

SCSII provides for the maintenance of library files independently of the assembly process.
As shown in Figure 9-1, SCSII can accept one to three separate library files as inputs.
These files are corrected and consolidated, resulting in a single updated library file. An
edited index output tape file can be produced, which subsequently will be printed by use
of the standard Tape-to-Printer routine. SCSII is directed in its activities by a control
tape. The control commands are written on the SAL T coding form, and keypunched. The
information from the resulting cards is placed on the control tape by the standard Card-to­
Tape program. The format of the input control tape is in, essentially, the same format as
that of source program file of SCSI. The following paragraphs describe the control commands.

a. Servo Summary Order (SE RVOSUM)

The first item of the control tape is a servo summary order which lists the UNISERVO
IlIA tape unit requirements for this running of SCSII. This line has the format:

ITEM NO. TAG C FORM CONTENT

An entry in the content field is required for each tape unit to be assigned to the run. 5

is a decimal number, 1 through 39. A separate number must be used to reference each
tape unit. c is a channel designator. It is R if the unit will be used only for reading, W
if the unit will be used only for writing, and RW if the unit will be used for both reading
and writing.

b. Servo Command (SE RS)

This command must immediately follow the servo summary order. It is used to desig­
nate two of the tape units specified in the SERVOSUM line as the input and output
units for the commands to follow. These assignments remain in effect until a new
servo command order is given. (Auxiliary input tape units may be named by certain

commands, described below. However, these commands are limited in function to the
copying of particular libraries or programs onto the output tape unit named in this line.
Corrections may not be applied to programs coming from an input tape unit other than
the unit specified as the current input tape unit by a SERS line.)This line has the form:

Ilillll~'
c~

Designation 51 indicates the tape unit to be used for input. This tape unit must be one
which was specified as a read (R) or read-and-write (RW) unit by the SE RVOSUM line.
Designation 52 indicates the tape unit to be used for output. This tape unit must be
one which was specified as a write(W) or read-and-write(RW)by the SERVOstJ-M line.

c. Library Commands

Four library commands are available which provide maintenance functions that operate
on the library as a unit. Any of these may follow a SERS line.

13

SECTION:

9-A

PAGE: UP-

14

UNIVAC m SALT
2558

EDIT Command

All libraries on the input tape up to, but not including, the library specified, are copied
onto the output tape. If corrections are to be made to particular programs, the library
containing these programs must be named in an EDIT line prior to any program correction
commands (described below). Any other library command may also follow this command.

OMIT Command

All libraries on the input tape up to, bu t not including, the library specified, are copied
onto the output tape. The specified library is read but is not copied. Any library com­
mand may follow this line.

AND Command

All libraries on the input tape whose names are alphabetically less than the name spec­
ified are copied onto the output tape. The library specified then is copied from the
auxiliary input tape unit specified by s onto the output tape. The auxiliary tape unit
must be one which was specified as a read (R) or read-and-write (RW) unit by the
SERVOSUM line. Any library command may follow.

New Library Command

~O.

)1 A,D

L

I SECTION:

UNIVAC ill SALT I 9-A

2558
I PAGE:

I
up-

A new library, which has been included on the control tape, is added to the output file.
All libraries on the input tape whose names are alphabetically less than the name
specified are copied onto the output tape. The library specified is then copied from the
control tape onto the output tape. Copying from the control tape is terminated by the
next control command.

In each of the library commands except OMIT, the designation INDEX in the content
field will cause an index of all the program names in the specified library to be
placed on the index file.

When a SERScommand follows any library command, the remainder of the current input
tape is copied onto the output tape. When this is accomplished, the new tape unit
assignments specified by the SERS line become effective.

d. Program Commands

Four program commands are available which provide maintenance functions that operate
at the program level. Any of these may follow an EDIT command that has named the
library containing the program to be affected.

CO R R Command

All programs in this library up to, but not including, the program specified are copied
onto the output tape. Correction commands to be applied to the program following the
CORR line.

ADD Command

ITEM NO. TAG C FORM CONTENT\

D,s

-
program name library name, , old program name , I J I I I I , I I I I I I I I I I I I I i I I I I I I I I I ,

-- ---
All programs in this library whose names are alphabetically less than the program name
specified in the tag field are copied from the input tape onto the output tape. The spec­
ified program then is copied from the auxiliary input tape unit specified by 5 onto the
output tape. The auxiliary tape unit must be one which was specified as a read(R}or
read-and-write(RW)unit by the SERVOSUM line. The library name specified in the con­
tent field of this line is the name of the library containing the program to be copied.

J
I

I

15

SECTION:
9-A

PAGE: up·
16

UNIVAC m SALT
2558

The old program name shown in the content field is an optional designation to be used
when the name of the program is to be changed on the output file. The extra comma
preceding this designation is necessary because of the PRINT option (which also may
be designated by this line). Any library or program command may follow this line.

DEL ETE Command

~o. ITEM NO. TAG C F~
) \

program name
JI DIE LIE I I I I I I I I I 1 1
I I.- --------.....-- -

All programs in this library up to, but not including the program specified are copied
onto the output tape. The specified program is read but is not copied. Any library· or
program command may follow this line.

New Program Command

C F

A new program, which has been included on the control tape, is added to the output
file. All programs on the input tape whose names are alphabetically less than the name
specified are copied onto the output tape. The specified program then is copied from
the control tape onto the output tape. Copying from the control tape is terminated by
the presence of another control command.

In the CORR and ADD commands, the designation PRINT, in the content field will
cause a copy of the program named in the line to be placed on the index tape. In an
ADD command, the PRINT, designation, if used, is the second designation in the con­
tent field.

When a SE RS or library command follows any program command, the remainder of the
current library is copied onto the output tape before the new command is acted upon.

e. Correction Commands

These commands operate on a program named in the CO R R line. As many correction
commands as are required may be included for anyone program. The functions avail­
able, REFR, REPL, ERAS, and PTCH, are identical to those provided by SCSI. These
functions have been described previously in this section under subsection A-4-c.

UNIVAC ill SALT

!

up·
, 2558

11· SECTION:
9-A

I PAGE: 17

When a S E RS, library, or program command follows any correction command, the re­
mainder of the current program is copied onto the output tape before the new command
is acted upon.

f. Sentinel Command

The final line of any control tape is a sentinel command of the form:

This line has the same effect as a SE RS command in terms of the completion of the
copying currently in process. In addition, the control tape is rewound and SCSII is
terminated.

UNIVAC ill SALT
SECTION:

9-B

up· . PAGE:
2558

B. ASSEMBLY

The assembly process converts programs from source code to object code (see Figure 9-1).
SCSI produces a control tape containing the source programs to be assembled. This tape and
the standard library file are the inputs to the assembly process. Programs for which
ASSEMBL Y lines were prepared as input to SCSI will be assembled in the order in which their
ASSEMBL Y lines were submitted. The assembly process produces two output files: an object
code file and a ccdedit file.

The object code output tape contains the assembled porgrams ina form acceptable for further
processing by the Object Code Service run. Basically, object code is a program relative, binary
representation of the final program, with a line of object code for every word that will appear
in the final absolute program.

The codedit output is an edited version of the information appearing in the object code file.
lt is ready for printing by the standard Tape-to-Printer Program.

The printed copy of this file, called the codedit listing, is needed by the programmer to direct
the processing of the object code file by Object Code Service. It provides the programmer
with a cross reference between the source and object code of a program. A sample codedit
listing and a description of the entries it contains is given in Appendix I. The listing provides
the following information.

• The source code as originally punched from the coding form.

• For each line of source code, two represen tations of the resulting object code, one in
octal and one in a mixed-number base form, which facilitates reading of the coding.

• A form key used to decode the characters shown in the mixed-base form of the line. (A
legend describing each form key is given in Appendix I.)

• The program relative address of each object code word in octal.

• A modification key indicating the type of modification that will be made to the obj ect code
word in its transformation to absolute code. (A legend describing each modification key is
given in Appendix I.)

• The block-and-word location of each object program word in the object code file.

• An error key indicating error conditions encountered during the assembly process which
were associated with the line. (A legend rlescribing each error key is given in Appendix
I. This legend is also printed as part of the codedit for each assembled program.)

Every fifth line of the codedit is a form-key summary line, indicating the form keys
applicable to the fOUf preceding lines. The keys are written on the object code output tape,
but they do not appear in memory when the program is being executed.

The codedit listing contains three tables which may be used for debugging reference: an
alphabetic index of the permanent tags and local reference points used in the program, and
a list of the octal addresses containing references to these lines; an index of the mapping
applied to each segment; and, an index of the markers used in the program.

1

I SECTION:

I 9-C UNIVAC ill SALT
up· I PAGE:

2558

C. OBJECT CODE SERVICE

The object code produced by the assembly system requires further processing before the
program is ready for execution. Part of this processing is performed by a SALT system service
program called the Object Code Service (OCS), which places the object code of a program into
an instruction tape format. This tape is used as input to the Executive Routine which finally
reduces the instructions to absolute machine code. In addition to producing an instruction tape,
OCS also provides functions which may be used for the generai maintenance of object programs.

Object programs in the SAL T system are stored and maintained on tape files called Master
Reference Files (MRF). The format of an MRF file is essentially the same as that of the object
code file produced by the assembly process. The only difference is that programs are arranged
on the MRF in alphanumeric order by program identification. Object programs produced by the
assembly process are filed on an MRF by OCS. Programs may be altered during the OCS run
by certain control tape inputs described below.

CARD· TO· TAP E

Figure 9·5. Ob;ect Code Service Run

1

SECTION:
9-C

PAGE:
2

LABEL

OOlC

I Up· 2558 I
UNIVAC m SALT

The instruction tape to be used by the Executive Routine to load the program is produced by
oes. It is called the Master Instruction Tape (MIT), and contains the series of programs that
are to be executed in the current cycle. In general, the programs which make up an MIT are
to be serially executed, that is, each program generally names another program on this MIT as
a successor until the final program is executed. It is not necessary that each program specify
a successor. It is possible for a run to be succeded by a program on a different MIT. The
naming of successor programs is normally accomplished during the operation of OCS.

Object programs can be accepted as input to OCS from two input sources: an object code file
and an MRF. (Refer to Figure 9-5). A control file resulting from input cards prepared by the
programmer specifies the particular OCS functions to be performed. These specifications
in vol ve the selection and preparation of the object code programs to be included on the MIT,
and maintenance of the MRF. The original cards are converted to tape by means of the
standard card-to-tape program.

The cards must be ordered alphanumerically by the ID's of the programs being referenced
before they are written on tape. A header card and a series of parameter cards must precede
the decks of cards referencing individual programs. Each group of cards pertaining to a
particular program is followed by a program sentinel card. The last card of the entire deck
must be a sentinel card. The following paragraphs describe the functions and formats of OCS
control cards.

OCS - Header Parameter Card for Card-to-Tape Conversion

DATE

nmddyy 4 600160 zn:z. 00000000

1 4 5 10 16 3l., 40 41 44 73 80
.................. - -........... ~ -

I SECTION:

UNIVAC ill SALT
I 9-C

OCS Header Card

HEADER IN OUTI

I I
I mmddYYI
I I
I I
I I
I I

129 34
1

2558

This card is the first card of the entire DCS control deck. It follows the header parameter
card required for the card-to-tape conversion.

Columns 1 through 11 are fixed.

Column 12 5, contains the number, 0 through 9, of the tape unit on which the
resultant MIT is to be mounted. This is an absolute assignment.

Columns 21 and 22 describe the input configuration for this DCS run.

Column 21 must contain an M.

Column 22 a, contains a D if an object code file is used as input; it must be
zero if the object code file is not used.

Column 23 must always be zero.

I

I PAGE:

I

Column 24 0, describes the output configuration for this DCS run. It is 1, if only
an MRF is to be produced; 2, if only an MIT is to be produced; or 3,
if both an MRF and an MIT are to be produced.

Columns 29 through 34 give the date to be applied to the label blocks of the output files in
the form month (mm), day (dd), and year (yy).

All other columns of the DCS header card are left blank.

1. DCS Parameter Card

A DATE form line is initially prepared with a four-character alphanumeric symbol in its
content field. This symbol may be replaced with a new value each time the program is
placed on an MIT. Fifty DATE symbols can be replaced during a single OCS run from a

table in memory. This table of fifty values has been placed in the DCS program for the
purpose of replacing infermation fabricated by the original DATE coding iines. The
alphanumeric data resulting from the DATE lines used in any of the programs that are
to go on an MIT are compared to this table during the DCS run. A new value is written on
tiLe Master Instruction Tapereplacin_g the original DATEline data if so specified by the
table. The contents of this table may be changed when DCS itself is placed on a Master
Instruction Tape.

3

SECTION:
9-C

PAGE:
4

u P-
UNIVAC m SALT

2558

The OCS parameter cards can be used to supplement the table providing values for DA T E
symbols that cannot be included in it. There may be a maximum of 25 cards in any single
OCS control deck. Each card can define two equivalences, as shown below.

SYMBOL

~---~ xxxx

2829 3

~ 1 REPLACE­
MENT

D G VALUE
EN

m s 10000
dddddd
00000000

3536 37 44 45

same as col umns

29-44 for next

equivalence

Columns 29 through 32 contain the original symbol (xxxx) as it appears in the source code
DATE-form line.

Column 35 specifies the mode (m) of the replacement value. It contains an A,
if the replacement is alphanumeric; 0, if the replacement value is
decimal; or 8, if the replacement value is binary.

Column 36 specifies the sign (5) of the replacement value. It contains a space,
if the replacement value is positive, or N, if the replacem en t value
is negative.

Columns 37 through 44 contain the replacement value.

If the replacement value is alphanumeric, Cols. 37-44 contain four
alphanumeric characters and four spaces (aaaa~~~~).

If the replacement value is decimal, Cols. 37-44 contain six decimal
digits and two spaces (dddddd~~).

If the replacement value is binary, Cols. 37-44 contain eight octal
digits (00000000).

Columns 45 through 60 are arranged in a like manner, and describe the next symbol and its
replacement value.

2. DCS Program Call Card

A program call card is required for each program that is to be processed by DCS. It has
the form.

! SECTION:

UNIVAC m SALT
I 9-C

2558
I PAGE,

PROGRAM 10 I/O SUCCESSOR
PROGRAM

I

aaaaaaaaOOOO aaaaaaaaOOOOI

Columns 1 through 12

Column 21

Column 22

Columns 23 and 24

I

21 411

identify the program being called. The designation aaaaaaaa is the
name of the program, as defined in the tag field of its initial label
line.

specifies the input source of the program, It contains M, if the
program is to be taken from the MRF; or D, if the program is to be
taken from object code file.

specifies the output destination for this program. It contains 1, if
the program is to go only to the object code file; 2, if the program
is to go only to the MIT; 3, if the program is to go to both the object
code file and the MIT; and zero, if the program is not to be placed
on an output file, that is, if the program is to be deleted from the
MRF.

are usually zero. They are used if a run from the object code file is
to be substituted for a run on the MRF with the same program

identification. Columns 21 through 24 would in such a case be MoDo,
where 0 is 1, 2, or 3 as appropriate.

Columns 29 through 40 identify the successor program that is to be chained to this program,
where aaaaaaaa is the name of the successor program as defined by
its initial label line. The entire successor program field, columns 29
through 40, contains zeros if no successor program is to be named.
If the successor program is defined within the program and it is desired
to leave it unchanged, columns 29 through 40 should be spaces.

A11 other columns of the card are blank.

5

SECTION:
9-C

PAGE:
6

uP· UNIVAC m SALT
2558

3. OCS Correction Card

Any program going to either OCS output file may be corrected using this card. Furthermore,
when a program has been designated as going to both outputs, corrections to the program
may be applied to both outputs or restricted to one output. Object code corrections
(changes) are specified in terms of block-and-word locations in the object code file or the
MRF. The codedit listing furnishes the location of the words to be corrected. Corrections
for one to three consecuti ve words may be placed on a single card. The card format is
shown below.

PROGRAM 10 IBLOCK WORD I/O TYPE CONTENT TYPE CONTENT TYPE CONTENT

aaaaaaaaOOOO n~ms aaaaMrul ~s
ddddddM
00000000

~s

Columns 1 through 12 identify the program being corrected, where aaaaaaaa is the name of
the program.

Columns 13 through 20 contain the block-and-word location of the line (s) to be corrected,
where bbbb is the block number, 0000 through 9998, and wwww is
the word number, 0001 through 0060. (Words 0 and 61 are data
descriptor words.)

Column 21 specifies the input source of the program to be corrected. It contains
M, if the program is from the MRF; or 0, if the program is from object
code file.

Column 22 specifies the output destination of the corrections given on this
correction card. It contains 1, if the correction is to apply only to
the MRF; 2, if the correction is to apply only to the MIT; or 3, if the
correction is to apply to both outputs.

Columns 25 through 28 give the type of correction that is to be made, where n designates
the number of words, 1 through 3, being corrected by this card. The
designation m specifies the mode of the first correction word. It is
A, if the word is alphanumeric; 0, if the word is decimal; or 8, if
the word is bi nary. The designation 5 specifies the sign of the
first correction word. It is a space, if the word is positive, or N, if
the word is negative.

Columns 29 through 36 contain the content of the first correction word, justified left. If the
word is alphanumeric,

UNIVAC ill SALT

SECTION:

9-C

uP.
2558

contain four alphanumeric characters (aaaa), and Cols. 33-36
contain spaces.

If the word is decimal, Cols. 29-34 contain six decimal digits,
and Cols. 35-36 contain spaces.

If the word is binary, Cols. 29-36 contain eight octal digits.

Columns 39, 40 and 41 through 48

PAGE:

contain the mode, sign, and content of the second correction word.

Columns 51, 52 and 53 through 60
contain the corresponding information for the third correction word.

The format illustrated below may be used when the correction words on a card all have the
same mode and sign. (Columns 1 through 24 are as shown above.)

CONTENT

a---------o
d-----------d
0-------------0

In this case, the en tire content of the num ber of words specified by n is placed continuously
on the card beginning in column 29. Column 26 contains the symbol C to indicate this
continuous mode.

When both outputs are designated in continuous mode corrections, the form key words on the
MRF will be ignored.

4. DCS Program Sentinel Card

A program sentinel card may be included in the control deck for each program being operated
on by a single DCS run. The format of this card is shown below.

PROGRAM 10

aaaaaaaaOOOO

CARD
CruNT

9999 ecce

7

SECTION:

9-C

PAG E:
8

I
I

i up. UNIVAC m SALT
2558

Columns 1 through 12 identify the program by giving its name (aaaaaaaa).

Columns 13 through 16 contain 9999, indicating that this is a sentinel card.

Columns 17 through 20 contain the card count, cccc, which is the total number of cards
submitted for the program, including the program sentinel card. All
other columns are blank.

5. OCS Sentinel Card

The next to the last card of the entire OCS deck is a sentinel card of the form shown
below.

SENTINEL

ENDD.OCSD.RUNO

This card is followed by the card-to-tape conversion sentinel card which, in turn is followed
by six blank cards.

UNIVAC ill SALT
2558

D. ACTIVATING DIAGNOSTIC FUNCTIONS

Programs that are to be tested with the diagnostic functions are assembled in combination
with the diagnostic subroutine DICON3ZZ,. The actual implementation of the diagnostic
functions occurs during the OCS run at the time the program is placed on an MIT.

An MIT containing the utility run programs, as well as the worker programs to be tested,
must be prepared by object code service run prior to the time of the test.

There are, therefore, two con~iderations to be taken into account at the time of preparartion
of control cards for object code service run .

• The preparation of the control cards needed to implement the diagnostic functions .

• The preparation of control cards to instruct OCS run to copy the required utility routines
to the MIT, in order that they may ultimately produce the trace or memory print listing.

1. Rules for Activating the Diagnostic Functions

I
SECTION:

9-D

I PAGE: 1

a. A diagnostic function cannot be started on an ins truction word which is to be modified
by either the Executive Routine or the program itself. (The original instruction word
will have been moved to another location when the modification occurs.)

b. Tracing or memory guard functions must always start and end with instruction words.

c. Instructions which access the words resulting from INOP or OV E R coding lines may
not be included in a trace or memory guard function.

d. The trace and memory print functions require the designation of an output UNISERVO
IlIA tape unit. When these functions are requested and no servo is available, the
printing function will be bypassed. (Trace will be changed to memory guard.) The use
of this servo is restricted to the trace and memory print functions.

e. A maximum of twenty diagnostic functions can be specified at anyone time. These
functions can cover any size area, but the num ber is limited to twenty.

f. Functions must not be overlapped, i.e., if it is decided that a memory print is needed
while trace or memory guard are operating, the trace or memory guard must be terminated
for at least one instruction, in order that memory print function can be inserted.

g. When a diagnostic output servo is assigned, the coding to produce a jettison of the
program should be included in a trace or memory guard function. This is necessary in
order to get a terminal print of memory and to institute end-of-tape housekeeping for the
diagnostic output. If the program is jettisoned without the trace or memory guard
covering the jettison point, the end-af-tape sentinel will be missing from the output tape
and it will not be rewound. The missing sentinel may cause a runaway tape if an attempt
is made to process it for printout.

h. WAf T instructions must be excluded from trace Gf memory guard functions.

SECTION:
9-D

PAGE:
2 I Up· 2558

UNIVAC m SALT

2. OCS Control Card Preparation

A codedit list from an assembly of the program must be available as a source for data to
prepare the function implementing inputs. The choice of functions, and the areas over which
they will operate, can be varied on a test-to-test basis by changing the OCS control deck.
Three cards must be included in the OCS control deck for each area of the program over
which a diagnostic function is to operate. These are standard OCS correction cards which
form a diagnostic function packet. They direct OCS to apply certain block and word
corrections to the program and to the DICON3ZZ, coding. The first card applies to the
program coding and will cause a transfer of control to the DICON3ZZ, coding. It is called
a function card because the address to which control will be transferred determines the
specific diagnostic function to be performed. The next two cards apply to an area wi thin
the object code produced by DICON3ZZ, and supply parameters required by the diagnostic

functions. These cards are described in this section under the heading of packet cards
(1 and 2).

BLOCK FIRST WORD SECOND WORD THIRD WORD
CARD PROGRAM 10 AND I/O
TYPE WORD NPMS INSTRUCTION NPMS INSTRUCTION NPMS INSTRUCTION

1 1213 1617 2021 24D5 2829 I 3637 4041 4849 5253

I
I

FUNCTION I
CARD 00000 o 0 2 tll~ 1l'\B N 0034P05

I
PACKET I
CARD 1 00000 o 0 21'\ 1'\ 31'\B 1'\ 000 I I'\I'\B I'\I'\BI'\ I

I

PACKET
I
I

CARD 2 0000 0 o 0 21'\1'\ I'\B~ I 1'\1'\

I
I
I

Figure 9-6. Format of OCS Cards for Activating Diagnostics

a. Function Card

This card specifies the program word at which a diagnostic function is to begin operating
and the particular function to be performed. The program word (which must be an instruc­
tion) is replaced by another instruction which will transfer control to the diagnostic
coding to start the desired function. The format of the function card is shown in Figure
9-6. It should be filled out as indicated on the following page.

60

I SECTION:

UNIVAC ill SALT
, 9-D
I

PROGRAM 10
(Columns 1 - 12)

BLOCK AND WORD
(Columns 13 - 20)

1-0
(Columns 21 - 24)

NPMS (FIRST WORD)
(Columns 25 - 28)

INSTRUCTION
(Columns 29 - 36)

b. Packet Cards

! UP-

I

2558 I PAGE. 3

Enter the program name. The exact characters can be found in the
heading of each coded it page.

Locate on the codedit listing the object code for the instruction
at which the function is to start. (If the line is tagged, the tagedit
section of the codedit will indicate the address at which it may
be found. The column headed OCTAL indicates the address.
En ter zero plus three digits for the block and two zeros plus two
digits for the word.

Column 21 designates the input file from which OCS is to take
the program. Enter M, when the program is on the MRF, or 0,
when the program is on a SAL T assembly output file.

Column 22 indicates the output destination of the program. Enter
2, specifying the MIT.

Columns 23-24 are to be left blank.

Enter l~BN.

Enter 0034205 in columns 29-35.

Column 36 specifies the diagnostic function to be performed.
Enter: 3 for trace,

4 for memory print, or
5 for memory guard.

Columns 37-80 are to be left blank.

These cards, contain six consecutive block and word corrections. They apply to six words
of a table area in the (DICON3ZZ) coding. The cards furnish data describing to the sub­
routine the area and conditions over which the diagnostic function is to operate .

• Packet Card 1

The first packet card used to establish a diagnostic function should be filled out as
follows:

SECTION:
9-D

PAG E:
4

, U P-
2558

PROGRAM 10
(Columns 1 - 12)

BLOCK AND WORD
(Columns 13 - 20)

1-0
(Columns 21 - 24)

N PMS (FIRST WORD)
(Columns 25 - 28)

INSTRUCTION
(Columns 29 - 36)

NPMS (SECOND WORD)
(Columns 37 - 40)

INSTRUCTION
(Columns 41 - 48)

NPMS (THIRD WORD)
(Columns 49 - 52)

UNIVAC m SALT

Enter the program name as it has been printed in the heading of
each codedit page.

Obtain the addres s for the tag PKAR EA from the tagedit list of the
codedit. This gives the starting address for the six-word area to be
used for the first diagnostic fonction. Locate the object code at that

address and enter zero plus three digits for the block and two
zeros plus two digits for the word. The addresses of the areas
for the 19 possible succeeding functions will be found in the
tagedit section under the names BEGN02 through BEGN20. The
block and word locations of these areas can then be found in
the object code section of the listing at the address gi ven.

Column 21 designates the input file from which OCS is to take
the program. Enter M, when the program is on the MRF, or 0,
when the program is on a SAL T assembly output file.

Column 22 indicates the output destination of the program. Enter
2. specifying the MIT.

Columns' 23-24 are to be left blank.

Enter 3~B~.

Columns 29-31 - Enter zeroes.

Columns 32-36 enter the five-digit octal program relative
address of the instruction at which the function is to start. (See
the codedit column headed (OCTAL.)

Columns 37-39 enter ~~B.
Column 40 is N if the instruction to which it applies contains
lA, or FS,.
~ if lA, or FS, are not used.

Enter the octal representation of the instruction at which this
function is to begin. The column headed OCTAL WD in the
object code side of the codedit contains the data to be entered.
(This is the ins truction corresponding to the block and word
entry in columns 13-20 of the function card.)

Enter ~~B~.

UNIVAC ill SALT

SECTION:

9-D

INSTRUCTION
(Columns 53 - 60)

• Packet Card 2

up·
2558

Columns 53-55 - Enter zeroes.

Columns 56-60 enter five octal digits specifying the address
of the last instruction to be included in this function. This in­
formation will be determined by consulting the column headed
OCTAL in the object code section of the coded it listing .

PAGE:

The second packet card for a diagnostic function should be filled out as follows:

PROGRAM 10
(Columns 1 - 12)

BLOCK AND WORD
(Columns 13 - 20)

1·0
(Columns 21 - 24)

NPMS (FIRST WORD)
(Columns 25 - 28)

En ter the program name as it has been printed in the heading
of each codedit page.

The appropriate block and word designation will be found three
words down the list from the corresponding Table Card 1. The
key words are not to be included in the count. (Key words have
no entry in the OCTAL WD column.) Enter zero plus three
digits for the block and two zeroes plus two digits for the word.

Column 21 designates the input file from which OCS is to take
the program. Enter M, when the program is on the MRF, or 0,
when the program is on a SAL T assembly output file.

Column 22 indicates the output destination of the program. Enter
2, specifying the MIT.

Columns 23-24 are left blank.

Enter 2~B~ if the function is trace or memory guard.

Enter 3~B~ if the function is memory print.

NOTE: A function is conditional when its performance is contingent on a prescribed condi­
tion existing in computer memory at the time control is given to DICOH3ZZ, . Words
4 and 5 of the six-word area set the parameters for this action. Packet card 2
specifi es the necessary information.

INSTRUCTION
(Columns 29 - 36)

En ter eigh t zeroes when the function is to be performed
uncondi tionally .

When the function is to be performed on a conditional basis, a
word stored in the program at address (A) will be compared with
a value (B) contained in the six-word diagnostics function area.
In columns 29=31 enter.

GR~ if the function is to start when (A) > B.
LE~ if the function is to start when (A) < B.
EQ~ if the function is to start when (A) = B.

5

SECTION:

9-D

PAGE: :UP-
UNIVAC m SALT

6 2558

NPMS (SECOND WORD)
(Columns 37 - 40)

INSTRUCTION
(Columns 41 - 48)

NPMS (THIRD WORD)
(Columns 49 - 52)

INSTRUCTION
(Columns 53 - 60)

Enter the five octal digits of the address of A explained above
in columns 32-36.

En ter ~~ B~ when the function is to be performed unconditionally.

When the function is to be performed conditionally:

Columns 37 and 38 contain spaces.
Column 39 specifies the mode of the test value B; enter

A for alphanumeric
o for decimal
B for octal

Column 40 specifies the sign of the test value; enter

N for negative
~ for positive

Enter eigh t zeroes when the function is to be performed
unconditionally.

Enter the test value B when the function is to be performed condi­
tionally. Enter the alphanum eric, decimal, 6r octal value as
specified by column 39. If less than a full word is entered, it
will be justified left in the resulting computer word.

Leave blank if the function is trace or memory guard.

Enter ~~B~ if the function is memory print.

Leave blank if the function is trace or memory guard.

If the function is memory print, enter three zeroes, followed by
the five octal digits specifying the memory location of the first
word to be printed. The printing occurs on a consecutive
location basis, rather than proceeding along a processing path.
The information for this entry can be obtained from the object
code side of the codedit lis ting.

3. Processing Diagnostic Output Tapes

The output tape created by the trace and memory print functions must be submitted to a
diagnostic edit program for further editing before it can be printed by the standard
tape-to-print routine. An MIT containing programs to be tested with the diagnostic
function should, therefore, contain the diagnostic edit and tape-to-print routines, as well
as the programs to be tested. The formats of the diagnostic output tape and the edited
printer output are explained in Appendix].

SECTION:

UNIVAC ill SALT up- PAGE:
2558

E. DATA TAPE SERVICE (THE OMNIFLEX* III ROUTINE)

The OMNIFL EX III routine is a service routine intended to provide the user wi th the means of
creating, maintaining, and sampling data files recorded on UNISERVO IlIA Tape Units in
s tanda rd forma t.

The OMNIFLEX routine instructions, or commands, are prepared on the SAL T coding form. The
commands are then keypunched and converted to a UNISERVO IlIA tape (the OMNIFLEX
routine control tape), by the standard card-to-tape routine. All commands to the OMNIFLEX
routine therefore, are submitted to the routine on a UNISERVO IlIA tape. A record of the
OMNIFLEX routine activity is written on the OMNIFLEX record tape. Additional tape unit require­
ments are specified in commands prepared by the user.

Files processed by the OMNIFLEX routine must conform to the UNIVAC III data tape conventions
as described in Appendix F. The OMNIFLEX routine will first verify the label of an input file,
and then process data blocks, excepting those blocks bracketed by bypass sentinels, until an
end-of-reel sentinel or end-of-file sentinel is detected.

No file processed by the OMNIFLEX routine may be more than one reel in length. A supplemen­
tary data tape convention has been established within the OMNIFLEX routine in order that more
than one file may be recorded on a single reel. This convention prescribes that two end-of-reel
sentinels are recorded after the last file of a multifile reel. The OMNIFLEX routine provides a
special command for producing these end-of-tape sentinels. Input tapes not conforming to this
convention may be processed by the OMNIFLEX routine, provided the user is familiar with the
files on the reel and does not misdirect the OMNIFLEX routine.

The OMNIFLEX routine processes files composed of blocks which contain no more than 502
words. In the a bsence of any overriding specifications in the OMNIFLEX routine comm ands,
the block and item size of an inpu t file are determined from the block size and item size fields
in words four and five of its label block. If no overriding specifications are made for an output
file, its block and item size are similarly determined from those of its major input source.

The OMNIFLEX routine normally will create output files with one control word per item and an
additional control word for each of the data descriptor words. A block composed of n items,
therefore, normally will be written with n + 2 control words. The OMNIFLEX routine will, how­
ever, write the blocks of files which meet one of the following criteria using only three control
words per block (one control word for data, and two for data descriptor words).

1) If b is the maximum number of words in a block, and n is the maximum number of items in
a block, the remainder of b ;; 2 does not equa I zero.

2) There are more than 50 items in a block.

Trademark of the Sperry Rand Corporation

9-E

1

SECTION: I
9-E

I

I
PAGE: I UP· 2 2558

UNIVAC m SALT

10.
t

\1 QIM

L

Jo.

\ SJE

1

The OMNIFLEX routine commands have been classified into three levels: job, file, and
correction. Job commands indicate the total command sequence to be executed in a single
run and the tape unit allocation for the run. They also may be used to integrate independently
prepared command sequences and to indicate non-independent subsequences. File commands
are provided to allow the processing of an entire file. No recognition of the data content of
a file is made by a file command. Correction commands are provided to allow data-dependent
processing or the modification of the data con ten t of a file.

1. Job Commands

OMNI FLEX Routine Command

ITEM NO. TAG C FORM CONTENT'

Nil
date ,J job identification

FIL EIX I 1 1 1 I I I I I 1 11111111 I j I I I I I I I 1 I

- --1 - -

The OMNI FLEX routine command is used to indicate the beginning of a command sequence.
For purposes of documentation, a date may be entered in the tag field, and a job identification
entered in the content field; these entries are optional.

More than one OMNI F LE X routine command may exist in a command sequence. Subsequen t
commands may be used by the programme r to provide record tape identifica tion of
independently prepared sequences. If an error is detected in the execution of a command
sequence, the remaining commands are ignored, and processing is reinitiated at the next
OMNI F LE X routine command, if any.

SE RVQSUM Command

ITEM NO. TAG C FORM CONTENT \

R1V °IS U1M I 1 I 1 I I I I I 1 sCll 'Fc~ ,~c~ , 1 . I • I . I I III I 1 I J I I II
1-0. ... - - -.\

Only one SE RVOSUM command may appear on an OMNIFLEX control tape, and must immedi­
ately follow the first OMNI FL E X command. This command is used to allocate required tape
units, other than the record and control tape units. Each entry in the content field (sc1'
sC2' sC3' •••) describes a tape unit. No more than ten tape units may be so allocated. The
designation S is a symbolic number, 0 through 9, assigned to the tape unit. It will be used
to refer to the tape in all subsequent commands. Designation c is a channel designator. It
is R, if the unit will be used only for reading, W, if the unit will be used only for writing,
or RW, if the unit will be used for both reading and wri ting.

i

i SECTION:

UNIVAC ill SALT I up- I PAGE:
2558

SERVODEF Command

TAG C FORM CONTENT

---~------~--~--------~~--------

jJ.
\

)1 SIT

L

The SERVODEF command has been provided so that command sequences can be independ­
ently prepared wi thout requiring prior coordination in the assignment of symbolic tape unit
numbers. Each content field entry of the command equates a previously assigned symbolic
number with a new symbolic number. In each entry, 51 is the symbolic number of a tape unit,
as defined in the SERVOSUM command or in a preceding SERVODEF command, and 51' is
the new symbolic number to be used in all ensuing commands. A maximum of ten entries is
allowed.

STOP Command

ITEM NO. TAG C FORM CONTENT'

pro 9 ra miD, 5 1 = 5 l' ,5 2 = 52',
OIP I 1 I -- ---
The STO P command indicates termination of the OMNI FLEX routine job. This running of
OMNIFLEX routine may be integrated with a subsequent run by means of entries in the
content field of the STOP command.

I j 1

Program ID is the name of the successor program, and is in the form aaaa iicc~~5n, where:
aaaaaaaa is an eight-character program name, 5 is the absolute number of the tape unit on which
the successor program will be found, and n is the copy number of the successor program.

The second and subsequen t designations in the content field (51 = 5 1', 52 = 52', ...) carry
tapes over to the successor program. In each designation, 51 is the current symbolic tape­
unit number, as assigned by a SERVOSUM or SERVODEF command, and 5i' is the numeric
designation of a file in the successor program. Note that it is possible to carry the control
and record tapes over to the successor run by letting 51 equal C or R, respectively. A
maximum of ten tape units may be carried over to the successor program.

9-E

3

SECTION:
9-E

PAGE:
4

I
I

I
I
I Up·

2558

UNIVAC m SALT

I

2. File Commands

File commands deal with complete data files. The commands are written in the first four
columns of the item number field, and the tape units to which they are to be applied are
specified in columns 5 and 6. Column 5 generally designates the major input tape unit, and
column 6 designates the major output tape unit of alternate input tape unit. Entries in the
content field specify the file or files to be processed. A detailed description of these entries
is given below, under the heading COpy Command.

co PY Command

Starting at the current positions of tapes 51 and 52' read forward 51' copying from 51 to 52
all files preceding file xl- Copy file xl from 51 onto 52' modifying it according to x2- Upon
completion of the copy procedure, tapes 51 and 52 will be positioned immediately below
the end-of-file sentinels.

A single designation, END, in the content field will cause the copying of the remaining
files from 51 onto 52' This option may be used only if there is an end-of-tape sentinel
following the last file on 5 l'

If an end-of-tape sentinel is detected before file xl is encountered, 51 and 52 are rewound,
an error is indicated on the record tape, and the control tape is advanced to the next job
command.

Detailed functioning of the COpy and other commands is controlled by the specified xl
and 52 designations. The equal designations (=) indicates the presence of x2' Both xl
and x2 each comprise three or five file parameters and are of the form f, i, r, or f, i, r, b, n"
where:

f is a {our-character file identification,

is a six-digit data (mmddyy),

is a three-digit reel number,

b is the number of words in a block,

n is the number of items in a block.

The table on the opposite page shows the acceptable configurations of x 1 and x2 and
the origin of the file parameters in each case.

UNIVAC m SALT

SECTION:

9-E

UP- PAGE:
2558

ORIGIN OF FILE PARAMETERS f, i, r, b, n

CONTENT FIEL D
51 52

LABEL BLOCK AND ITEM LABEL BLOCK AND ITEM

(f, i, r) SIZE (b, n) (f, i, r) SIZE (b, n)

f, i, r, xl words .(& 5 of xl words .(& 5 of
51 label block 51 label block

f, i, r, b, n, xl xl xl xl

f, i) r, =, f, i, r, xl words .(& 5 of x2 words .(& 5 of
5 1 I a be I b 10 c k 51 label block

f, i, r, =, f, i, r, b, n, xl words .(& 5 of x2 x2
51 label block

f, i, r, b, n, =, f, i, r, xl xl x2 xl

f, i, r, b, n, =, f, i, r, b, n, xl xl x2 x2

DELE Command

TAG

I I '~ I

Starting at the currentposition of tapes 51 and 52' read forward 51' copying from 51 onto
52 all files preceding file xl' Read file xl' but do not copy it onto 52- For this command,
xl comprises f, i, and r, .

If an end-of-tape sentinel is detected before file xl is encountered,s 1 and 52 are rewound,
an error is indicated on the record tape, and the control tape is advanced to the next job
command.

5

I

SECTION: I
9-E

I
PAGE: I Up· 6

UNIVAC m SALT
2558

CO RR Command

Starting at the current position of tapes 51 and 52' if specified, read forward 5 l' copying
from 51 onto 52 all files preceding file xl. Write the label block of file xl on 52. Establish
the first item of file x 1 as the current item, and apply the correction commands that
follow.

Note that due to the nature of the correction commands provided, it is possible that only a
major input, or only a major output file will be required. This is indicated by leaving 51 or
52 blank, as appropriate.

If an end-of-file sentinel is detected before file xl is encountered, or if the ensuing
correction commands require a tape (51 or 52) that was not specified in the CORR command,
the tapes involved are rewound, an error is indicated on the record tape, and the control tape
is advance to the next OMNIFLEX command.

READ Command

Starting at the current position of tape 51' read 51 in the direction indicated by d until file
x 1 is located. Position 51 so that a forward read will read the label block of file x 1. The
direction d is specified by the form field. If the form field contains all spaces, 51 is read
forward; otherwise, 51 is read backwards. For this command, x 1 comprises f, i, and r,.

If, on a forward read, an end-of-tape sentinel is detected before file xl is located, or, on a
backward read, the tape block count equals zero before file x 1 is located,s 1 is rewound,
an error is indicated on the record tape, and the control tape is advanced to the next job
command.

UNIVAC ill SALT up-

i SECTION:

I 9-E

I PAGE:
2558 I 7

COMP Command

FORJ
I:::

CONT~

~

Starting at the current position of tapes 51 and 52' read forward 51 and 52 until files Xl
and x

2
are located. Compare files Xl and x

2
on an item-by-item basis, placing unequal

items on the record tape, for printing in octal format. For this command, both x 1 and x2
are specified in full, that is, all five parameters must be specified for both files. In
addition, the number of items per block n must be the same for both files.

If end-of-tape sentinels are detected before file Xl or x2 are encountered, 51 and 52 are
rewound, an error is indicated on the record tape, and the control tape is advanced to
the next job command.

REWI Command

Rewind tape 51 without interlock.

REWO Command

'o. ITEM NO.
I I

1'1 RIE W10 511 I 1

- -V

Rewind tape 51 without in terlock.

SENT Command

Write two end-of-reel sentinels on tape 51' thus creating the end-of-tape sentinel used
on multifile reels.

SECTION:

PAGE:

:

9-E I

I UNIVAC m SALT
8 I Up· 2558

WAI T Command

~O. ITEM NO. TAG C FORM CONTENT ,
W,A liT

message
I I I I I I I I I I I , I

L- __ ",.-----... 1 ------ -........- -

Type out the message in the content field, and delay further OMNIFLEX routine processing
until the operator types in anyone-character "go-ahead" message. Messages may be up to
80 characters in length. However, if more than 52 characters are to be typed, the programmer
must provide for the detection of the end of the first line and for the remainder of the
characters to be printed on a second line.

3. Co rrection Com mands

,,0.
I

I RIE

L-... -

All correction comm ands mus t be preceded by a COR R file command. A correction sequence
will be terminated upon the occurrence of an error or another file command. If correction
commands have not already caused the entire input and output files to be processed at this
time, the remainder of the input file will be copied onto the output tape and the tapes
positioned ready for the next file, if any.

REF R Command

ITEM NO. TAG C FORM CONTENT \

FIR I I I I I J I I I ml , I CI, IWI, IPI, IUj, lkl'l I I I I I I I I I I ,(

-~- ~ --J

Starting at the current position of tapes 51 and 52 (as specified by the preceding CORR

command) read 51 forward, copying onto 52 all items preceding the item which contains a
field conforming to the criteria specified in the form and content fields. Establish this
item as the curren t item. (n equals 0 for this item).

If a single entry, END, is present in the content field, the remainder of the file will be
copied onto 52· Additional items then may be added to the file by use of the ADD or PTCH
commands described below.

If an end-of-tape or end-of-file sentinel is detected before an item satisfying the specified
criteria is located, the tapes involved are rewound, an error is indicated on the record
tape, and the control tape is advanced to the next job command.

SECTION:

UNIVAC ill SALT
UP- PAGE:

2558

As indicated above, 51 is copied onto 52 untii an item is encountered which contains a
field conforming to the criteria specified in the form and content fields of the REF R line.
The content field contains a constant (k). For each item, a field described by the m, W, p,
and u, entries is tested against the constant. When relation c, holds between the field and
the constant, the copying process is terminated. The following paragraphs not only describe in
detail the form and content field en tries of the REF R line, but also apply to the other
correction commands.

The form field entry, m, specifies the form of both the field and the constant. It is AlPH,
DCMl, OCTl, or OTOB, for alphanumeric, decimal, octal, or binary, respectively. Binary
fields must be contained within one word; alphanumeric, decimal, and octal fields may span
up to four words.

The first content field entry. c. specifies the relation that is to hold between the field and
the constant. it is TEQ (equal to), THI (greater than), TlO (less than), NEQ (not equal to),

NH I (not greater than), or N lO (not less than).

The second, third, and fourth content field entries, w, p, and u, locate the field within the
item. Entry w, is a number, 0 through n - 1 (where n is the item size), designating the word
in which the most significant unit (bit, digit, or character) of the field is located. Entry p
designates the position of the most significant unit of the field within word w,. This

designation varies with the form of the field, and is specified as shown in the table below.
Entry u, specifies the number of un its in the field. The minimum number of units is 1;
the maximum number is 24, 32, 24, or 16, depending on whether the field is binary, octal,
decimal, or alphanumeric, respectively.

POSITION (p) OF MOST SIGNIFICANT UNIT

Binary (BINY) S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ~O 21 22 23 24

Octal (OCTl) I 1 2 3 4 5 6 7 8

Dec ima I (DCMl) G 1 2 3 I 4 5 6

Alphanumeric (AlPH) N 1 2 3 4

9-E

9

SECTION:

PAGE:

9-E

10

\0.

II SI K

UNIVAC m SALT
2558

The last content field entry, k, specifies the constant against which the field is to be
tested for relation c. It is in the form sv, where 5 indicates the sign (plus, minus, or, if
the field is unsigned, period), and v is the value of the constant.

SKIP Command

ITEM NO. TAG C FORM CONTENT

liP I I l L , , , I , m, , , c"IWI"P",ul"kl" I I I I I I I , , I It

\.----- - ___ 1

\0.

) R,E

Starting at the current position of 5 l' read 51 forward until an item is found which conforms
to the criteria specified in the form and content fields. Establish this item as the current
item. No items are copied onto the output tape.

If a single entry, END, is present in the content field, the remainder of the file will be
skipped. Additional items then may be added to the file by use of the ADD or PTCH commands
described below.

REP L Command

ITEM NO. TAG C FORM CONTENT'

P,L , , I , , , I I I m, , I "1,IWI,IP",UI"k", I I , I I i I , I I I
L ______ -- -)

-

~O.

I
t I E,R
V- I

Copy the current item (item 0) through item" - 1 from 51 onto 52· Copy item n from 51 onto
52' replacing the specified field with the specified constant (k).

Note that" is the item number, relative to the current item, as established by the last
REFR, SKIP, or CORR command.

ERAS Command

ITEM NO. TAG C FORM CONTENT \

J A,S , , I ! I L i I I , , I "1'1"'1'1 I I I j I I I I I I I I , , I I
\ - --- ----- -

\0.
}
t 1 PIT

L-.............,

I

i SECTION:

, ·9-E

2558
I PAGE:

UNIVAC m SALT up-

Copy the current item (item 0) through item n - 1 from 51 onto 52' Read items n through n',
but do not copy them onto 52' Item n' + 1 is accessible to subsequent commands. If there
is not an n entry in the content field, only item n'is deleted. If n' is END, item n and all
succeeding items are deleted.

PTCH Command

ITEM NO. TAG C FORM CONTENT'

CIH I I I I I I I I I ml 1 I ZI' I wI' I PI' I U I ' [k I ' I I I I I I I I I I I -- --- -

Generate an item from the fields described on this card and subsequent field description
cards. If Z is present, clear the output item area to binary D's prior to generating the item.
This symbol must be present in the first of any series of Patch Commands.

A single PTCH command will generate a single item. Additional fields of the item are
specified on cards which immediately follow the PTCH card, and which have blank item
number and tag fields. The generated item will be placed on the output file preceding the
current item from the input file, if any.

ADD Command

Copy all data items from the current file on auxiliary tape 53 onto the output file.

The item size of the file on 53 must be the same as the input item size.

All items added will be placed on the output file preceding the current item of the input
file, if any.

I

11

1

SECTION:

PAGE:

9-E
I
t Up·

12 2558

UNIVAC m SALT

~.
I

, S,A

~ --...-

\0.

)1 C1H

L_

SAMP Command

ITEM NO. TAG C FORM CONTENT'

M,P m, , , , , , I I I m l I I c I' I wI' I PI' 1 U I' 1 k j '1 1 1 L I I I I I Ii'

- - -

Starting with the current input item, search the remainder of the file for items satisfying
the specified criteria, copying these items onto 5 or the record tape as indicated by m.

2

When m is Al PH, copy onto the record tape, for printing in alphanumeric format.

When m is DCMl, copy onto the record tape, for printing in decimal format.

When m is OCll, copy onto the record tape, for printing i.n octal format.

When m is t1t1t1t1 copy onto 5 •
2

The next command must be a file command.

CHNG Command

ITEM NO. TAG C FORM CONTENT'

N1G •
I I I I I I I I , m I I I C I' I wI ' I PI' I U I' I k I 'I k j , I I I I i I I ,

- -
Starting with the current item, copy all items onto output. When a field conforming to the
specified criteria m through k is encountered, replace it with constant k' before copying
the item onto output.

The next command must be a file command.

! I

-

APPENDIX A. SAMPLE PROGRAM

UNIVAC ill SALT
I uP. 2558

I

SECTION:

Appendix A

I PAGE, 1

PROGRAM:

PURPOSE:

PROGRAM
SPECIFICATIONS:

APPENDIX A. SAMPLE PROGRAM

Two-Way Merge

The purpose of the merge is to take the inventory files of two warehouses
and merge them into one master file. The items on each input reel have

already been sorted into ascending order and both reels must be merged

into a single sequence.

In the following illustrative example, a sequenced file containing inventory
information from warehouse A and a similar one from warehouse B is merged
into a single file called C. The file ID of warehouse A is WI02, and that of

warehouse B is WI03. The master file is to have a file ID of WI00. The key
field upon whose relative value the merged tape will be sequenced is a two­
word alphanumeric value contained in the first two words of each item.

The third word of each item contains a decimal number specifying the amount

of a specific commodity in the particular warehouse. If items with identical keys
are encountered in both files, the amount in the file a item will be increased by
the amount contained in the file B item. The corresponding file B item will not
be placed on file C.

The input tapes contain blocks made up of ten 2S word items. The output tape
will be in the same format as the input tapes.

The following facts are assumed:

1) There will be no key of higher value than two words of V's.

2) The comb ined length of the input files will not exceed one full reel.

3) The output file will contain no duplicates.

4) The output file is to be written with one control word per item.

S) In no instance w ill the amount of a commodity exceed 999,999.

)ECTION:

Appendix A
JAG E:

2

I
I
I Up· 2558

UNIVAC ill SALT

PROGRAM: Two-Way Merge

INPUT

PROCESS MERGE

OUTPUT

Figure A.l. Two.Way Merge Process Chart

DESCRIPTION: Multifile Input: ten items per block, 25 words per item.
Item Key: First two words of each item, A/N format.
Single reel output: ten items per block, 25 words per item, to be written
with one control word per item.

LOAD I R2

WITH POOL
ADDRESS

A ITEM
ADDRESS
----.. AR 1

B ITEM
ADDRESS

----.. ARl

Z'S TO

KEY A

Z'S TO

KEY B

START A

/
/

ADDRESS OF
A ITEM

DESCRIPTOR
WORD-"AR2

ADDRESS OF
B ITEM

DESCRIPTOR

WORD-"AR2

SET SWITCH

TO CLOSEOUT

ST ART B

ADD SUM B
TO SUM A

CLOSE C

COpy C

COpy C

ST ART C

A ITEM ADDR.
~ARl

K:)
ADVANCE A

ADVANCE B

FROM EXEC.
ROUTINE

STOP WITH

DUMP

Figure A-2. Two-Way Merge - Flow Chart

ADDRESS OF
A ITEM

DESCRIPTOR
WORD-+-AR2

COpy J
ADV~NJ

ADV~NJ

tv
U1
U1
00

C
-u ,

c:
2 -
~ n
S
m
l>
r-
-I

SECTION:

Appendix A
UNIVAC m SALT

PAGE: UP·
4 2558

'o. ITEM NO. TAG C FORM CONTENT \

\ N10 liN PJU TI I I I I I I I I I I I I I I I 1 I 1 1 I I ' I I I I I , I I I 1 1 j

)
LII BIR AIR Y I S ,AIM,P IL. EI I I I I I I I 1 I I , I I I I I 1 I 1 I I I I I I I I I , I

(AIS S IE MIB LIY MIRIGIEILICIOll I , I I , I , , I ,

LIA BIE LI I MIRIGIEILIC,O:l I I I SlllMIPILLEllTIWIOL lW1AlY I IMIEIRIG,E, ,UIS,I,N,G,', I
I

I 1 I 1 , I 1 1 I - , I I PIR,EISIE,LIE,C,TII,O,NI IA,NI0,-,S,EIRI3IZ,ZICI0IPIYI'
I I

11 1 I I CIOIOIIINIGI S ,GIMIT Z I E I R I 01 , I 1 I ' I I I I I I I I , I I I I I I I I , 1 1 ,
1 21 I I I

I I PIO,O,L I I I * S IGMIT S I EI Gil" ,1 1 , I , I I I , , , I I , I I , , , I , , I I

I
I I

1 ill I J I .I 1 11 , I I,N/OIP E I R I RIO] R I , I I I I I , , , I I , I I I I I I I I I I I

I i

II I ! I I I I I I : : OiV,EiR EIRIRIOIRI'I I I I I I I I I I I I I I I 1 11 J I 1 1
:

I I I I I I I : MIA,P,S SIE,Glll"=lll"SIEIGI2",=,21'1' , , , , , I I I I ,
!

I I : I I I I I I I I EIQIOIX 71 + 11 i , I = I KI E I Y I A, , I I I I ! I I I I I I I I I I I I I

I I I i I I , I , I 8'+111"=IKIEIYIBI'1 I I I I I , , , , I , , , , , , I

i I iii 1 1 I i I I I 71 + 1 2 1 ' I = L S 1 U 1M j AI' I I , , , 1 1 1 .1 1 I . L I I I I 1 1
\

\ I I I I I I I I i I I I , I I 8, + ,2 " I = I S I U 1M , B " 1 1 I , I I I I , I I I I I I , 1 1
I

1 1 1 1 \
I I

L,OIAIOi 1 I LiOIA,D 11 ' 1 T 1 * I $1 N 1 A I Mill' I I I I 1 I , 1 J 1 , 1 1 1 1 1 , I 1
I 1

I 0,1:0,0
1°1°, , B I E,G , IINI , I J I L,X I' ,2 " I II N, 0, E J X, ' I I , 1 I I , I I I , I I , I I ,

{

L I I I INI 0 1 EIX
1

I I E L,OICIA PIOI~~'I I I I I I 1'1 I I I I I I I I I , 1'1 I 1

I
I

I I 1 1 I I I I I I I MICI RIO TI*ISITIAIRITIAI'IEINIDIAI'171'1 I I I I 1'1 I I I I

MCRO T*STARTB, ENDB,8,
J

I I I I I I I I I I I I , I I I I I I I I I I I I II I I 11 J I 1 , I 1 I 1 III

(
I

M C R ° T*STARTC, i
I I i I I I I I I I I I I I 1 I I 1 1 1 I I I 1 I 1 1 I I 1 1 1 I 1 I 1 1 I I 1 !

Figure A-3. Two~Way Merge Sample Program

\ITEM NO.

I I I

I I I

I I I

I I I

\ I 1 1

I I I

I

I I I

I I I

I I I
I

1 I I

I I I

I I
I

\1 I I I I

Ii 1 I

(I I I

\
1 j I

II 1 j

I 1 1

) I I I

(I I I

)i
I I I

, SECTION:

UNIVAC ill SALT I
I up·

I Appendix A
I

TAG C FORM

CIOIMIPIAIRIEI I I I

1 1 I I I I I I I I

I I I I I I I I~I

I I I I I I I I J I

T I ° I TI AI LI I I I I I

I I I I I I I I I I

I 1 I I I I I I I I

I I I I I I I I I I

I I I I I I I I I I

I I I I I I I I 1 I

I I I I I I I , I I

I I I I I M;C!R,O

j I I I I I I MIC1RIO

I I I I I I I MIC,RIO

I 1 1 1 I I I 1 1 I

AIO, U1TI I I I I I I

I I I I I I I I I 1

I I I I I I I I I r

I I I I I I I MIC1RIO

I I 1 I 1 I I M,C1R 1 °

2558
PAGE:

5

CONTENT \

L I 1 I 11211 I K I ElY I AlII
)

I 1 I I I I I I I I I I I I I I I 1 I

C III 11211 IKIEIYIB I II I I .1 J I I I I I I I I I I I I I I I

TILIOIIIAIOIUITIII I I 1 I I I 1 1 I I I I I I I ~I I 1 1

TIHIIIIIBIOIUITIII I I I I 1 I I L I I L I I I I I I I I I

""OIP 1I I I I I I I I I I I I I 1 I I I I I I I I I I I II

LIII 111 ISIUIMIA I II 1 I I I 1 1 1 1 I I I I I I I 1 I I I I

AlII 111 ISIUIMIB I II I IlL 1 I 1 I I I I I I I I I I I I I

SIT I1 1111 ISIUIMIAI II I I 1 I I I 1 I I I I I I I I I 1 I I

SITI XII 171 '1$ITll I II: ICIOIPIYIAITIOICI I I I I I I I 1 I I

/
LI 1 I 11 I I $1 Till, I I I I 1 1 J 1 j 1 1 j I I j 1 I I j I j

II AI , I, I L I ,1 2 I I I (I I IN IAIDI : I, I I I T I * I AI 2 1) I I I I I I I I I

T,* CIOIPIYiCIII Ii I : 1 I I 1 I I I I I I-LL

TI*IAIDIVIAI' IEjNIDIA I , 171' 1 1 j 1 1 1 1 1 I 1 1 1 1 I I I

TI*IAIDjV1BI, IEINIDIBI , 181d I I I \ \ 1 I 1 1 11\ 1 j 1

TIUINIIICIOIMIPIAIR,EIII 1 I I I 1 I I I I I 1 I I I 1 1 I

SITI XII1 7 11 1$ITlll ,I I 1 1 I I 1 1 1 1 1 I I I 1 I 1 I I I

LI,ill,I$ITill.1 I I III I 1 1 1 1 1 1 I I I 1 1 1 , , L

IIAII IIILII1211dd IN IAIDI:IIIIITI*IAI21) 1,1 I I I I I I I

TI*ICIOIPIYICI'I L

TI*jA\DjVjAIIIEINIDIAI'17111 I I i I ILl II 1 I I I I I

Fi gure A-3. Two-Way Merge Sample. Program (continued)

SECTION:
Appendix A

6
I

u p-
2558

UNIVAC m SALT
PAG E:

ITEM NO. TAG C FORM CONTENT \

I I I I I I I / I I I , I T,UiI'~' IC,O,MIP,A,RIEI I I I I I i I I I I , I I , I I I I I I

I I I BIO,U I T, I , I , , i SIT, X, ' ,8 " ,$, T, 1, " , , I I , I , , , , I , , , I , I , I , ,

I , i , , , I , I i , I L, ,,1 I' ,$,T,l 1'1 , , i , 1 j I J I J I I , I I I I I I , I I I

, i , i I , I I , 'I AI ' I ' I LI ' I 2 I ' I (i 'I N I A 10 1 : , " ' I T, * , B, 2,), ' I , , I I , , , I ,

I I I I I I I I MICIR,O T,*,CIOIPIY,CI " I I , I , , , , I I I I I I I I I , I , , I 1 I
, , , , , I , , M,CIR,O T,*,A/0,V IBI,IEIN ID,BI,1 8 i,1 I I , I i , I I I , I I I I I I I

I I I I I : I I i , T, U, N , , i CI 0 1 M ,P ,A I R : E : , I I \ ! I I I I , I , , , I I ' , , , ,

, , , EIN,D,A , I I I I I , LIX I , ?i"L/IZIKIE,Y'+ll," , I I , I I I , , I I I I I I , I

I I 11 , I , i , I , I , L I , ,1 " IS,W I ' ITI C /H,' I , 1 I I I II I I I I I I I I I I / , I

, S I W, I ,T, C, H, ' E
/ I I T, U

1
N I' I C I L I ° IS, E I ° I U I T I' , , I I , , I I 1 , , , , , I I , , ,

I , , , I I I , I I ! I S I TI ' I 1 I' I T I ° I T I AI L, ' I I I , I I I I I I I I I I , , I , I I I

i

j TIUIN"IC,O,M,P,AIR,E,', , I I
j j I , I I I I i I I I I I I I , , , I I I I , I I I I

I I I ' I E, NI D, B, , , , I I L,XI',8I',L/,Z,KIE,Yi+,1,', , I I I I I I I I , I I , I , I I

i
T, Ul Ni ' , 1 , B, ' I , I , I , I I i ,

I I i I I I I I I III , I I I I 1 III

I
I

MIC,RIO T, *1 E IN, 0, C, " , I I I I II
,

CI LIO i SI EOjUT
! I

I I , , , , , , , , , , I , , , , , , ,

I, ! i

\ I I j : TI EI RIM,
I I , I L, " 1", E, N, D ,I ,N I GI ' I I I I I I I I I I I I I I I I I , , , ,

\
i I i ~ N, D, I, N, G, * X,L,O,C I i I ',', , I , I , , I , I , I , , , , I , , I , I I , , I , I I ,

I i ,

I, AI ' 1'1 TI U, N, ' I' 1 $1 L 1°, C I 2 ,3 I' I , I I I I I I I I I I I I I I " I iii I I I I 1

I
,

I I I I I I I I I , I 1 I I I , I I , I I I , I I I I I I I I I I I I I I \ I I I II

(, I i i , , I I , I , I ' , I , I I I I I I I , , , I I I I I I I I i I I I I I I , I 1\

Figure A a3. Two~Way Merge Samp Ie Program (contin ued)

I SECTION:

I Appendix A

PAGE:
7

UNIVAC ill SALT
2558

,0. ITEM NO. TAG C FORM CONTENT

I
I I 1 I I I I I I I I I X,LIOIC EIPI" I I I I I I I I i I I ' 1 1 I I 1 I I I 1 1 I I I I I 1 1 1

(I I I I I I I I I I I I - XI FI AI 0 3 1, I I I I I I I I I I I I III I I I I I 1 1 I I I 1 I I I I 1 1 1 I I 1

I I I I E I RI RI 01 R I I I S I GI AI 0 EIRIRIOIRI'I I I I I I I I I I I I I I I I I I III I I I I I I I I I I I I

I I I I I I I I I I I I I I I LliI112Iil$IHIE,RIEI-,11'1 I

I I I I I I I I I I I I I I I,A"",T,U,N"",$,L,0,C,2131,1 I I I I I I I I I I I I I I j I I I I I I ,

I I I I I ZIKIE I Y I I I I AI LiPIH ZIZIZIZI, I I I I I I I I I I 1 1 1 1 I 1 I I 1 I I I I 1 I I I I I I I I I

I I I I I I I I I I I - I I I ZIZIZIZI,I I I I I I I I I 1 I 1 1 I I I I I I I 1 I I I 1 I I 1 1 1 1 1 I I

I ° 11 1 1010 10 ° 10 I I I 1 I I I AI R,EIA 1 10 10 I, I I I I I I I I I I I 1 I 1 1 1 1 1 1 1 1 I I 1 I 1 1 1 1 I 1 1 1 1 1

° 12 ° 10 I I 1 TI I I I I I I S lUI BI R -ISIEIRI3IZIZI,ISIEIGI21,10IOI*I$INIAIMI11,1 I I11111 I II III I I I

I
1 1 I I I I I I I I I I - I I I AIOIVI,IAI,III IIIRI,12151,11!01,10INIEI,1 1 j j j j j 1 j j 1 j j j II I I

I , - AjDjVj'IBj,jlj'IIIRI'12151,jl,OI,jOjNjEj,j j j j 11111 j I I 1 I I I I I 1 i j i I I I I I I I I I I I I

I I I

C101 PI YI ' I C I ' 12
1
5 I' I 11 ° I' I ' 1 ' I ' j A[, J B j '1 J 1 I I I I i I I I I I i i I - I I i 1 ill i 1 j ill j j iii 1

I

,

I
1 1 i 1 I I I I I I I I - i I I PIRIEISIEILIEICITI,IAI IBI,I I .1.1.1 J 1.1 1 I j I I 1 1 I I 1 I 1 I I 1 1 1

, I
! I

I i 1 I 1 i i j , i ' - i F, Ii L, E I, i Ai' i 1 i , : WI 1 ,0 ,2 i , ·0· AT, EL, i R[Wj 1.1, I I I I I I I I I I I i I I i

(:

I I

, , I j j j I I I I I I I - I I I KIEIYI"F,RIO·MI,IOI, ITIH 1RIUI,1 11,jAj,J ' I j I 1 I j j j I j j j j I , 1 1

\ :

j j j i j j j j j I 1 I - 1 I I F, I j L 1 EI ,I B 1 , 1 2 1 , 1 Will 01 3 1 , 1 01 AI TIE 1 , I R 1 W I I I , I 1 1 , 1 1 1 , , 1 1 1 I 1 I I

, j 1 I 1 , 1 1 1 1 I 1
-

1 1 1 KI EI YI' IAI' I I I I I I I I 1 I I I I 1 1 1 1 1 1 1 I 1 1 I I I I I I I , 1 1

1 I

I
FILE, C, 3, W100, XXXX, RWI, , -

I I i ILl 1 1 1 I 1 1 1 1 1 I I I I I I

°1
3

i ° 1°!

I
I

0 10 1 1 1 1 I I SIUIBI R 0 1 I I C I 01 N I 3 1 Z I ZI ' I' 14 I' I BI E 1 G I I 1 NI ' I T 1° 1 TI AI L I + I 7 1, I AI 01 UI TI -I 1 I ' I 1 1 I I I I I
,

!
I

I I
- COMPARE, AOUT+3, BOUT-1, ENOA-1, CLOSEOUT,

I 1 I I I I I I I I I I I I I I I I 1 1 , 1 1 1 , 1

I 1 i I I I I I I I I I
-

I I I TI EI RIMI'I I I I I I I I I ' I I 1 I 1 1 I I 1 I I I I I I I I I I I I I I I

I

1 1 i 1 1 , 1 1 1 1 , 1 S,GI ~ T 01 0, *I S , E I G I 1" I TI *1 SI EI GI 2 1'I I I I I I 1 , , 1 1 , , , , I , , I , 1 I I 1

to., ITEM NO. TAG FORM CONTENT \

I
I) I

i 4 , W,R I T E"

I I I I I , , I I

Figure A-3. Two-Way Merge Sample Program (continued)

SECTION: I
Appendix A I UNIVAC m SALT

------------------------------------ -- - - ----- - - -- -- --- - - -- --------

0

PAGE 007 TAG EDIT OF RTN. MRGELCOl 12-1b-02
0 OCTAL. XR TAG REFERENCe:

07110 002 • CIRCW 07223 000, 07263 000, 07345 000
0 07261 000

07061 002 • CKINV 07055 000
0 07760 002 • CL.OINV 07767 000

00522 000 • CLOSEOUT 005.31 000, 00720 001
0 CNTSNTOP 01207 002

0
PAGE 001 MAPPING LIST OF RTN. MRGEL.COl 12-16-62

0 MAP< S6MT XR

001 SEGl = 1

0 SEG2 = 2

002 CODE - ~ -
0 POOL = 7

003 1

0
PAGE OQl MARKER LIST OF RTN. MRGELCOl 12-16-02

0 MRK< PREDECESSOR MARKER
OUO MRGEL-C01

0 001 T
002 00

0 OU3 T • POOLOl
oo~ T • GW

0 DOS T • TC

OOb T • L

~
007 T * rA
008 T • T8

009 T • SR .J --------Figvre A·4. Tag Edit, Mapping List, and Marker List Exhibit

UNIVAC m SALT
I

i uP.

I SECTION:

I Appendix A

2558
I PAGE'
I . 9

I
00000(00) CH rEF READY*

I 0 00000(00) L
.e00@0(00) US SALT 0000.

08266 (131) $A SALT 0000 200012J 27777

0
T CH FE SER

0 04 01 01

04 02 02
0

04 05 03

0 03 04 03

04 07 04

0
11'3 06 04

0 12J4 09 05

03 08 05
0

04 11 06

0 03 10 06

04 15 07
0

03 14 07

0 *
08272 (01) SA 1.
08273 (01) DATE*

0 (01) 12-14-62.
08275 (01) N,c\ME*

(01) MRGELC01.
0 08290 (01) NAME*

(01) ++++++++.
08292 (00) IH TERM SALT 0000*

0 08293(fiJl2J) IH RUNS COMP*

0 fl0000(00) CHIEF READY*
0121000(00) L
000210 (00) us TPTOPR01ee00.

0 08318(01) $A TPTOPR010eee 200ee 22123

T CH FE SER

0
12J4 02 01

0 4 06 01

*
0 08320 (01) SA 1.

~8322 (01) IH MBC 1l00202*
08323 (f2l1) $0 8 LPI 11 X 15 FORM*

0 (eJ 1) SO OK.
08325 (01) $0 EOF EOR*

(01) SO TR.
0 ~8328 (00) IH TERM TPTOPR010000*

08328 (00) IH RUNS COMP*

Figure A.5. Typewriter Message Log

APPENDIX B. FORM FIELD SUMMARY

The Form Field with its fifty three possible entries is the heart of the Symbolic Assembly
Language Translator (SALT) system. The forms are grouped by usage and are illustrated
assuming the programmer is using both Data Processing Library and the Executive Routine.

CLASSIFI- FORM CONTENT FIELD OBJECT CODE
CATION FIELD

INSTRUCTION L\~~~ i/a, x, op, ar/xo, m, See Appendix C

----- _0

DATA DCML s d d d d d d , d d d d d d s
DESIGNATION

d d d d d d
DDML sddd ddddddddd, s d d d d d d

BINY s b b bbbbbbbb bbbbbbbbbbbb bb, sbbbbbbbbbbbbbbbbb bbbb bb b

t-------f-

DTOB sddddddddd, sbbbbbbbbbbbbbbbbb bbbb bb b

D10B so 000 0000, s bbbbbbbbbbbbbbbbb bbbb bb b
f--- 0 _____ ---"--------- --

ALPH saaaa, s a a a a
s(aaaa) ,

DATE saaaa, s a a a a
-- --------

ADDRESSING SGAD t(lg naming line for which address is desired b~IR(4 bits)~bbbbb"'--l5-bit address •
_______ 0

LOCA tClg naming line for which address is desired b~IR(4 bits) ... bbbbb~l5-bit address
___ w_. __ · _ _

MAPS SEGi, = j, ... (see Section 2) none

EQUL n(lme =. name none
1--

0
____ _ 0 ____

EQDX IR + relative address = tag 1, none

s = sign

d = decimal number

b = binary number

0= octal number

Table 8-1. Form Field Summary

a = alphanumeric character

--
COMMENTS

--
INST in implied address.

--

D in implied address
abbreviation.

--

Two object code words resullt.
DD in impl ied addres:.
a bb rt~vi ation. --

B in implied address
abbreviation.

--
DIB in imp lied address

abbreviation.
Max d = 16, 177,215

--
OIB in implied address

abbreviation.
--

A in implied address
abbreviation.

Use parentheses wi th
:i1l~H:;igl ~ba[g~t~I~_

Ma)' be replaced by OCS.
--

Address of first linc~ in
segment containing tag.

--
Address of tag.

--
Assign index register.

--
Equates tags.

--
EqlJates index register plus

deciimal address to a tag.

N
til
til
00

......

C
2 -
~ n
S
m »
r
-I

C
'"U
I

"'U
>-
G') ;J>
m '0

'0
ro
::l

e:
~

OJ

(/'l

m
n
~

(5
~

CLASSIFI-
CA TlON

AREA
STORAGE

CONTROL
WORD

OBJECT
PROGRAM
LAYOUT

MACRO-
INSTRUCTION

ROUTINE

n = number

s = sign

x ,= not relevant

0= octal

b = binary bit

FORM
FIELD

AREA

INAD

FSEL

XMOD

SGMT

SGRT

LOAD

MCRO

MCDF

MCND

SUBR

SLCT

INDX

CONTENT FIELD OBJECT CODE

n, n words of memory reserved

i/a, x, tag, b~IR(4 bits)~bbbbb -+- 15-bit address'"

x, Ibb, rbb, m, fl..-IR(4 bits~ bits 5 bits~lO bit address

compari son-amt, ± increment, s~15-bit comp.amt--9 bit inc. amt. ~

s l' s2' ••• , d l' d 2 ••• , none

m * segn, s l' s2' ••• , none

n, succes sor, none

macro-name, p l' P2' •.. , Lines of coding defining the macro-instruction.

none

none

routine-name, p l' P2' •• G I
Coding from standard library according

to parameter specification

configuration name, none

p l' P2' ..• , none

Table B-1. Form Field Summary (Cont.)

COMMENTS

Coding segment areas are

accessed by tag.

Pool segment areas are

accessed by $Tn.

Line addressing thi s word
requires i/a of IA.

Line address ing th i s word
requires i/a of FS.

Addressed by an ICX
instruction.

Defines segment.

Defines location of library
routine's segment.

Defines load.

Calling statement.

to bring associated object

code into the program.

Sentinel line starting a

macro-instruction definition.

Sentinel I ine ending a

macro-instruction definition.

Subroutine calling statement.

Selects parts of a subroutine.

Assigns index registers

required by a subroutine

N

N
U1
U1
00

-u ;J>
» "0
C> "0
m (I)

:::s
0-.....
:><:

to

c
-p

c:
;2 -
~ n
S
OJ
)
r
-t

(/)

m
(')
--I

0
Z

CL ASSI FI- FORM
CA TlON FIELD

ROUTINE CONF
(CaNT.)

PART

MAXM

PROGRAM STRT
CONTROL

OVER

INOP

XLOC

STOP
--

XFAD

f------

XLST

f----

TPAK

TCON

n = number

f = file number

m = address

CONTENT FIELD OBJECT CODE

111 1, n2' n3 ••• nn
none

(111 = part numbers in order of occurrence)

p,art number ass igned in tag field none

boundary none

the tag of the program starting line none

the tag of the first I ine of overflow coding none

the tag of the first line of coding to be

executed if an invalid op.code is detected
none

funct ion, addres s,
(see Appendix N) ~9 bit function code 15-bit address----....

only the sign is relevant

f ,address, r+--6 bit file #~....-15-bit address II

1---

3-bit
External

Statu s 15-bit addres s flTYP E, Statu s, tag,
File #

Code
1--- --

lop Code
i/a, tag of third line of the packet

Characters
n, f-----

ILog Codel , t, tag of the first line of the indicator coding,
0 ~ # Tabs 15-bit address

f-----
0 0

1---

0..-1/0 channel # 15-bit address II
n, op, m, 7 obi t

Table 8-7. Form Field Summary (Cont.)

COMMENTS

Defin'es a specific configura

of c:oding from a subroutin

tiorl

e

Assigns a part number to a
SEtction of a subroutine

Used for memory allocat ion
by-SORTZZ.

Furnishes Program starti ng
ne point for Executive Routi

Furnishes address of the

I ine of unexpected ovedl

coding for Executive Rout

fir st

ow
ine

Furnishes address of the fi rst

I ine of inval id operator

cod ing for Executive Rou tine

Used in requesti ng over
termiinations; and i nformati

mem ory dump.

Closes a list of TCON
statements

Used in requesting
memory dumps.

Used in requesting
lypewriter or input--

output action.

lay s,
onal

Requires three I inked lin es
used in requesting

typewriter action.

Useol in requesting mul
message typewriter ac

tiple
tion.

tv
U1
U1
00

W

C
"1J
I

"U
»-
G)

m

c:
2 -
~ n
S
OJ »
r
-I

>-
'"0
'"0

(J)

::l
0..
~.

to

VI
m
()

-I

0
:?

I CLASSIFI· FORM CONTENT FIELD OBJECT CODE

1
CATION FIELD

{

~ program-name (2 alphanumeric words) f PROGRAM
LDID load-name, 0 0 0 0

I CONTROL

~ f (CONT .) load-name (2 alphanumeric words)

- n, i/o function code, address (not decimal)
00000 i/o ~ . lS·bi t address--'-'

XPAK - f, tag naming first line of indicator coding code
Gen fi Ie # • • lS·bi t address~ - next packet's address.-lS·bit address~

IOFS n, i/o function code, addres s, OOOOo.-i/o code ~lS·bit address~

SCAT word.count, addres s, 9-bit count....-1S·bit address •

XFRE
f l' f2' 000a.--6-bi t---+-OOOOOOOOo.--6-bi t---+--

fi Ie # fi Ie #

SER3 f, channel, # servos, servo·names, see Appendix I,Table 1-3

SER2 f, # servos, servo·names, see Appendix I,Table 1-3

PNCH f, channe I, see Appendix I,Table 1-3

RDER f, channel, see Appendix I,T able 1-3

PCH9 f, channel, see Appendix I,Table 1-3

RDR9 f, channel, see Appendix I,Table 1-3

PRNT f, channel, see Appendix I,Table 1-3

PAPT f, channel, see Appendix I,T able 1-3

TAPE f, fi Ie id, channel, servo·type, S·word tape packet in exec.area

n '" number

f = file number Table 8-7. Form Field Summary (Cont.)

COMMENTS

Five word load identifier
is created.

U sed in requesting input.
output.

Requires three lines connected
by hyphens

Used in requesting input·
output.

Used by -SER3ZZ.

Used to assign UNISERVO IliA
tape un its for Sort,Merge,

Input-Output Routines,
Diagnostics, and Own-Code.

Used in own code for ass ignment
of UNISERVO IIA.

Used in own code for assignment
of aO-Column Card Punch.

Used in Own code for assignment
of aO-Column Card Reader.

Used in own code for assignment
of 90·Column Card Punch.

Used in own code for assignment
of 90-Column Card Reader.

Used in own code for assignment
of PRINTER.

Used in own code for assignment
of PAPER TAPE UNIT.

U sed for own i/o
routines.

..t;..

IV
01
01
00

-u >-:> "'0
C> "'0
m (1) .. ;:l

0..
~.

to

c
:'

c::
2 -
~ n
S
OJ
J>
r
-I

Vl
m
()

-i

5
Z

APPENDIX C. INSTRUCTION SUMMARY

UNIVAC ill SALT
up·

2558

SECTION:

Appendix C

PAGE:

1

APPENDIX C. INSTRUCTION SUMMARY

This appendix summarizes the SALT Assembly instruction operators. The following information is

given for each operator.

Octo I Operator: This entry gives the machine code equivalent of the instruction operator, written
as a two-digit octal number.

Operation: This entry is a symbolic representation of the operator's function.

Format: This entry prescribes the acceptable formats for instruction statements using the opera­
tor. The following conventions apply to this entry.

(1) Upper-case designations should appear as shown.

(2) Lower ... case designations represent generic terms which must be supplied by the pro­
grammer.

(3) Where two or more bracketed designations are listed, anyone, or none, of the

designations may appear in the instruction statement.

(4) Where two or more designations in parentheses are listed, one of the designations listed
must appear in the instruction statement.

Thus, an instruction having the format entry:

[a,] c, (d,)

[, (e,)

may appear in any of the following six forms.

a, c, d,

, c, d,

c, d,

a, c, e,

, c, e,

Notes: This entry refers to any special considerations involved in writing the instruction state-

ment, and to the indicator lists which follow the summary of instructions.

SECTION:
I

Appendix C
I

PAGE: I U P-
2 2558

UNIVAC m SALT

!

OPERATOR
OPERATION FORMAT NOTES

SALT OCT

OPERAND TRANSFER

L 12 (m ') --. ARi [I A,] [x,] OP, or, m,

LCS 13 -(m') --. ARi [F 5,] [I]

EXT 14 Extract (m ') --.ARi [,]

ST 10 (ARi}--.m' [IA,] [x,] OP, or, m,

STCS 11 -(AR i) --. ml [,] [,]

ARITHMETIC

Decimal

A 20 (ARi) + (m ') --.ARi [lA,] [x,] op, or, m,

AH 22 (ARi) + (m ') --. ARi I [FS,] [,] a

S 21 (ARi) - (m I) --'ARi [,]

SH 23 (ARi) - (m I) ~ARil a

M 30 (m I) x (AR 1) ~AR2, AR3 [lA,] [x,] op, [or,] m, b

0 31 (AR 1, AR2) {m l }; quotient ~AR2, [,] [,] [,]

remainder~AR 1
c

Binary

BA 24 (ARi) + {m ' } ~ARi [I A,] [x,] op, or, m,

BAH 26 (ARi) + (m ') ~ARil [F 5,] [,] a

BS 25 (ARi) - (m')~ARi [I]

BSH 27 (AR i) - (m l) ~ARi' a

COMPARISON

C 54 (AR i) : (m I) [lA,] [x,] op, or, m, d

CA 55 (ARi) : (m I) [F 5,] [,] d

CONE 57 1-bits (ARi) : 1-bits (m ') [,] e

CZRO 56 1-bits (ARi) : O-bits (m ') e

SHIFT

SR 40 Shift right decimal (ARi) [lA,] [x,] op, or, (sc,)

SL 41 Shift left decimal (ARi) [,] [,] (m,)

SAR 42 Shift right alphanumeric (ARi)

SAL 43 Shift left alphanumeric (ARi)

SBC 44 Shift binary circular right (ARi)

CONVERSION

ATO 72 {m l 2, m I - 1, m')~ARi, ARj [lA,] [x,] op, or, m, -
OTA 71 (ARi, ARj}~{m I 2, m I - 1, m I) [,] [, 1 -

ZUP 73 Zero suppress (m')~ARi

TobIe C.1. Instruction Summary

SECTION:

UNIVAC ill SALT
up·

Appendix C

PAGE:
2558 3

OPERATOR OPERATION FORMAT NOTES
SALT OCT

LOGICAL

SUP 15 l·bits (m ') ~ARi [lA,] [x,] op, ar, m,

ERS 16 O.bits (m I) ~ARi [F S,] [,]

[,]

LOGICAL BRANCHING

TEQ 60 Test equal indicator: if set, ml
~CC; [I A,] [x,] op, [,] m,

if reset, (CC) + l~CC [,] [,]

THI 60 Test high indicator: if sP,t, m I --..CC;

if reset, (CC) + l~CC

TlO 60 Test low indicator: if set, ml ---..CC;

if reset, (CC) + l~CC

TUN 06 ml~CC

TPOS 60 Test sign of ARi: if +, ml~CC; [I A,] [x,] op, ar, m,
if - , (CC) + 1--.. CC [,] [,]

TR 07 (CC/MAC) + l~m' [I A,] [x,] op, [cc/mac,] m, f

m I + l---..CC [,] [,] [] Tbl 2 ,

SENSE INDICATOR

SSI 62 Set sen se i nd i cator [,] [x,] op, indc, [m, 1 Tbl 3

RSI 61 Reset sense indicator [,] [,]

TSI 60 Test sense indicator: if set, ml ---..CC; [lA,] [x,] op, indc, m,

if reset, (Ce) + 1 --..CC [,] [,]

INDEX REGISTER

lX 51 15 LSB (m ') --..XOi [lA,] [x,] op, xo, m,

STX 50 (XOi) ---..15 LSB m I [,] [,]

IX 52 (XOi) + 9 LSB (m I) ~XOi

lex 53 (XOi) + 9 LSB (m I) --.. XOi;

(XOi) : bits 10 - 24 (m I) d

INITIATE INPUTDOUTPUT FUNCTION

10F 70 (mt) ---.. channel standby [fA,] [x,] op, channet, m, Thl 2
location; set standby· location [,] [,]
interlock indicator

Table CD1. Instruction Summary (continued)

SECTION:

Appendix C

PAGE: 'UP-
UNIVAC m SALT

4 2558

OPERATOR
OPERATION FORMAT NOTES

SALT OCT

INPUT-OUTPUT INTERRUPT

TIO 64 Test 1-0 indicators: [lA,] [x,] op, channel, (indc,) Tbl 2

if set, (CC) + l---..CC;
if reset, (CC) + 2---..CC [,] [,] (m,) Tbl 4

RIO 65 Reset 1-0 indicators

PIO 62 Set inhibit 1-0 interrupt [,] [,] op, [,] [m,]

indicator [,]

AIO 61 Reset inhibit 1-0 interrupt

indicator

TIOP 60 Test inhibit 1-0 interrupt

indicator:

if set, m'---..CC;
if reset, (CC) + l---"CC

PROCESSOR-ERROR AND CONTINGENCY INTERRUPT

TCI 64 Test contingency indicators: [lA,] [x,] op, [3,] (indc,) g

if set, (CC) + l--"CC;
if reset, (CC) + 2--"CC [,] [,] [,] (m,) Tbl 5

RCI 65 Re set conti ngency i nd i cators

TPE 64 Test proces sor-error [lA,] [x,] op, [4,] (indc,) h

indicators:

if set, (CC) + l--"CC; [,] [,] [,] (m,)

if reset, (CC) + 2--"CC Tbl 6

RPE 65 Re set proce s sor-error

indicators

CONSOLE TYPEWRITER

ACT 66 Act i vate con so Ie-typewriter [,] [,] op, [,] [,]
keyboard

RT 01 (AR i) + (TBR)--"ARi [,] [,] op, ar, [,]

WT 02 Typewriter on-line: 1 character [IA,] [x,] op, character, m, Tbl 7
(m')---.. TBR; (CC) + 2 ---. CC [,] [,]
Typewr iter off-I i ne:

(CC) + l--..CC

Table C-7. Instruction Summary (continued)

UNIVAC ill SALT up-

OPERATOR OPERA TlON FORMAT
SAL T OCT

MISCELLANEOUS

NOP 00 No operation [,] [,] op, [,] [,]

STMC 04 (CC/MAC)--.. m 1 [lA,] [x,] op, [cc/mac,] m,

STCR

WAIT

DIS

LT

r , r , r
l I J l , J L ,

05 (TCWRi)--. ml [lA,] [x,] op, tcwr, m,

[,] [,]

77 m'---. CCj Stop Central [lA,] [x,] op, [,] m,

Processor [,] [,]

03 {m 1)---, Memory-i nformation [lA,] [x,] op, [,] m,

display [,] [,]

76 (Clock)--..ARi; val id time:
[I]

(CC) + 2-+CC
[,] op, ar, [,]

invalid time: (CC) + l---'<:C

Table C-l. Instruction Summary (Continued)

NOTES:

a. For one-word operands, i, ii, and the ar designations are as follows:

1
2
3

Cannot be 4

.1
I

2, 3, or 4
3 or 4
4

ar designation
12, 13, or 14,
23, or 24,
34,

1
J

SECTION:

Appendix C

PAGE:
2558 5

NOTES

f

Tb! 2

Tbl 8

For multiword operands, i must be 1 and 2, and i I must be 3 and 4. The ar designation must
be 1234.

b. If the ar designation is omitted or is left blank, SALT will supply 123.

c. If the ar designation is omitted or is left blank, SALT will supply 12.

d. If >, high indicator set; if <, low indicator set; if =, equal indicator set.

e. If =, equal indicator set; if f-, high indicator set.

f. If the cc/mac designation is omitted or is left blank, SALT will insert 14, specifying
the control counter (CC).

g. If the class designation (3,) is omitted or is left blank, SALT will insert 3.

h. If the class designation (4,) is omitted or is left blank, SALT will insert 4.

SECTION:

Appendix C

PAGE:

6
u P-

UNIVAC m SALT
2558

Table C-2. CC/MAC - INPUT-OUTPUT CHANNELS

Control Counter (CC) [TR, STMC]

Memory-Address Register (MAR) [TR, STMC]

Input-Output Ch ann els [IO F, TIO, RIO, TR,

U N I S E R V 0 I I I A, Bas i c W rite

UNISERVO IlIA, Basic Read

General Purpose 1

General Purpose 2

Genera I Purpose 3

General Purpose 4

General Purpose 5

General P urpo se 6

Genera I Purpose 7

Genera I P u rpo se 8

UNISE RVO II A, Read-W ri te

UNISERVO IlIA, Additional

UNISERVO IlIA, Additional

Wri te

Read

STMC]

Table CQ3. SENSE INDICA TORS [RSI, SSI, TSr]

Sense I nd i c a tor 1

Sense Indi cator 2
Sense In di cator 3

Sense Indi cator 4

Sense Indicator 5

Sense Indicator 6

Sense In d i ca to r 7

Sense In d i c a to r 8

DESIGNATION

14

15

1

2

3

4

5

6
7

8

9

10

11

12

13

DESIGNATION

1

2

3

4

5

6

7

8

UNIVAC ill SALT

Table C-4. INPUT-OUTPUT INDICATORS [RIO, TIC]

INPUT-OUTPUT UNIT

PAPER INDICATOR
UNISERVO CARD CARD TAPE

PUNCH READER PRINT ER READER
IlIA IIA PUNCH

X X X X X X Standby-location interlock

X X X X Successful completion

X X Initiation

X E rro r A

X Busy

X
I I

E rro r B

X X X X X Data error

X E nd-o f-ta pe warning

X Out-of-paper warning

I
X

I
X Operator oversight

I X Greater-than-720 e rro r

X X X X X X F au It

X Wired-stop ch ara cter

Table C-S. CONTINGENCY INDICA TORS [RCI, TCl]

CONDITION

Arithmetic overflow, clock power disrupted

Invalid operation code

Typewriter interrupt (character typed in or out)

Keyboard request (KEYBOARD REQUEST button pressed)

Keyboard release (KEYBOARD RELEASE button pressed)

Contingency stop (PROGRAM STOP button pressed)

up-

SECTION:

Appendix C

PAGE:
2558 7

DESIGNATION

1

2

2

3

4

5

5

6

6

6

6

7

7

DESIGNA TION

1

2

3

4

5

6

SECTION:

Appendix C

PAG E:

8

UNIVAC m SALT
2558

TobIe Cv6. PROCESSOR·ERROR INDICATORS [RPE, TPE]

MEMORY·ADDRESS ERRORS

Transferring operand to memory

Centra I Pro ce ss or

Input·Output Channel

UNISERVO IlIA, Basic Write

UN IS E RV 0 III A, Bas i c Rea d

General-Purpose 1

General-P urpose 2

General·Purpose 3

Genera I-P urpos e 4

Genera I-P urpos e 5

General-Purpose 6

Gen era I-P urpos e 7

Genera I-P urpo s e 8

UNISERVO IIA, Read-Write

UNISERVO IlIA, Additional Write

UNISERVO IlIA, Additional Read

Reading operand from memory

Reading instruction from memory

Reading operand from memory

MODULO-3 ERRORS

Reading TEQ, THI, TIOP, TLO, TPOS, TR, TSI, TUN, or WAIT from memory

Transferring operand to or from memory

Adder output

DESIGNATION

2

12

3

13

23

123

4

14
24

124
34

134

234

1234
9

1

5

58
6

7

SECTION:

UNIVAC ill SALT
Appendix C

UP- PAGE: 9 2558

Table Col. CHA RA CTER TO BE TYPED DESIGNATION

Bits 24 through 19 1

Bits 18 through 13 2

Bi ts 12 through 7 3

Bits 6 through 1 4

Table C-8. TAPE CONTROL-WORD REGISTERS DESIGNATION

UNISERVO III A, Bas i c W ri te 4

UNISERVO III A, Basic Read 3

UNISERVO lIlA, Additional Wri te 2

UNISERVO IIlA, Additional Read 1

APPENDIX D. EXECUTIVE AND BASIC AREAS

SECTION:

UNIVAC ill SALT
up·

Appendix D
PAGE:

2558

APPENDIX D. EXECUTIVE AND BASIC AREAS

A. THE EXECUTIVE AREA

The first 44 words of every program are reserved to contain information and storage for
use by the SALT executive system. These 44 words, known as the executive area of the program,
will appear in segment one preceding all other coding that may be included in the segment. Some
of the information contained in this area is supplied by the program through the use of several
SALT forms. The remainder of the information is supplied by the SALT executive system.

The addresses indicated below are relative to the first word of this area within the program:

ADDRESS

o

1

2

3

4

5

6

CONTENTS

Address to which control is to be given at the start of the program. This
address is supplied by the S T R T form statement.

Program relative add ress of the se gment containing the starting address.
This is loaded into IR 1 by the executive routine before transferring control
to the s tart of the program.

Reserved for use of the executive routine.

Address to wh ich control is to be given to handle special overflow. This
address is supplied by the OVER form statement.

Address to which control is to be given if there is an occurrence of an
invalid operation code. This address is supplied by the INOP form
statement.

Location which will receive the contents of Index Register 1 upon interrup­
tion for unexpected overflow or invalid operation code.

Location at which the address where processing was interrupted for

invalid operation code or unexpected overflow.

7 Location which holds the re-entry address at time of interrupt.

8-11 Storage for the contents of Arithmetic Registers 1, 2,3, and 4 respectively,

tha t this program is interrupted and cont rol ha s been given to another.

12

13-27

28-35

3.6

Storage for settings HI, EQ, LO indicators. Actually only two octal
positions contain useful information. Bit positions 1-3 indicate an equal set
by the value 001; otherwise, they are 000. Bit positions 13-15 reflect
the indicator setting with the follow ing values:

High = 000
Equal = 001
Low = 010

Storage for the contents of Index Registers 1 through 15 during interruption.

Storage to indicate sense indicator settings during interruption.

Contains instruction which will reset input-output inhibit indicator.

(continued on the following page)

Table OQ7. Executive Area

1

SECTION:

Appendix D
-----.--~------~ UNIVAC m SALT PAGE: UP-

2 2558

ADDRESS

37

38-39

41-43

44

CONTENTS

Contains a transfer instruction to provide the re-entry address of a program.

Contains external program identification of this run, assigned at assembly time.

rrsO: Rerun and servo numbers.

Contains external program identification of the next run.

Beginning of tape control word packets (five words per packet.) Word zero of the
last packet has a minus sign. If there are no packets, word 44 contains
minus binary zeroes.

Table D-7. Executive Area (continued)

Immedia tely following the a bove a rea, a five-word tape packet appears for each tape file in the
program. The tape packe t ha s the forma t:

WORD

1

2

3

4

5

CONTENT

Four-character alphabetic file identifier.

Six-character decimal file date.

Six-character decimal number of the form t x 0 rrr, where

t is 2 for UNISERVO I1A
t is 3 for UNISERVO IlIA
x is 1 for a read channel
x is 0 for a write channel

rrr is a reel count

Bits 19-24 contain the numeric file designa tor in binary.
Bits 1-18 contain a binary block count.

A binary tally of the number of errors encountered in processing the file.

Table D.2. Tope Pocket

I

I

SECTION:

UNIVAC ill SALT Appendix 0

up· PAGE:
2558

B. COMMUNICA TION WITH THE EXECUTIVE ROUTINE (THE BASIC AREA)

The lowest order of memory has been reserved for use by the Executive Routine in communicating
with all programs that may be sharing the computer. It is often referred to as the "basic area" or
low order memory location. The words in this area are referenced by source program instructions
through use of the $LOCn expression. A chart of their program relative addresses and initial
contents follows:

ABSOLUTE LOCATION CONTENTS

00000 Binary Zeroes

00001·00015 Binary Zeroes

00016 Binary Zeroes

00017 0, TUN, , EPECONT

00018 Binary Zeroes

00019 lA, , TUN, , 53,

00020 Binary Zeroes

00021 TUN, , INTER,

00022 INAD: I' LISTER),

00023 (lNAD:" LOCATOR),

00024 (INAD: I , MEMDUMP),

00025 (INAD: , , REENTRY),

00026 (INAD: , , LPRELAB),

00027-00030 Binary Zeroes

00031 (OTOB: -0),

I

I

EXPLANATION

Transfer to other routines.

Line 00001 leads into Executive Routine.

Storage for CC upon processor-error interrupt.

Transfer to processor-error control.

Storage for CC upon contingency interrupt.

Transfer to contingency control.

Storage for CC upon I/O interrupt.

Transfer to synchronizer control.

Address of entrance to Executive Routine.

Address of entrance to Executive Routine.

Address of entrance to Executive Routine for
memory dump or rerun.

Address of entrance to Executive Routine for

re-entry.

Entrance to Executive Routine.

For use of the Executive Routine

Contents of current re-entry line (set initially

to minus zero).

3

00032 (LOCA: Y2), Address of current re-entry line (on re-entry list).

00033 (LOCA: Y3), Address of re-entry list.

Legend: CC = Contingency Control I/O Input-Output

Table 0-3. Basic Area

I

SECTION:

Appendix D

PAGE:

4
u P-

2558

ABSOLUTE LOCATION

00034

00035

00036

00037-00039

00040

00041-00045

00047

00048

00049

00050

00051

00052

00053

00054

00055

00056

UNIVAC ill SALT

CONTENTS

(lNAD: f f INFILE1),

Binary Zeroes

Contingency Indicator

Flag

Binary Zeroes

(LOCA: RMEMT A 1),

Binary Zeroes

(lNAD: f f INFILE2),

(LOCA: RM EMT A2),

(LOCA: RIOTYTA),

(LOCA: FIDBLK),

Binary Zeroes

Binary Zeroes

(INAD: , f CONTING),

(INAD: f f CBITODA),

i

(lNAD: , f CDALPTBI), I

(INAD: f' CDBITOCT),

EXPLANATION

Address of internal file designation

table (Part I)

Last clock reading

Minus if the indicator is set; plus if

not set.

Address of memory routine designation
table (Part I).

For use of utility routines.

Address of internal file designation table

(Part II).

Address of memory routine designation
table (Part II).

Address of input-output type table.

Address of program/load ID block and

facilities list.

Working storage for Executive Routine.

Working storage for Executive Routine.

Contingency base to entrance.

Entry to a subroutine for conversion of a

binary word to alpha and decimal conver­

sion of a 19-bit value.

Entry to a subroutine for conversion of

four characters of alpha to binary.

Entry to a subroutine converting a word I
of binary information into octal expressed I

in UNIVAC III alpha code (six bits per !

character). I

Table 0-3. Basic Area (continued)

APPENDIX E. TYPEWRITER CONVENTIONS

UNIVAC ill SALT

I
uP.

I

SECTION:

Appendix E

. 2558
I PAGE: 1

APPENDIX E. TYPEWRITER CONVENTIONS

This appendix supplements the material given in subsection 4-E-l, Typewriter Conventions, and

is a further explanation of the flag symbols and classification codes used in the SALT system.

As mentioned previously, each message originated by SAL T, the input-output routines, or the
object programs, is preceded by a message code which indicates the kind of information, and
whether an operator reply is required. This message code is two to four characters in length.
Two characters of the message code denote a flag symbol, followed by a classification code.
Longer message codes can result from the addition of channel and tape unit identification.

A. TY PE-OUTS

Three flag sym boIs and eleven classification codes ha ve been provided for ty pe-outs. These,
together with their conventional meanings, are listed in Table E-l. The type-out codes are
not examined or interpreted by the SALT assembly; their purpose is to facilitate analysis of
the log tape and to assist the operator in the recognition of system conditions. The user may
redefine or add to existing flag symbols and classification codes.

B. TYPE-INS

1. Solicited Ty pe-Ins

Solicited type-ins are those requested by any of the possible originating sources. A type­
out preceded by the $ flag symbol indicates to the operator that a reply is being solicited.
The type-in is controlled by the SALT system, its format and other specifications are
designated in the TPAK and TeON lines supplied by the originating program. (Refer to
Section 4-G.) The classification code symbols (refer to Table E-l) are recommended for
use by all programs.

2. Unsolicited Type-Ins

Unsolicited type-ins are made by the opera tor when he wishes to intervene in the opera­
tion of the system, in order to perform certain specific functions (for example, run initia­
tion or termination). The operator presses the KEY BOA R 0 R E QUE S T button, causing
a five-character time code and the routine's designation to be typed out. The operator then
types in a one-cha racter requesting code (see Ta bie E-2). The code is interpreted by the
SALT Executive R-olltine~ which fuen initiates further type-ins aod type-outs asrequired.
Since the requesting codes are interpreted by the Executive Routine, additional requesting
codes cannot be defined by the user unless modifications are 'made to the SALT system.

SECTION:

Appendix E
----~--------~

PAGE: Up·
UNIVAC m SALT

2 2558

ENCODED MESSAGES

TYPE OF CODE CODE CHARACTER MEANING

FLAG: TYP EoOUT $ REPL Y SOLICITED

/ NO REPLY EXPECTED

P ACKNOWLEDGE OPERATOR POSTPONEMENT *

FLAG: TYP E-IN S SOLICITED REPLY

U UNSOLICITED TYPEIN

CLASS CODE: A ALLOCATION INFORMATION

TYPE-OUT C COMPUTER MALFUNCTION

OR D DATA ERROR

TYPE-IN E END OF PROGRAM

H HISTORICAL DATA

J JETTISON OF RUN

0 OPTION TO BE SELECTED

P PROGRAM CONTROL ERRORS

S START PROGRAM

T TYPEWRITER DATA

0·9 POSTPONEMENT NUMB ER

*Classification code gives postponement number assigned by SALT.

Table E·]. Flag Symbols and Classification Codes

SECTION:

UNIVAC ill SALT
Appendix E

up- PAGE:
2558 3

\..VLlI:; \..nAI'\A\" 11:;1'\ MCANINu

C THE CLOCK HAS BEEN RESET

E END TAP E LOGGING

F CHANGE FACILITY STATUS

I IGNORE REQUEST

L LOCATE A PROGRAM

P RECALL A POSTPONED MESSAGE *

R REWIND LOG TAPE AFTER WRITING SENTINELS

S START LOGGING ON TAPE AGAIN

T TERMINATE A PROGRAM

*Second character typed in gives postponement number assigned by SAL T.

Table E-2. Unsolicited Type-Ins

APPENDIX F. DATA FILE CONVENTIONS

SECTION:

UNIVAC ill SALT
Appendix F

up· PAGE:
2558

APPENDIX F. DATA FILE CONVENTIONS

This appendix describes the conventions and tape formats for UNISERVO IlIA data files.

A.LABELS

The first block on a tape reel and in a tape file must be a 12-word label block of the form
shown in Table F-l.

B. DATA BLOCKS

The first and last words of each data block must be data descriptor words, as shown in Table
F-l. The maximum acceptable data block size is 4096, including data descriptor words.

C. END-OF-REEL SENTINELS

Each reel of a multireel file except the last, is terminated by two one-word end-of-reel
sentinel blocks (refer to Table F-l), which immediately follows the last data block.

D. END-OF-FILE SENTINELS

The last data block of a file is followed by two one-word end-of-file sentinel blocks of the form
shown in Table F-l.

E. BYPASS SENTINELS

When a file includes information that is not part of the data proper (for example, a rerun
memory dump), the non-data blocks of the file must be preceded and followed by two one-word
bypass s-effiiflel blocks. (R€ter to Tahle F-L) The information to be bypassed may appear at
any place within the file.

1

SECTION:

UNIVAC ill SALT
2 2558

WORD SIGN CONTENT COMMENTS

LABEL BLOCK

0 - 0---0 Mi nus indi cote s non-data block.
Binary O's indicate label block.

1 + cccc Alphanumeric file ID

2 + Dcte of cycle All reels of multireel file should
contain same date.

3 + OOOddd Decimal reel number.

4 -I b···b Maximum block si ze in binary.

5 + b·--b Maximum item size in binary.

6 ± x-··x Unused.

10 ± x·--x Unused.

11 - 0---0 Minus indicates non·data block.
Binary O's indicate label block.

Table F· 7. Data Tape Formats

SECTION:

UNIVAC ill SALT
up·

Appendix F

PAGE:
2558 3

WORD SIGN CONTENT COMMENTS

DATA BLOCK

0 + bbbbbbbbbbbbcccccccccccc Data descriptor word.

b···b = Binary no. of items in block.
c-.-c = Binary no. of words in block:

Plus indicates data block.

1 t
DATA

c-2

col + bbbbbbbbbbbbcccccccccccc Data descriptor word, identical to word O.

BYPASS SENTINEL BLOCK

0 - 0·_·0 Minus indicates non-data block.

Binary 01 indicates bypass sentinel.

END-OF-REEL SENTINEL BLOCK

10b---b Minus indicates non-data block.

0 - Binary 10 indicates end-of-reel sentinel.

b- - -b indicates the total number of blocks

recorded on th i s tape (in bi nary)

END.OF.FILE SENTINEL BLOCK

0 - 11 b---b Mi nu sind i cate s non -data block.

Binary 11 indicates end-of-file sentinel.

b-··b = Binary block count includes

all blocks recorded on this tape.

*Including data descriptor words.
Table F· 7 Data Tape Formats (Continued)

APPENDIX G. LOG TAPE FORMATS

SECTION:

UNIVAC ill SALT
Appendix G

up· PAGE:
2558

APPENDIX G. LOG TAPE FORMATS

Table G-l illustrates the source code and machine code formats of the TPAKs and TeONs used
by SALT to control logging on the log tape and the console typewriter. Field r of each T PAK
specifies whether the message is to be typed out, recorded on the long tape, or both. The utiliza­
tion of this field and the allocation of a UNISERVO IlIA tape unit to SALT will cause messages
to be placed on the log tape as described below.

Each message on the log tape is preceded by a three-word T P AK header. The first word of the
header contains a five-digit time code, justified right. The second and third words of the TPAK
header contain the first and second words of the T PAK in machine code format. Refer to Table
G-l.) The following convention pertaining to the second word of the T PAK has been established:
Upon the successful completion of a message directed to the log tape and execution of the
related indicator coding, the SALT Executive System will move the TPAK to the log tape output
area, replacing the IS-bit indicator coding address with the 15 least significant bits of the
wo rd which immedia tely precedes the first word of the T P A K in memory. Thus, the 15 leas t
significant bits of this word may contain a binary message code which is defined by the user
and which will facilitate interpretation of the log tape.

If the message consists of a single message unit, the text of the message appears in three-word
packets following the T PAK header. Unused character positions in the last three-word packet
will contain hash.

If the message contains more than one message unit, a TeON header will precede each message
unit. This is a three-word packet, the second word of which contains the TeON in machine code
format. (Refer to Table G-l.) The text of the message unit then appears in three-word packets
following the TeON header. The last message unit packet is followed by a three-word stop
packet, the second word of which is a stop control word in machine code format.

Tables G-2, G-3, and G-4 illustrate the general format of the log tape. They show the label block,
intermediate data blocks, and final data blocks. Each data block comprises 20 three-word items
and two data descriptor words.

An example of the typewriter message log can be found in Appendix A (Figure A-4).

1

SECTION:

Appendix G ---+-I------~
PAGE: IUP-

2 i 2558
j

SOURCE CODE FORMAT

C FORM

TPAK

TCON

CONTENT

n, i/o, tag- 1
r, t, tag, (naming the

first line of indicator

coding)

n, i/o, ta g - 1

n oo Blank, if TeON's
follow, or 0 < n
< 128

i/o 00 " IN for type-in
OUT for type-out
Blank, if TeON's
follow

tag- 1 " Start of message or

TeON list

r 00 0000 TYP E if typewr iter

only
TAPE if log tape
only
Blank if both

t Number of tabs

i-e-tag Start of indicator
coding

*Replaced with 15-bit binary messagecode on tape.

UNIVAC ill SALT

MACHINE CODE FORMAT

+nnnnnnnppmmmmmmmmmmmmmmm
xxxxOrrttti iii iii iii iii i i

+nnnnnnnppmmmmmmmmmmmmmmm

nnnnnnn = Binary number of characters

pp = 01
pp = 10
pp = 11

mm ... mm = lS-bit address of tag-1

rr = 01

rr = 10

rr = 11

ttt == Binary number of tabs

ii".ii = lS-bit address of i-c-tag *

xxxx = Routine designation of originator

Table G· 7. T PA K and TCON: Source Code and Mach ine Code F 0 rmots

SECTION:

UNIVAC ill SALT Appendix G

up- PAGE:
2558 3

WORD SIGN CONTENT COMMENTS

0 - L1L1L1L1

1 + LOGT File ID

2 + Date of eye Ie

3 + dddddd Decimal reel number or spaces

4 + b-----b Block size (62) in binary

5 + b-----b Item si ze (3) in binary

6 + b-----b Number of blocks in previous log tape or zeroes

7 + L1L1L1L1 Not used

10 + L1L1L1L1 Not used

11 - L1L1L1L1

Tobie G.2. Log Tope: Lobel Block

SECTION:

PAG E; u p-
UNIVAC m SALT Appendix G

4 2558

WORD SIGN CONTENTS COMMENTS

n - Oddddd Time (decimal)

n+ 1 + 1st word of TPAK See Table G-l TPAK Header

n+2 ± 2nd word ot TPAK See Table G-l

n+3 - lililili

n+4 + TCON See Table G-l TCON Header

n+5 ± Hash

n+6 + Message

n+7 + Message Message Packet

n+8 + Message

m - lililili
STOP·TCON

m+1 Stop Control word Packet

m+2 Hash (close TCON list)

Table G-3. Log Tape: Intermediate Data Blocks

SECTION:

UNIVAC ill SALT Appendix G

up· PAGE:
2558

5

WORD SIGN CONTENT COMMENTS

n 3rd word of last good item 3rd word of message or STOP - TeON packet

n+1 - 1 •• • •• 1

n+2 + Hash Senti nel Item

n+3 + Hash

n+4 + ~~~~

n+5 + Hash Items like this to end of block

n+6 + Hash

Table G-4. Log Tape: Last Data Block

APPENDIX H. CHARACTER CODE CHART

This appendix explains the coding and sequential values of the various UNIVAC III
characters. The character at the top of each box is the printing character for the printer

and console typewriter except for the space, bell ring, carriage return and line feed,

horizontal tabulate, and form feed, which are nonprinting. Where NP appears on the

chart, the corresponding character code is nonprinting on the printer but the character

in the parentheses will print on the console typewriter. The code in the middle of each

box is the 80-column card code. When boxed, the code is nonstandard and applies only

to the card punch, except for codes 0-3-5-8 and 11-3-5-8, which also apply to the card

reader. The code at the bottom of each box is the gO-column card code. The number on

the left side of each box indicates the octal equivalent of the character.

UNIVAC ill SALT
I SECTION:

Appendix H

up- PAGE:
2558 1

00 01 10 11

SPACE & NP (5) NP ($)

0000 00 BLANK 20 12 40 OJ] 60 [QJ
BLANK 0-1-3-5-7 0-1-5-7-9 0-1-7-9

) : * %

0001 01 1-4-8 2~ 12-4-8 41 11-4-8 61 0-4-8

1-3-5-7 1-3-7 -9 0-1 0-1-5

- (MINUS) . $, (COMMA)
0010 02 11 22 12-3-8 42 11-3-8 62 0-3-8

0-3-5-7 1-3-5-9 0-1-3-5-9 0-3-5-9

0 CARR. RET. & LN. FD. BELL RING +
0011 03 0 23 12-0 43 11-0

0 0-1-3 0-3-7-9 63 4-8
1-5-7-9

1 A J /
0100 04 1 24 12-1 44 11-1 64 0-1

1 1-5-9 1-3-5 3-5-7-9

2 B K S
0101 05 2 25 12-2 45 11-2 65 0-2

1-9 1-5 3-5-9 1-5-7

3 C L T
0110 06 3 26 12-3 46 11-3 66 0-3

3 0-7 0-9 3-7-9

4 D M U
0111 07 4 27 12-4 47 11-4 67 0-4

3-9 0-3-5 0-5 0-5-7

5 E N V
1000 10 5 30 12-5 50 11-5 70 0-5

5 0-3 0-5-9 0-3-9

6 F 0 W
1001 11 6 31 12-6 51 11-6 71 0-6

5-9 1-7-9 1-3 0-3-7

7 G P X
1010 12 7 32 12-7 52 11-7 72 0-7

7 5-7 1-3-7 0-7-9

8 H Q y
1011 13 8 33 12-8 53 11-8 73 0-8

7-9 3-7 3-5-7 1-3-9

9 I R Z
1100 14 9 34 12-9 54 11-9 74 0-9

9 3-5 1-7 5-7-9

, APOS. H 55 NP (2) NP (:)
TT

1101 4-6-8 3-8 I 3-4-6-8 I 75 O!J 15
0-1-3-7-9

35
0-1-5-7 0-1-9 0-1-3-9 . NP (-) HORIZ. TAB. FORM FEED ,

Ina 16 4-5-8 36 ~ 56 I1-5-a 76 0-5-8
1-3-5-7-9 0-1-5-9 0-1-3-7 0-3-5-7-9

(NP (ZERO) NP (4) NP (U)

1111
17 3-5-8 37 I 3-5-8 I 571 11-3-5-8 I 77 I 0-3-5-8 1

0-5-7-9 0-1-3-5-7-9 0-1-7 0-1-3-5

Table H-7. Character Code Chart

APPENDIX I. CODEDIT LISTING

SECTION:

UNIVAC ill SALT Appendix I

2558

APPENDIX I. CODEDIT LISTING

The codedit list, prepared by a tape-to-print computer run, is the primary hard copy document

produced by the assembly. A minimum of typewriter messages are provided by SALT
programming, although the Executive Routine may produce messages as a result of its function
while assembly is in process.

The SAL T Assembly has been programmed to correct or overlook many trivial error conditions
which might arise under normal circumstances. However, when an error condition is encountered
du ring assem bly, which cannot be corrected or ignored, the assembly will be s topped and a one­
page message will be printed showing the following information:

• Name of the routine being assembled.
• The time that the assembly was discontinued.
• The date of the discontinuation.
• A description of the error.

A. GENERAL FORMAT

There are eight separate categories of entries on the codedit list. The general format of each
line of codedit output is such that it can contain up to 32 words of information. The lines have
been set up so that, usually, an original source code line will be printed in the left 64 print
positions of the printed line appearing opposite the corresponding machine code representation
printed in the right 64 print positions. Each page of the codedit output can accommodate up to
40 listed lines, of which two lines are headings.

The eight categories of entries are discussed below. Charts explaining the exact format of
each machine coded entry on the codedit list can be found at the end of this description.

1. The first two lines on each page of a codedit list are heading lines. They label the following
data as it appears in columnar designation:

(a) First Line

• Segment number
• Routine name
• Current da te
• Page number

(b) Second Line (field headings)

(1) Source code side (alphanumeric)

• Item number (8 chars.)
• Tag (8 chars.)
• Ciass (l char.)
• Form (4 c h a rs .)
• Content (39 chars.)

1

SECTION:

Appendix I

PAG E:

2
u p-

UNIVAC m SALT
2558

(2) Machine Code Side (alphanumeric, octal, and binary)

• Modification key (1 char. alpha)
• Form key (1 char. alpha)
• Address (program relative - 5 chars. octal)
• Sign (1 char. octal)
• Content (up to 24 chars. - octal or alphanumeric)
• Line block (3 chars. - decimal)
• Line word (2 chars. - decimal)
• Machine Code word (generally octal, see chart at the end of this appendix for

variations)
• Error note (4 chars. - alphanumeric)

2. The second category on the codedit listing is the directory information. This is information
placed at the front of the source code card input deck either by convention or for convenience.
This category contains:

• Label Line
• Segment Definition Statements (SGMT)
• MAPS Statements
• Starting Line (STRT)
• INOP Line

NOTE: No machine code will appear opposite these entries.

3. The third category of the codedit listing contains the machine code entries for load identi­
fiers and facility declarations. The entries appear at this point only in the machine code;
they have been separated from their corresponding original source code entries. The
corresponding source code entries can be found in their original input sequence.

4. The fourth category of entries is the listing of original source code and corresponding
machine code representations listed side by side. The sequence of the entries is determined
by the following rules:

• Source code lines are maintained in their original input sequence.
• Machine code representations are listed in the following order:

(a) Facility declarations are sorted into form code order.

(b) All other categories are sorted into segment number, by item number (Dewey
decimal) order.

NOTE: Subroutines and macro-instructions brought into the program from the Standard
Library tape appear in machine code only; there will be no corresponding source
code en tries.

5. The fifth section of the codedit list contains a listing of the SAL T Error Glossary. This in­
formation is furnished for the convenience of the programmer. They are the same error notes
as explained in Table 1-1.

SECTION:

UNIVAC ill SALT
Appendix I

up· PAGE:
2558

6. The sixth category on the codedit list is called the tag edit list and is one that will be
most useful to Programmers in debugging or operational maintenance of a program. The tag
edit section contains a listing of all tags and local reference points used in the program.
The entries on this list are in alphabetic order according to the tag codes. The following
information is shown:

• Address of the tag (program relative - 5 chars, octal)
• Index register if EQDX line (2 chars. decimal)
• Marker number (3 chars. octal)

• * (asterisk)
• Tag name (1-8 chars. alphanumeric)
• Address of referencing line (program relative - 5 chars. octal)
• Map num ber of the foregoing referencin g line (3 chars. decimal)
• Address of referencing line (program relative - 5 chars. octal)
• Map number of the foregoing referencing line (3 chars. decimal)
• Address of referencing line (program relative - 5 chars. octal)
• Map number of the foregoing re ferencing line (3 chars. decimal)

7. The mapping list follows the tag edit list. This area of the codedit output furnishes
a list for definition of index registers as specified for the coding segments by the MAPS
statements. The following information is furnished by this listing:

• Map number (3 chars. decimal)
• Segment number
• Index register number (2 chars. decimal)

NOTE: There will be a map number for each MAPS statement in the source code. When there
are no MAPS statements present, zeroes will be shown.

8. The marker list is the next category and follows the mapping list. This list is required for
definition of the marker numbers indicated on the tag edit list. The following information
is furnished in this section:

• Marker number (3 chars. decimal)
• Marker name (8 chars. alphanumeric)

NOTE: If there are no markers used in the program, three zeroes will appear in the marker
number field, and the source routine name will appear in the marker name.

3

SECTION:

Appendix

PAGE:

4
I Up· 2558

UNIVAC ill SALT

Any occurrence of the following errors will cause the incorrect line to be replaced with a com­
plete word of octal (binary) zeroes. The octal word portion of the coded it will not be printed.

1 The implied representation in this line contained an error.

A Too many addends, or addends applied to $LOe, local reference points or $NAMi in a
LOAD Statement.

C In valid class field.

D Invalid Dewey item number.

F 1. In valid form.
2. More than one MAXM, STRT, INOP, or OVER form in this program.
3. More than one LOAD per segment.

G More than 42 facility items. Items in excess of 42 will appear only on the codedit
listing.

H Improper hyphen line.

I Invalid instruction or IOFS code.

L Designation too long or too large.

M Not alphabetic, or improper alphabetic characters.

N Not numeric, or incorrect numeric characters.

T Item has blank tag field or incorrect tag.

U Error in a facility item. The item type (1 through 9) and the error flag will appear only
on the codedit listing.

V Variable in subroutine or macro-instruction is missing.

The m specified in a MAXM line is less than that calculated in the assembly. Binary
zeroes are placed in word 14 of the load ID block.

+ Too many designations.

- Too few designations or incomplete designation.

The following errors will cause portions of the final machine code word to be modified or re­
placed by binary zeroes. The octal word portion of the codedit will be printed.

2 More than 75 items in a macro-instruction.

3 More than 105 variables and parameters.

B A register error (bits 11-14 have been made zeroes).

E Standard macro-instruction missing.

Table 1·7, SAL T Error Notes

J

K

o
p

Q

R

S

W

x

y

Z

*

$

SECTION:

UNIVAC ill SALT Appendix

up- PAGE:
2558

Defined macro-instruction missing.

Incorrect substitution of a variable.

Part missing.

M address error (bits 1-10 or 1-15 have been made zeroes).

Configuration error.

Designation too large, truncated within range.

Subroutine missing.

No map for this segment (bits 21-24 have been made zeroes if this line would have been
mapped).

Incorrect mapping statement (bits 21-24 have been made zeroes if this line would have
been mapped).

Incorrect or ambiguous index register definition (bits 21-24 have been made zeroes).

There are facility declarations and/or executive area forms but no LOA D line for
segment #1, or an error has occurred in the LOAD for segment #1. SAL T manuu­
factures a dummy LOAD ID block.

More than 1024 lines in this segment. Segment address is truncated modulo 32,768.

Starred ins tructions {T 10, RIO, 10 F, T R, S TMC}, and unstarred ins tructions appear in
the same program.

Table 1-1. SA L T Error Notes (Continued)

5

SECTION:
I

Appendix I I

I
PAG E: ! Up-

6
I

2558

UNIVAC m SALT

I

B. ERRORS THA T WILL TERMINATE THE ASSEMBLY

This section deals with errors which will cause termination of a SAL T assembly before assem bly
of the source program is completed. These are errors which by their nature cannot permit further
processing of the routine being compiled.

These errors will cause SALT to reposition the machine code and codedit tapes to the end of
the last successfully completed program. A one line error printout will be placed on the codedit
tape and the next routine on the control tape will be assembled normally. If no further routines
are to be assembled, SALT will go to its normal termination. Printouts will be in the following
form:

ASSEMBLY OF ROUTINE XXXXXXXX TERMINAT ED --- reason

A list of the various reasons and brief explanations of each are noted below.

BL OCK COUNT ERROR FILE nn - A block count error ha,s been detected upon reading a file
previously written. Attem pt reassem bly.

ID CHECK FILE nn - A file ID block previously written cannot be located upon re-reading.
This may be due to changing tapes and/or servos during assembly.

SEGMENT LIST ERROR - A segment has been defined which has as its predecessor segment
a non-existent segment or a segment which has not itself been defined properly. Correct
source code and reassemble.

MEMORY EXCEEDED - The sum of the length of a given segment plus the starting address of
the segment exceeds the memory of this machine. Correct source code and reassemble.

NO STARTING SEGMENT - No segment in this program has been defined as starting at ZERO.
Correct source code and reassemble.

NO SEGMENT NUMBER SPECIFIED - No segment number was written in the item number field
of a SGM T line. Correct source code and reassem ble.

ITEM CANNOT BE KEYED - The item number for a source code line is such that it falls into
none of the segments defined by the SGMT items. Correct source code and reassemble.

NO DIRECTORY - The first line following the LABEL line of a routine (or its hyphenated
extensions) does not contain the SGM T form. Correct source code and reassem ble.

ITEM NUMBER ERROR IN SGMT - The item number written in the content field of a SGMT
line is incorrect (alphabetics, wrong punctuation, etc).Correct source code and reassemble.

SOURCE ROUTINE MISSING - The routine listed on the ASSEMBLY card is not within the
library into which it was placed. Place the ASSEM BL Y card in its correct position on the
control tape for SCS I, check the spelling of the routine name and reassemble.

WRONG ID CONTROL TAPE - The first (ID) block of the tape that SAL T assembly is using
as a control tape does not contain ccSCS~" in word 1. Place the proper tape on the servo and
reassemble.

WRONG ID LIBRARY TAPE - The first (ID) block of the tape that SALT assembly is using
as a standard Ii brary does not con tain "LIBR" in word 1. P lace the proper tape on the servo
and reassem ble.

SECTION:

UNIVAC ill SALT
Appendix I

~-------+---------

up· PAGE:
2558

TOO MANY SEGMENT DEFINITIONS - There are more segment statements than can be handled
in memory. Reduce the number of predecessor segments in SGMT and SGRT items and reassemble.

CONTROL WORD WRONG - An incorrect word was used in the content field of an ASSEMBL Y
card. The only permissible forms are STOP, STAN, and ADDR. Correct SCS I control tape and
reassem ble.

ASSEMBLY CARDS HAVE DIFFERENT RTN NAMES - There is more than one ASSEMBLY card
in a library and the routines named in these cards are different. Remake control tape and
reassemble.

NO LABEL BLOCK CONTROL/LIBRARY TAPE - There is no label block (per data conventions) at
the beginning of the control/library tape. Mount correct tape and reassemble.

NOTE:
Errors 11 and 16 will cause SALT to terminate immediately without attempting further assemblies.

7

SECTION:

PAG E: u P-
UNIVAC m SALT Appendix I

8 2558

Word Construction and Representations of Machine Code When Printed.
PROGRAM OPERATIONS MOD FORM

KEY KEY S 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

INST L1 0 IA IR OP CODE AR M

b b 0 0 0 b b b b b 0 0 0

IR INST, TUN, L1 1 IA IR OP CODE IRO M

IND. INST. b b 0 0 0 b 0 b 0 0 0

TR*, STMC* I !OF~ 3 2 IA IR OP CODE CHANNEL
M

b b 0 0 0 b 0 b 0 0 0

TP E, RPE, TCI, 3 3 IA IR OP CODE CHANNEL INDICATORS
TIO; RCI, RIO* b b 0 0 0 b 0 b b b b b b b b b b

TR, STMC, IOF 7 E IA IR OP CODE FILE M

b b 0 b 0 0 0 b 0 0 0

TIO,RIO IA IR OP CODE FILE INDICATORS

7 F b b 0 b 0 0 0 b b b b b b b b b b

FSEL L1 7 L1 IR LB (XS3) RB (XS3) M
b 0 q 0 q 0 b 0 0 0

IOFS, XPAK1 1 4 L1 LINES lOp COOE M

PRINtER 0 o 0 0 0 0 0 0

IOFS, XPAK 1 1 5 L1 UNIT OP CODE M

NON PRINTER b 0 q 0 0 0 0 0 0

INAD, SGAD, IA IR (BINARY ZEROS) M

LOCA 1 6 b b 0 0 0 0 0 0 0 0 0 0 0

SCAT, STOP 1 8 b Cou·nt M
0 == SCAT
1 == STOP 0 0 0 0 0 0 0 0

S Compare Amount (M) Increment or
XMOD 2 9

b 0 0 0 0 0 Decrement 0 0 0

L1
S A.c.

I
A.C.

I
A.C.

I
A.C.

AL PH, LDID A
b A A A A

BINY L1 B
S

b

OTOB, DTOB L1
S OCT. I O.c. I O.C. I O.c. I O.c. I O.C. I O.C. I O.c.

C
b CHAR. 0 0 0 0 O

2
0 0 0

DCML
L1

S DCML D.C. I D.C. I D.C I D.C. I D.C.
D

DDML b CHAR d d d d d d

L1 toMt~ =5
M

XLST 9 G FILE
0 o b b b 0 0 0 0 0

XPAK2, XFAD 8 K L1 I FILE NO. M
0 0 0 0 0 0 0

TCON, TPAK1, 1 L CHAR. COUNT I 0, M Code
PAPT IOFS; XPAK1 b 0 o q 0 0 0 0 0

TPAK2 4 J L1 ILO, Cod·ITObSPO~ M

b b 0 0 0 0 0 0

XLOC
1 M

1 = L D a F J R E C P M

b b b b b b b b b b 0 0 0 0 0

XFRE
5 N I FILE NO. I FILE NO.

0 0 0 0

TAPE 3
P :'1

FILE NO.

o I 6
0

DATE ;\ s ALPHABETIC I A.C. I A.C. I A.C.
S

b CHARACTER A A A A

LEGEND: b=binary (1 bit) o=octal (3bits) q=quarternary (2 bits) DC==decimal character (4 bits) AC alphanumeric character (6 bits)

Table !-2. Codedit Forms

UNIVAC ill SALT
I SECTION:

, Appendix I

up- PAGE:
2558 9

INPUT-OUTPUT FORMS BIT CONFIGURATION

BIT POSITIONS 20 18 16 12 11 10 9 8 7 6 4 1

SER3 1 st word 1 (AL PHA) Fe N CHANNEL a C b b b 0 00

SER3 alt. 1 st word 1 (ALPHA) Je 1 C Fe CHANNEL
(for fil e i use) 00 L _

IJ U

SER3 2nd word Ul b 0
U2 U3 V 0 U Fi

b 0 bo b b b o 0

SER2 1 st word
C N CHAN.

2 (AL PHA) Fe a b o 0 b b bo

U1 U2 U3 V 0 U Fi
SER2 2nd word o 0 b 0

b 0 b b b o 0

PNCH PRNT RDER 1 st word Fe C N CHAN.
PAPT RDR9 PCH9

T - (ALPHA) 00 0 b b b bo

PNCH PRNT RDER 2nd word via Fi
PAPT RDR9 PCH9 b b 00

DESIGNATION KEY AND EXPLANATION OF FACILITY DECLARATIONS*

c
1 = Absolute channel designation
a = Not absolute channel designation

Fe External fi I e number entered here

Fi Internal file number - will always be zero as SALT output.

Je Related fi Ie number specified in I ine of servos

N The number of units in this file

Type of request: 1 = Servo III 5 = 80-Col. Punch
T 2 = Servo II 7 = Paper Tape Reader

3 = 80-Col. Reader 8 = 90-Col. Punch
4 = Printer 9 = 90-Col. Reader

U 1 = U1, U2, U3, are absolute servo numbers
a = U 1, U2, U3, are not abso lute servo numbers

Un Servo Number

V 1 == U~ed by Programmer
a = Not u sed by Programmer

L EGEN 0: b = one binary position (1 bit); 0 = one octal position (3 bits); ALPHA = one alphanumeric position (6 bits)

Table 1-3. Facility Declaration Chart

o

o

o

o

()

o

o

o

C)

o

o

o

o

C)

o

o

o

o

o

o

o

o

SEGMENT 001 SALT PARALLEL COOEDIT OF ROUTINE OBOIPS01 DATEDATEOATE

fTEM NO. TAG C FORM •••••••••••••••• CONTENT •••••••••••••••• MF OCTAL S •••••• oBJECT CODE ••••••

.ABEL

1

l

3

DB01PSOl

51

S2

53

LOADI

CARD-tO-tAPE RUN.READ ALL CARDS

UNTRANSLATED VALIDATE PUNCHING

AND PUT 20 WORD IT~MS ON TAPE IN

BLOCKS OF 10 I1EMS.

INPUTI

ALL DATA CARDS

OUTPUll

VALIDATED TAPE
SGMT ZERO.OO.Ol.OO.OO.

• 5£Gl.00.01.00.00.

SGMT 5EG2.00.40.00.

MAPS SEG1.=I.SEG2.=2.SEG~.sq.

LOAD 1.T*SNAH1.

SGRT O*SEG1,C*SEGZ'
INOP INVALID.

OVER OVERFLOW.

+

0,,"

00

ZOZO

ZOZO

OB01

PSOI

0000

1.0AD

00000717

$AAF

00000000

00000000

00006041

00000000

0100 01 01

00 00 001 00

0500 01 01

00 00 000 00

3 0200 01 00

000 00

00000000

ZOZO

---_ .. __ ._-------_._----

Figure 1-1. Example of Codedit Listing Showing:

Heading Lines, Di rectory Information,

Load identifiers, ~Facility Declarations.

o

PAGE 0 0 01
o

8LK WD OCTAL WD EW o

o

o

o

o

o

o

o

o

o
001 01

001 02 o
001 03 27250JO'l-

001 O~ 52650)04 o
001 05 03030303 o
001 06 46512"27

001 07 04000000 o
001 08

001 09 42242431 o
001 10 00000000

001 11 o
001 12 o
001 13

001 14 o
001 15 04010021

001 16 20000100 o
001 17 0 4050021

001 18 00000000 o
001 19 06020020

001 20 00000000
o

001 21 o
001 59

o

~

0

tv
<.n
<.n
00

-u ~ »
C1 "0

"0 m (J)

::J
c..
~.

C
-p

C
2 -
~ n
S
OJ »
r
-t

c.n
m
n
-I

0
z

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

SE.GMENT 003

ITE.M NO.

004060

T~G

CON6

CON8

CON9

CON10

CONll

CON12

CON13

CON14

CONl5

CON16

CON17

SALT PARALLEL CODEDIT OF ROUTrNE DBOIPSOI DATEDATE.OATE PAGE 0010

C FORM •••••••••••••••• CONTENT •••••••••••••••• MF oCTAL S •••••• OBJECT CODE •••••• BlK WD OCTAL WO Ew

006 36 22650367

006 37 23014077

006 38 226504 13

OOb 39 2301'HOl

006 40

CA,2,NOA'

TEO,CONS, ,- TO

CA.2,N5A.

TEQ,CON9, ,- TO 2

CA,2,N4A,

TEO'CON10, ,= TO 3

IA,5,TUN"COUNTER2' ,INVALID OR SPEC

SUP,4,KIA. 11 TO AR 4

TUN,CON1S,

SUp.4,K2A, 12 TO AR 4

TUN.CON1S,

SUp,4,K3A, &, TO AR 4

TUN,CONIS,

CA.3,N4A.

TEa,CONI5, ,= TO 9

CA.3.NsA.

TEo,CON16, ,= TO B
CA,3,NOA.

TEQ.CON17. ; .. TO 7

lA,5,TUN"cOUNTER2. IINVALID OR SPEC

SUP,4,KoA, 16 TO AR 4

TUN,CONI8.

SUp,4,K5A, 15 TO AR 4

TUN,CON1S,

SUP,4.K4A. 14 TO AR 4

TUN,CONIS,

SUP.4.K9A, ,9 TO AR 4

TUN,CONIS,

SUP'4,~eA. 18 TO AR 4

TUN,CONIe,

SUp,4,K7A, 17 TO AR 4

a 00334

00335

o 00336

00337

o 00340

00341

00342

o 00343

00344

o 00345

00346

o 00347

00350

o 00351

00352

o 00353

00354

o 00355

00356

00357

o 00360

00361

o 00362

00363

o 00364

1 00365

o 00366

00367

o 00370

00371

o 00372

o 04

o 04

o 04

o 04

o 04

o 04

05

o 04

o 04

o 04

o 04

o 04

o 04

o 04

o 04

o 04

o 04

o 04

o 04

05

o 04

o 04

o 04

o 04

o 04

o 04

o 04

o 04

o 04

o 04

o 04

550200

60 06

550200

bO 06

550200

60 06

06 00

15 000'4

06 00

15000~

06 00

150004

06 00

550030

60 06

550030

60 06

550030

60 06

06 00

150004

06 00

15 000'4

06 00

15 000'4

06 00

150004

06 00

15000~

00 00

150004

Figure 1-2. Example of Codedit Listing Showing:

Parallel Source Code and

Obiect Code

00367

00077

00413

00101

0101

00407

00103

00527

00433

0110

00127

004'7

00127

00'443

1010

00127

00407

00122

00413

1010

00124

00361

00126

00527

1011

00457

00127

00453

00127

006 41 22{)50~07

000 42 2301'U03

006 4) 24300527

006 44 20642433

006 45,

006 46 20300127

006 47 20642437

006 4EI 20300121

006 49 20642443

006 5c.
006 51 20300127

006 5.~ 22644407

006 5~1 23014122

006 5LI 22644'113

006 S~i

006 5~) 23014124

006 5~r 22644367

006 5B 23014126

006 59 24300527

006 6()

007 O:L 206421.157

007 o;! 20300127

007 0:5 20(4245)

007 Ol~ 20300127

0101 007 0!5

00447

00127

00473

00127

0101

00467

00127

00463

007 06 20642447

007 0'7 2030012.7

001 Ola 206424 73

007 0'9 20300127

007 10

007 11 20642467

007 1,2 2030012.7

007 13 20642't63

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

N
01
01
00

C
'"tI .

'"tI
>
G)
m

C
2 -
~ n
S
OJ »
r
-I

(/I

m
>n
"0 ~
"0 -
(1) 0
::s z 0.. •• ,....
~

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

2

3

A

B

C

D

E

F

G

H

I

..J

K

L

SALT ERROR GLOSSARy

IMPLICIT REPRESENTATION IN THIS LINE CONTAINS AN ERROR

MORE THAN 75 ITEMS IN MACRO NAMED

COMBINED VARIABLE + PARAMETER VALUES EXCEED 105

TOO MANY ADDENDS

A REGISTER ERROR OR BLANK A REGISTER

INVALID CLASS rIELo

BAD ITEM NUMBER (DEWEY)

STANDARD MACRO NAMED IS MISSING

INVALID FORM OR TOO MANY LOAD'STRT.MAXM.INOp.OVER ITE.f'lS

MoRE THAN q6 FACILITY ITEMS

IMPROPER HYPHEN LINE

INVALID INSTRUCTION OR 10FS CODE

DEFINED MACRO NAMED IS MISSING

BAD SUBSTITUTION FOR THIS SUBROUTINE OR MACRO

DESIGNATION TOO LONG OR TOO LARGE

M NOT ALPHABETIC OR IMPROPER ALPHABETIC CHARACTERS

N NoT NUMERIC OR IMPROPER NUMERIC CHARACTERS

o ~ART NAMED IS MISSING

P M ADDRESS ERROR

Q CONFIGURATION ERROR IN SUBROUTINE NAMED

R DESIGNATION TOO LARG~' TRUNCATED WITHIN RANGE

S SUBROUTINE NAMED IS MISSING

T INCORRECT TAG OR B~ANK TAG IN AREA OR LOAD

U ERROR IN FACILITY ITEM

V VARIABLE MISSING IN SUBROUTINE OR MACRO

W NO MAP pROVIDED FOR THIS SEGMENT

X INCORRECT MAPPING STATEMENT FOR THIS SEGMENT

Y INCORRECT OR AMBIGUOUS INDEX REGISTER DEFINITION

Z DUMMY LOAD 10 BLOCK DUE TO NO LD WRITTEN OR ERROR IN 1ST LD

+ TOO MANY DESlGNATIONS FOR THIS FORM

TOO FEW DESIGNATIONS OR INCOMPLETE DESIGNATION

* MORE THAN 1024 LINES IN THIS S£GMENT

$ STARRED AND UNSTARR£D INDICATOR INSTRUCTIONSIN THIS ROUTINE
< M SPECIFIEU IN MAXH LESS THAN T~AT CALCULATED BY SALT

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o 0

o 0

o 0

o 0

Figure 1-3. Example of Codedit Listing Showing:

Sa It Error G los sary.

N
(J1
(J1

00

C
2 -
~ n
a
OJ
)
r­
-I

0 0

0
PAGE 001 TAG EDIT OF RTN. DBOIPSOI lADBOlPS01

0
OCTAL XR TAG REFERENCE:

0 02633 001 '" AOUN 02013 000 0
0262'10 001 ,.. ,~OX 02021 000

0 02'161 001 '" ,~1 02035 000. 02030 000. 02175 000 0
002 .,. A1 = 005 * FF1

0 02634 001 * AIUN 02633 000 0

02625 001 * AIX 02624 000 c: 0 02635 001 '" j~2UN
0

0 02626 001 * A2X 0 2 02636 001 * A3UN
02627 001 -0 '" ,~3X 0

~ 02637 001 '" j~4UN
0 02630 001 '" j~4X 0

02640 001 .,. A5UN
0 026.31 001 .,. ,~SX 0 n
0

02641 001 * jl6UN
0 S 02632 001 '" A6)(

0 02'163 001 .,. l,eFIL. 02231 000. 02244 000. 02241 OOQ 0
02311 000 m 0 02063 001 * ABOVE9 02062 000. 02060 000 0

00455 000 '" AD 05417 000. 00467 000 » 0 00431 000 * j~OVANCET 00443 000. 05415 000 0
02464 001 * j~L 02171 000 r 0 03613 003 * ALPHO 05212 000. 05206 000 0 -I

0 02450 001 * ALPHMKRl 02061 000
0

02'1051 001 * ALPHHKR2 02063 000

0 04063 003 * ANINST 04056 000. 04062 000. 0'125.3 000 0
04-272 0.03 * ANOTH 04263 000

0 04307 003 *)~NTERM 04270 000 0
02462 001 '" ANXT 02115 000. 02116 000. 02031 000

0 02120 000 0
00213 QOO * APOS 00561 001

0 04301 003 * ARIRET 04262 000
0

0
03427 003 .. AR1STO 04422 000. 04.305 000. 04307 000 0 C

"'U
04301 000 .

0 04'12 003 ,.. AR2RET 0'1-265 000. 042.77 000. 04275 000 0 tv
04273 000. 042.71 000 Ul

Ul
0 03430 003 * j~R2STO 044-,7 000. 04-)21 000. 04316 000 () 00

0,*312 000
0 ()

"'U (I)

> m
(;') >~ m

Figure 1-4. Example of Codedit Listing Showing: '0 0 ~ '0
W (J) ~

Tag Edit List. ::s
0.
~. -

o o

o PAGE 001 MAPPING LIST OF RTN. DB01PSOl lADB01PSOl o

MAP< SGMT XR
o 001 SEGl 1 o

SEG2 2
o SEG3 1.&

o

002 CODE 1.&
o POOL 7 o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o 0

o 0

o 0

Figure 1-5. Example of Codedit Listing Showing:

Mapping List

~

~

N
til
til
00

""0
>
G> > m '0

'0
(!)

=:l
0.-x·

c
:'

C
2 -
~ n
e
m »
r
-I

c.n
m
()

-i
(5
Z

0

0
PAGE 001

0 MRK<

000

0 001

002
0

003

0
OO~

005

0 006

007

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

MARKER LIST OF RTN. DB01PSOl lAD801PSOl

PREDECESSOR MARKER

DB01PSOl

C ,.
0

T * BW
T * TA

T * AZ

T >4< L

Figure '.6. Example of Codedit Listing Showing:

Marker List

0

0

0

0

0

0

0 C
0 2 -
0 ~ 0

0 n
0

== 0 m
0 »
0 r
0 -I
0

0

0

0

0
C

0 "tJ .
0 tv

(Jl
(Jl
00

0

0
"tJ VI
):0- m
G'l >n
m '0 -i

'0 -
I-" Cl) 0
<:.rt ::l ~

0..
><.
t-4

APPENDIX J. DIAGNOSTICS OUTPUT

i SECTION:

UNIVAC ill SALT
I Appendix J

2558
i PAGE: up·

APPENDIX J. DIAGNOSTICS OUTPUT

The ultimate output of the diagnostic function is a listing or series of listings on which the results
of either the trace or memory print functions are printed. The data furnished is described below.

A. TRACE OUTPUT

Two lines will appear per instruction. The total number of lines listed depends on the func­
tions covered, the number of test cases processed, the number of conditional functions which

met the prescribed conditions, and finally the option chosen for the diagnostic edit run.

1. First Line of Trace Output

The first line of data contains the following:

Final Arithmetic Regi sters Sense Magnitude
Location In struction

Address (4 col umns) Indicators Ind i cators

INST. xxxxx si i~cc~aaaa~mmmm M~xxxxx ARsnnnnnnnn SI 12345678 LEH

a. Location

INST .xxxxx xxxxx is an octal number indicating the absolute address of the

instruction.

b, Instruction

sii~ccAaaaaAmmmm represents the instruction itself.

s is the sign (bit position 25) + or -.

ii is the index register designation (bit positions 21-24) expressed in octal.

cc is the operation code (bit positions 15-20) expressed in octal.

Block

Count

bbbbb

1

SECTION:

Appendix J
PAGE:

2
u p-

2558

UNIVAC m SALT

aaaa designates the arithmetic registers used (bit positions 11-15).

1 in position 11 = AR4
1 in position 12 = A R3
1 in position 13 = AR2
1 in position 14 = A R 1

mmmm is the m address in the instruction word (bit positions 1-10) expressed
in octal.

c. Final Address

M~xxxxx is an octal number designating the absolute address referenced by
the instruction after the modification cycle. If indirect addressing
has been used, this value is that of the final address referenced
by the instruction.

d. Arithmetic Register Contents

ARsnnnnnnnn is the contents of the arithmetic registers
s is the sign + or -.
nnnnnnnn is the value contained in the arithmetic register (expressed in octal).

e. Sense Indicators

5112345678

The contents of each register are printed across the line with ARI-4
appearing from left to right.

The setting of each of the eight sense indicators is indicated by the
presence or absence of its designating number. When an indicator
is in a set condition, its number will be printed.

f. Magnitude Indicators

LEH

g. Block Count

bbbbb

When a magnitude indicator is set, its corresponding symbol will be
printed. If it is reset, nothing appears.

is the decimal number of the input tape block containing the item
which resulted in this printed line. This block number entry provides
data for implementing the selective print option during subsequent
printouts.

2. Second Line of Trace Printout

The second 'ine of data shows the contents of the index registers. A five-character octal
expression appears for each register (IRI-15) starting from left to right across the page in
the following format:

1 R~~~nnnnn~~~nnnnn~~~nnnnn~~~nnnnn.

UNIVAC m SALT
2558

I SECTION:

I Appendix J
PAGE:

I 3

B. MEMORY PRINT OUTPUT

There are nine entries on each line of the memory print output, appearing in the following
format:

aaaaa~~~~~~~s nnnnnnnn~~~ snnnnnnnn.

where aaaaa is the location from which the first word on the line was obtained.

5 is the sign (+ or -) of the word whose contents follow.

nnnnnnnn is the binary contents of one word of memory expressed as an octal number.

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

TRACE

INST.23102 +01 24 1000 0221 M 23221 AR+61616160

00000 00000 oooao
+70707070 +00023000

00000 00000 00000

+61616160 SI

IR 23000 25475 00000 00000 00000 00000 00000

INST.23120

IR 23000

+01 12 1<100 0221

25475 00000

M 23221 AR+70707070

00000 00000 00000

+70101070 ... 00023000

00000 00000 00000

+61616160

00000 00000

51

00000 00000

INST.23121 +01 10 1000 0233 M 23233 AR+70707070

00000 00000 00000

+70107010 +00023000

00000 00000 00000

+61616160 51

IR 23000 25475 00000 00000 00000 00000 00000

J1II5T.23122 +01 06 0000 0105 M 23105 AR+70101070

00000 00000 00000

+70707070 +00023000

00000 00000 00000

+61616160

00000 00000 IR 23000 00000

INST.23105 +01 06 0000 0130 M 23130 AR+70701070

00000 00000 00000

+10707070 +00023000

00000 00000 00000

+61616160

00000 00000 IR 23000 25475 00000

11II5T.23130 +01 07 0001 0147 ~ 23147 AR+70107010

00000 00000 00000

+70701070 +00023000

00000 00000 00000

+61616160

00000 00000 tR 23000 25475 00000

JN5T.23150 +01 12 0001 0221 M 23221 AR+70707010

00000 00000 00000

+70707070 +00023000

00000 00000 00000

+70107070

00000 00000 IR 23000 00{l00

INST.23151

rR 23000

-01 4~ 0001 0127

25475 00000

M 23322 AR+70107070

00000 00000 00000

+10707070 +00023000

00000 00000 00000

-61616070

00000 00000

TNST.23152 +00 43 0001 0002 M 00002 AR+70707070

00000 00000 00000

+70707070 +00023000

00000 00000 00000

-60700000

IR 23000 25475

PRINT

2 3 000

23010

23020

2 3 030

2:'1040

23050

2'3060

23010

23100

23,10

23000

+00023000

+0002q.427

+00000000

+00000000

+03070000

+03050303

+00000000

+04510223

+04402226

+043000 73

00000

+00023000

+70707070

+00000000

+00000 0 00

+03072000

+27.3«+3027

-00000000

+06610224

+011520 2 21.

+ot1520221

+00000000

+00023000

+00000000

+00000000

+03074000

+66061474

+06442127

+01014106

+05220221

+OLj~20231

+0002~353

-00607000

+00000000

+00000000

+03076000

+0303030.3

+0430020'7

+04521223

+0"30211~

+0430010t

+00024377

+00000000

+00000000

+03060000

+0301.10000

_03030li27

-00342053

+041.104225

+0'1420 22 7

+04520a2!

00000 00000

+00023000

+00023322

+00000000

+03062000

_00300036

+21053224

_04420222

+04502221

+04300130

+04420232

+00023103

+00025475

+00000000

+03064000

+27326665

+30631461.1

+04534141

+05202221

+04520221

+04300105

Figure)-1. Trace and Memc:!:! Print Output

51

51

51

51

51

51

00000 00000

00000 00000

00000 00000

00000 00000

00000 00000

00000 00000

+0002 44 2 7

"00000000

+00000000

+03066000

+66067474

+01000027

-0030Q030

+04300111

+0/~42.o230

+00023000

H

00000

H

00000

H

00000

H

00000

H

00000

H

00000

H

00000

H

00000

H

00000

o

o

OOOlP. 0
00000

o
00019

00000 0

00019 0
1l00oO

o
00020

00000 0

00020 0
00000

o
00021

00000 0

00021 0
00000

o
00022

00000 0

0002~ 0
00000

o

o

o

o

o

o

o

tv
01
01
00

c:
z -
~ n
S
m
J>
r
~

APPENDIX K. SALT SYSTEM

MESSAGE TABULATION

I

UNIVAC ill SALT
I SECTION:

Appendix K

PAGE: up·
2558

APPENDIX K. SALT SYSTEM

MESSAGE TABULATION

This appendix contains a number of tables giving the messages initiated by the SAL T system.
The mes~age charts contain four columns of information.

COLUMN HEADING EXPLANATION

MESSAGE The text of the message, including the flag and classification codes,

as it appears on the console typewriter log. Upper case letters indicate
constant information which will appear on the log as shown. Lower case
letters represent variable information.

The standard header supplied by the Executive Routine is not shown.

Unless otherwise indicated, it is ccccc~~~~~~~{rd)~~, where ccccc
is the clock reading and{rd) is a run designation assigned by the Execu-

tive Routine to the run from which the message was initiated.

When necessary to show positioning, deltas (~) have been used to
indicate spaces.

REASON The condition indicated by the message and an explanation of variables
in the message text.

ACTION Operator response where required.

CODE The binary message code which will appear in the log tape entry for the
message. (Refer to Appendix G.)

In general, the lower case letters have the follow ing meanings:

bbbbb number of blocks

ch channel number

dddddd date

eeeee number of error A's

fe external designation of file

ffff file ID

pppppppp program ID

rrr reel· number

type of I/O unit

I

I

1

SECTION: i
I

Appendix K
i

PAGE: I Up·
2 2558

UNIVAC m SALT

I

rrr reel number

type of I/O unit

TYPE

DESIGNA TION ASSOCIATED UNIT

1 UNISERVO IlIA tape unit

2 UNISERVO IlA tape unit

3 80-column card reader

4 Printer

5 80-column card punch

6 Compatible tape unit

7 Punched paper tape unit

8 90-column card punch

9 90-column card reader

uu tape unit number

SAL T CONSOLE MESSAGES - EXECUTIVE ROUTINE

MESSAGE (1) REASON ACTION CODe

C Clock has been reset 46

E End tape logging
!

46

F Change facility status I (See messages 22 46
I

and 27) I

I

F Expected type-in after Type character F and 27

unsolicited "F" release, message 22

will follow later

I Ignore request 46

L Locate program 46

US~pppppppppppp. Type in program ID I 48

Pn Recall postponed Original message is 46
message no. n. reinitiated

R Rewind log tape 46

S Start tape logging 46
again

T Terminate program Supply rd and xxx. 46
xxx = ~~~ if no dump

UEL~rdxxx. uu~ifdump 49
uuRifdump&

rewind

(1) Message headers = ccccc (00) /~~

Table K·l. Unsolicited Type-Ins

UNIVAC ill SALT

SAL T CONSOLE MESSAGES - EXECUTIVE ROUTINE

MESSAGE

I. CHIEFL1READY*

2. /MBUSY*

2. /C~CL~PNR*

I

2. /P~CTR~pppppppp*

2. MPn*

3. /~JETT~pppppppp* I

2. /C~IT~FLT~uu*

I I

2. /~O~LLOC~~pppppppp* i

I. /P6NOT~ON~TAPE~pppppppp*

I. /HL1REW I ND~SERS
uu
uu
uu*

2. /MDUMPMPpPPPPPPPPPPMnnMfe~rrrnuu*

I
I

I
I I. /P~RJET~pppppppp*

I I
I I. I /E~UNSnCOMP*

t 2. /HL\TER~pppppppp*

1. Header = OOOOO(OO)j.j.
2. Header = ccccc(OO)~~

3. Header = ccccc(rd)~~

REASON

Loading of Exec. Rtn. com-

pleted. Ready for requests.

Exec. Rtn. not available for
locator request.

Clock power was interrupted

Program p just terminated.
Could not carryover as

directed. Successor not

initiated.

Message has been post-

poned by operator. Post-
ponement n assigned.

Program p has been

jettisoned.

Unable to read MIT on servo
uu.

Unable to allocate run p.
k Reason

1 Mem. not avail.

2 Fac. not avail.

3 File not avail.
4 Abs. Fac. not avail.

5 rd not avail.

Unable to locate program p.

Servos uu should be rewound

Memory Dump nn for Program

p has been placed on reel
r of file fe on servo uu. If an

informational dump, PD

replaces nn.

Program p has been jettisoned
...

due to invalId request 01

locator.

All runs completed

Program p has terminated

Table K-2. Type-Outs

up-

ACTION

Try again later

After resetting clock,

execute a "C" un-

solicited type-in

I

I
I

I

2558

CODE

01

37

15

55

45

I 51

36

25

35

54

56

39

I 38

l 51

i

SECTION:
Appendix K

PAGE:
3

SECTION:

Appendix K

PAGE: up· UNIVAC m SALT
4 2558

SALT CONSOLE MESSAGES - EXECUTIVE ROUTINE

MESSAGE REASON ACTION CODE

I. $~pppppppppppp~nnnnn~mmrnmm Program p has been assigned 19

2. T ~CHMFEMrulSER designation rd, memory nnnnn

2. t~chMfe through mmmmm, facilities as

2. t~chMfeMMuu tabled.

2. t~chMfeMMuuMuu
2. ~chMfeMMuuMuuMuu
2. * Choose option:

I. SM.I. 1. Accept allocation 20

I. SM2. 2. Reject allocation

I. SM3. 3. Change allocation
(See message no. 21)

I. $MTF~~CHMU~UUMUUK* Results from option 3 of 21

I. SMtfeMMchMuUMuuMuuk. message no. 20. If k = A Type in change.

I. $MTFE6NMCHMUUMUUMUUK.~INVAL* more changes requested,
repeat 21. If k = Z, stop.
H type-in in error, 21
repeated with INVAL typed.

3. $MKOTUU* Now ready to accept faci-

lity change Type in requested info. 22

3. SA~kotuu. to change unit u of type

3. /MINVAL* t according to o.

0 Type of Change 23

1 Move to down status

2 Move to up status

3 Use as log tape

4 Ignore request

k= ~, repeat 22 for more
changes

k= Z, last change.

INV AL type out indicates
last change invalid, 22 is
then repeated.

/. $Cch~uu~FLTk* UNISERVO IlIA fault 10

k Type of Fault

A 10 consecutive error A's

B 3 consecutive error B's

F Servo uu unavailable

M Memory access error

P Power failure Choose option;

I. SCchMOK. repeat order

I. SCchMNG. terminate run

2. $Dch~uu~LAB~ffff~dddddd~rrr Executive rerun label check 47
TAP~ffff~dddddd~rrr*

2. SD~CK. Repeat order for new

tape.

1. Header = ccccc{rdM.!".

2. Header = ccccc{OO)tl,".

Table K-3. Type-Outs Soliciting Replies

SECTION:

UNIVAC ill SALT
Appendix K

up· PAGE:
2558 5

SAL i CONSOLE MESSAGES

MESSAGE REASON ACTION

NAME* Assembly ready. Type in name of program to
be assembled.

SMPPPPPPpp·

TobIe K-4. Assembly

SAL T CONSOLE MESSAGES

MESSAGE REASON ACTION CODE

$Cch~RD~kkkkkk* Error in Card Reader 513(80)
k Error 513(90)

FALT* Fault
ERR* Rd chk err.
OPCONT Operator

contingency
SC~RD~OK. Repeat order

$Cch~PU~kkkkkk* Error in Punch Unit 529(80)
k Error 533(90)

FALT* Fault
ERR* Pnch chk err.
OPCONT* Operator

contingency
Repeat order

$Cch~uu~u~R~k* UNISERVO IIA error 523

SC~U~OK. k = A«720); k = B(>720) Repeat order

ICchuu~U~kkkkkkkk* UNISERVO IIA error 525
k Error

2BLK RD* Two-block read
INST ERR* Instruction error

$Cch~PTP~kkk* Paper Tape Punch error 537
k

I
Error

FLT Fault

I
LPA

I
Low paper

I I ERR Error
SC~PTP~OK. Repeat order

$Cc~PTR~F L T* Paper Tape Reader Fault. 542

SC~PTR~OK. Repeat order

Table K-S. Input-Output Routines

SECTION:

i

Appendix K

PAGE: I U P-
6 2558

UNIVAC m SALT

I

SAL T CONSOLE MESSAGES

MESSAGE REASON ACTION CODE

/Hchuu~LAB~ffff~dddddd~rrr* File with label f, d, r 321
accepted

$Dchuu~LAB~ffff~dddddd~rrr Tape on servo uu does 322
TAP~ffff~dddddd~rrr* not contain expected

SD~CK. f, d, r Choose option:

SD~GO. Check new tape

Accept label

/Hchuu~BKS~bbbbbb~ER~B~eeeeee* Input tape on uu completed. 323

$Dchuu~BKS~bbbbbb~ER~B~eeeeee Block count error on uu. 324
TAP~bbbbbb*

SD~GO. Accept count &

continue

$Ochuu~SENT* Have reached end of tape 325
uu. Exercise option to

process as end reel or

end file. Choose option:

SO~ER. End reel

SO~EF. End file

/Hchuu~kkk~ffff~dddddd~rrr Tape completed on servo 327
BKS~bbbbbb~ERR~eeeeee* uu. If kkk = EOR, end of

reel; EOF, end of file.

$ch~kkk~nnn* Error condition in Printer: 520
kkk Error
FLT Fault

IPC Instr. err.

DPC Data err.
OOP Out of paper

nnn = Line no. Choose option:

SC~OK. Repeat order
SC~NG. Terminate

Table K·6. - SER3ZZ and PRNT07ZZ

UNIVAC ill SALT
I

SECTION:

, Appendix K

up- PAGE:
2558 7

SAL T CONSOLE MESSAGES

MESSAGE REASON ACTION CODE

IJ~kkkk~INIMUM* kkkk = SORT or MRGE. 405
Jettisoned due to (Sort)
insufficient facilities 385

(Mrge)

l~kkk~RELAuun* Servo uu released by kkkk 406
(SORT or MRGE) (Sort)

386
(Mrge)

IJchuu~SORT~VOL Sort volume exceeds 410
BKS~bbbbbb~ERR~~eeeeee* Capacity of Servo uu.

IJchuu~BKS~bbbbbb~SORT Sort jettisoned due to I 421
TAP~bbbbbb* block count error on uu.

IHchuu~SRT~ffff~dddddd~rrr Output reel on uu from 448
BKS~bbbbb~ERR~eeeeeee* multicyc1e sort.

I

IH~SORT~C~PT~nn* M ulticyc1e point nn 446

established by sort

I H~SORTMn~C* Processing at MC point nn 447

initiated

Merge Refer to Table K-6,

Input label check passed message num ber: 321 390
Input label check failed 322 391

Refer to Table K-6, for message End inpu t tape 323 387

format. Input blk count error 324 392

Multilevel output label 327 393

I~LEVE~nnn~~nn* Level n merge n initiated. 396

Table K-7. Sort/Merge

SECTION:
i

Appendix K I

I
PAG E: I up·

8 2558

UNIVAC m SALT

SALT CONSOLE MESSAGES

MESSAGE REASON ACTION CODE

I /D~OCS~ERRO~19~ppppppp~aaaa* Dating parameter aaaa 785
in Program p not specified

/J~OCS~ERROR~nn~*c---C.
oes jettisoned due to error
nne 767

c---c cols 1-24 of incorrect +nn

oes control card.
(See Table K-9.).

PARAMETE~CARD~nn~aaaa In addition when nn = 4 or 5,

nnn equals the parameter

card number that caused the

error. (Since oes control

cards are not numbered, the
parameter card number refer

to an internal program card

count of the parameter cards.)

aaaa equals alph combination

of current parameter card.

OVERFLOW~OCS~C---C. Overflow has occured, c---c

equals contents of columns

1-24 of current oes control
card.

INVALID~OP~OCS~C---C Invalid operation code.

c---c equals contents of
columns 1-24 of the current
oes control card

ERROR TYPE-OUTS

ERROR NUMBER EXP LANATIONS

I~ Columns 1 - 10 of header card do not contain O~C~S~RUN~.

~ Column 12 of header card does not contain a servo number
between 0-9.

3~ Columns 21 - 24 of header card do not contain correct information.

* 4-~ Parameter card contains a wrong sign or mode.

* 5~ More than 50 parameters have been given in the parameter cards.

Table K-8. Obiect Code Service

UNIVAC ill SALT

I
up·

. 2558

!

SECTION:

Appendix K

I PAGE: 9

ERROR TYPE-OUTS (cont'd)

ERROR NUMBE R EXPLANATIONS

6~ PID of control tape does not correspond with PID of MRF tape.

7!!. Columns 21 - 24 of program call card do not contain correct

information.

8!!. Columns 13 - 20 of program call card do not contain spaces.

9t. Current block on input tape does not contain correct form of

ZOZO's I

10 Current block on input tape does not contain ZAZA's in words
1-2. The number of memory locations of current load does not agree

with word 8 of current ID block.

II PID of control tape is found to be equal to or less than PID of

MRF.

12 Sentinel is not at the end of the facilities list of the PID block.

I 13 Current block # of tape is greater than block # of correction word.

14- Program card count is wrong.

15 Column 22 indicates that a certain tape is needed but it has been
I
I previously released; or "D" or "U" tape has been called but has

I I
been released.

16 Program cannot be found on the debugged tape.

17 Program cannot be found on the undebugged tape.

18 Block and word correction card contains wrong information

concerning number, mode and sign of corrections.

19 Key word (KEYS) on input tape indicates that there is a parameter

change but the current Alpha combination cannot be found in either
parameter table. (Although there will be a typeout, OCS RUN will

continue without any type-in.)

20 Block and word corrections are supposed to be continuous but

number of words do not equal 2 or 3.

21 Corrections to key words cannot be made to both MRF and MIT, and
consecutive corrections cannot extend beyond 1 block (only words

1-60 can be corrected.)

22 Column 12 of program call card is incorrect.

I
23 Control tape states that the N + n version of a r~utine is supposed I

to go on the MRF. This is not allowed.

i 24- Incorrect sentinels on control tape or input MRF. !
25 Control tape cards are out of sequence.

Table K-8. Obiect Code Service (cont'd)

SECTION: I
Appendix K

I Up-
PAGE:

10 2558

SAL T CONSOLE MESSAGES

MESSAGE

Ip~DIA~INST.~nnnnn~REFER.~mmm*

$P~DIA~INST.~nnnnn~REFER.~mmm*

SP~T.aaaaa.

SP~G. aaaaa.
SP~X. aaaaa.
SP~CLOSE.

SAL T CONSOLE MESSAGES

I MESSAGE

$Dchuuffff~ddddddd~rrrrrr~ERR*

SD~RRCK.
SD~FRCD.

$O~NOR~O~FER*

SO~NORM.
SO~XFER.

SO~SLCT.

$O~BEGIN~END*

SO~mmlTlf1ltlnnnnn .

Ip~DI A~OVERFLO*

Ip~DIA~INVALID*

UNIVAC m SALT

REASON

Tested program refers to
absolute address m-m from
relative address n-n. m-m
will not be changed

Tested program refers to

absolute address m-m

from relative address n-n.
m-m will be changed or

a transfer to it will occur.

Table K·9. DICON3ZZ

REASON

File f, d, r accepted
as input

Wrong label on input

tape

Edit option to be

chosen

Results from selection

of the third option

of preceding response

Unexpected overflow.

Run terminated.

Invalid operation code.

Run terminated.

Table K· 70. Diagnostic Edit

ACTION CODE

Run continues.

Instruction not executed.

Choose option:

resume trace at aaaaa

resume guard at aaaaa

resume run at aaaaa
terminate run

ACTION

Choose option:

check new tape
accept wrong label

Choose option:

edit all data

edit transfers only
edit selected blocks of

of input

805

886

Type in beginning (mmmmm)
and ending (nnnnn) block
numbers.

I

<

UNIVAC ill SALT

SALT CONSOLE MESSAGES

MESSAGE

~kkkkkk*

~RESUME.

D~DECK~ID~ERR*

D~HD~CD~ERR*

D~PROGL\ERR*

D~SEQ~ERR*

Hchuu~kkk~ffff~dddddd~rrrr

BKS~bbbbbb~ER~eeeee*

SALT CONSOLE MESSAGES

$ch~TAPE*

SO~OK.

$O~BC~EO*

MESSAGE

SO~~nnnnn~ .

I

REASON

Reader off normal

kkkkk Condition

CD~ER~ Error
FAULT~ Fault

OPCONT Operator

contingency

Incorrect card ID. Card

skipped and placed in

error stacker.

Header card incorrect or

missing. Run terminated.

Possible program error,

header-card error, or

machine malfunction. Run

terminated.

Sequence error.

kkk Condition
EOF End of file

EOR End of reel

Table K-17. Card-fe-Tape Run

REASON

Ready for new input

Reposi tioning of tape

has been requested.

Table K-72. TPTOPR07

I
i

I
11

I

up-
2558

ACTION

SECTION:

Appendix K

PAGE:

11

Replace rejected cards and

resume run.

ACTION

Mount new tape.

Type in beginning (mmmmm)

and ending (nnnnn) block

numbers of area to printed.

SECTION:
I

! Appendix K
I

PAG E: I Up·
12 2558

UNIVAC m SALT

SALT CONSOLE MESSAGES

MESSAGE REASON ACTION

I $8LPI~11~15~FORM* SAL T-type input file Start printing if proper form

I ready for printing. on the printer.
SO~OK.

$O~PATTERN* Printer test pattern Check test pattern and
printed out. choose option:

SO~OK. Start printing.

SO~RT. Repeat pattern.

SO~S. Rewind tape.

SO~TR. Terminate TPTOPROl.

$O~ERR* Printer data or instruc- Choose option:
tion error.

SO~OK. Repeat order.

SO~BP. Bypass order.

SO~RP. Reposition tape.

SO~TR. Terminate TPTOPROl.

$O~FLT* Printer fault Choose option:

SO~OK. repeat order •
SO~BP. bypass order

SO~RP. reposition tape

SO~TR. terminate run

$O~OOP* Printer out of paper Choose option:

SO~OK. repeat order

SO~RP. reposition tape

SO~TR. terminate run

$O~EOFEOR* End-of-file or End-of-file Choose option:

SO~TT. next report on same tape

SO~NT. next report on new tape

SO~TR. terminate run
~

/ ~MBC~bbbbbb* Machine block count on
input tape = bbbbb.

TobIe K-72. TPTOPR07 (co"t'd)

APPENDIX L. SOURCE-CODED ROUTINES

SUPPLEMENTING -SER3ZZ

UNIVAC ill SALT

I
up·

. 2558

i SECTION:

I Appendix L

i PAGE: 1

APPENDIX L. SOURCE-CODED ROUTINES

SUPPLEMENTING -SER3ZZ

A. OWN CODE LABEL ROUTINES

The generated input-output system provides for automatic and conventional processing of
tape labels. This processing takes place during the execution of the macro-instruction
m*ST ART f, and also whenever a new tape for file f is initiated during a run.

Conventional label processing for input files entails the following:

• Adding 1 to the file's reel count. Reading a conventional twelve-word label block
and adding 1 to the file's block count. (Words are numbered 0 through 11). Label
block is read with a Forward-Scatter-Read (FSR) using three SCAT words.

• Comparing word one (the file name), word two (the date), and word three (the reel num­
ber of the read block), with the corresponding information fields prestored in the TAP E
packet for the file. The TAPE packet is constructed by -SER3ZZ from the information
supplied in the parameters.

• If the label check fails, a message is typed out on the console printer requesting
that the operator mount the correct tape. The new Tape's label is checked as per (2).

Conventional label processing for output files entails the following:

• Writing a conventional twelve-word block on the output tape and adding 1 to
the file's block count (in the file's TAP E packet). The label includes the file
name, date, and reel number plus 1 as obtained from the file's TAP E packet. It
also includes the block size and item size of the file as obtained from the input­
output routine proper. As with the input file, all of the information is as supplied

in the parameters to -S E R3Z ZI" The label block is over written (OWT) using three
SCAT words.

B. OWN CODE LABEL PROCESSING

• When the conventional label processing outlined above is not satisfactory, the user may
supply an own code label processing routine for any given file. A tag naming the first
line of this routine is supplied as parameter P6 of the FI LE, statement.

• The user's own code label routine will be executed by the input-output routine when
each tape of the file concerned is initiated. Its first line must be the NOP, line named by
the tag supplied as P6 of the FILE, statement.

• The last line of the own code label processing routine must be in the form, IA" TUN" tag,
where tag is the tag of the NOP line.

• When control is transferred to the own code routine, Index Register 3 contains the first
address of the segment in which the tag appears.

SECTION:
Appendix L

UNIVAC m SALT
PAGE: UP·

2 2558

Index Registers 1, 2, 4, and 7 are loaded with meaningful information which they must
contain when control is returned to -SE R3ZZ.

The users own code label routine should not be in a segment mapped by one of these
index registers. The contents of all other index registers will be the same as when they
were loaded by the source program prior to the initiation process.

All the arithmetic registers are available for use by the own code routine as are the
indicators High, Low, Equal, and the sense indicators.

When control is transferred to the own code label routine, the following information
supplied by the input-output routine, can be accessed:

• The TAPE Packet

Each TAP E packet is in the form:

Word 1
2
3
4

ffff
dddddd
txOrr
y-y b·b

File Name (alphabetic)
Date (decimal)
rrr (decimal reel count) initially equals 000)
b·b (block count in binary, bits 1-18).

The first word of each packet is tagged m*T APE f, where f is an alpha file designa­
tion. Access to a word is obtained by using instructions indirectly addressing a
LOCA (of the tag plus an address modifier) when needed. For example to load the
block count into ARI execute, IA" L, 1, L/m*T APE f + 3,.

when using information from the TAP E packet the programmer must not alter the sign
of word one, the bits 13-25 of word three, bits 19-25 of word four.

• To set the block count of file f to zero (0), execute the instruction: 4, TR" m*ZEROBC,.

C. OWN CODE ROUTINES DEALING WITH TWELVE-WORD LABEL BLOCKS

When own code deals with label larger than the standard 12 word size it must provide

for the following:

• Input

To have an input-output subroutine read the label block and add 1 to the block
count, execute the instruction: 4, TR" m*R EADLAB,.

Control is returned to the own code label routine with the twelve-word input label
available in memory. The label is in a segment mapped with Index Register 4.

The first word of the twelve-word area is tagged m*LABAREA,. If pertinent, own
code should access and increment the reel count prior to executing this subroutine.

SECTION:

UNIVAC m SALT
Appendix L

up-
2558

Access to a gi ven word in the label area is obtained by using an address modifier in
combination with the tag. The instruction must be modified by IR4 which is loaded with
the starting address of the area by the input-output routine. For example to load AR1
with the last word of the label block use, 4, L, 1, m*LABAREA+11,.

The own code routine performs all checking of the delivered label.

• Output

The own code routine must store the desired label information prior to executing the
above instruction. The reel count must be incremented where pertinent. For example,
using IR4 as loaded by the input-output routine, the contents of AR's 1, 2, 3, and 4
can be stored in the first four words of the label area by the executing the follow ing:
4,ST,1234, m*LABAREA+3,.

To have an input-output subroutine write a 12-word label block and add one to
the block count, execute the instruction 4, TR" m*WRITELAB.

When own code deals with label blocks larger than the standard 12-word size it must
provide for the following:

• Independent reading or writing of label blocks.

• Storage area for the label block to be read or assembled.

• Indicator coding to monitor completion of the read or write.

PAGE:

• Incrementing of block counter for each block read or written and incrementing of the
reel counter.

Use of own code label for any file inhibits the standard typeouts associated with normal
input label checking.

3

APPENDIX M. SOURCE-CODED ROUTINES

SUPPLEMENTING PRNTOl ZZ

L

SECTION:

UNIVAC ill SALT
Appendix M

up· PAGE:
2558

APPEND!X M. SOURCE-CODED ROUTINES

SUPPLEMENTING PRNT01ZZ

A. NEW PAGE SUBROUTINE

PSI

The new page coding supplied by the programmer is a closed subroutine. It is entered by
the print routine when a newpage condition will result from the execution of a m*PRINT,
macrosinstruction using the advance n lines option.

1. Format. The first line of the subroutine is an NOP line named by the permanent tag
which was specified in parameter Ps of the routine calling statement. The print routine
records the return address in this line and transfers control to the following line, which
begins the actual new page coding. The last line of coding in the subroutine must trans­
fers control to the return address.

First and last lines of new page subroutine

TAG C FORM CONTENT

i I I 1 I I I 1 I NI 01 PI' I : I F I 01 Rt I RI E I T I U I R I N I 1 T I 01 I PI R I NIT I 0 ill Z I ~
-

Main Body of New Page Subroutine Coding

\

1

~ : : : : : : : II : : : : : : : : :: :::::: :~
2. Entrance Conditions.

a. Index Register 3 contains the address of the first line of the segment containing

tag Ps.
b. Information necessary to the print routine is present in Index Registers 1 and 2, and

must be preserved. Therefore, if these registers are used by the subroutine, their
initial contents must be restored before control is returned to the print routine.

c. The X LS T word for the line being printed is in memory location m * R EQ, and Index
Register 1 contains the se gment address of this line.

3. E xi t Condi tions.

(1) The print order which caused entry into this,subroutine is executed, using the cur­
rent form of the XLST word located in m*REQ,.

(2) The printing of the original line, or any lines printed during the execution of this
subrou tine, doe s not cause re-en try into the subroutine.

SECTION:

Appendix M

PAGE:
2

UNIVAC m SALT

I

UP·
, 2558

B. RECOVERY CODING

The recovery coding is entered at the operator's option when a printer malfunction occurs.

1. Format. The first line of the recovery coding is a self-referencing SGAD line, contain­
ing the same permanent tag in the tag and content fields. This tag was specified in
parameter P9 of the routine calling statement. The recovery coding is entered at the
line following the SGAD line.

CONT~~

2. Entrance Conditions.

(1) Index Register 1 contains the word produced by the SGAD line.

(2) Arithmetic Register 2 contains a one-character operator message code in the most
significant character position. This message code is specified by the programmer in
creating operating instructions for the program. It allows the operator to inform the

program of the nature of the malfunction which occurred. Thus, one of several alterna­
tive procedures supplied by the source program may be selected for execution.

3. Exit Conditions.

If the recovery procedure includes further printing, the print routine must be reinitialized
(using m*INIT,) before any other macro-instructions are executed. In this case, the
recovery coding should include typeouts to the operator concerning the repositioning of
the print forms.

C. ALTERNATE METHOD OF PAPER ADVANCE

When space is a concern in the source program. the user may choose not to use the macro­
instructions m*PADN, and/or m* PADTO L,. The paper advance functions provided by these
instructions may be accomplished through use of the m*SELECT, and m*PRINT, macro­
instructions.

The m*SELE CT , macro-instruction is executed to place the address of the third word of
a new Print Packet in AR3. In this case the user is not concerned with the associated
current area as no printing is to be done.

Information fabricated by a special XLST word should be placed in AR4.

The coding format of an XLST line is described below:

FORM CONTENT

SECTION:

UNIVAC ill SALT
Appendix M

Where: 64, = always present

p = paper advance specification

= fl., to advance paper n lines.

= M, to advance paper to line I.

up·
2558

n = a decimal number defining either the number of lines, n, to be advanced or I,
the line to be advanced to. The meaning of n is established in p.
(0:$n:$1023)

With AR3 and AR4 loaded as described, execution of the m* PRI NT, macro-instruction
will cause the specified paper advance to occur.

D. SOURCE PROGRAM PRINT PACKETS

One to five areas are supplied automa tically by the printer routine (specified by para­
meter P10)' The source program may create additional 32-word printer storage areas.

These areas will be located in the coding of the source program and are allocated by the
source program. In addition to establishing these areas, the source program must provide a
three word print packet for each area. These packets must have the following format:

FORM CONTENT

Only m in the a bove example is variable. m is the a ddress (tag or decimal) of the first
word of a source program 32-word printer storage area.

The source program will assemble a printer line in such an area. To cause the area to be
printed use the macro-ins truction m * P RI NT, as described. Place the address of the third
word of the print packet associated wi th the area to be printed in AR3.

PAGE:

After a source program printer storage area is submitted for printing, without specifying to
retain in associated line the X LST I line control of the area is released to the Printer routine.
be obtdned via the macro-instruction m*SELECT,.

3

APPENDIX N. DATA FABRICATION

FOR EXECUTIVE ROUTINE

SECTION:

UNIVAC ill SALT
Appendix N

up· PAGE:
2558

APPENDIX N. DATA FABRICATION

FOR EXECUTIVE ROUTINE

Designations to be written in XLOC line of the content field. CARl must always contain the XLOC
word when the Executive Routine is entered to accomplish the function.)

rul'lll.. I lUi'll vr;;.:u",r;;LoI '" "''' "''''''
,." .,..,. 1110..,....,.."' l"'\,~rln~1"'\. I olD') I ADA

1. Termination, normally used when the , ,
successor program (if any) is to be

loaded

2. Termination with print dump. EP , , XFAD

3. Termination with print dump and

rewind servo on which dump was

placed. REP, , XFAD

4. Termination with carryover of C, , (LOCA) address

facilities. of the listing

developed from

XFRE forms.

5. Termination with carryover of CP , , X.FAD LOCA (same as 4)

facilities and print dump.

6. Termination with carryover of RCP , , XFAD LOCA (same as 4)

facilities and print dump and

rewind servo on which dump

was placed.

7. Jettison. J , ,

8. Jettison with print dump. JP , , XFAD

9. Jettison with print dump and RJP , , XFAD
rewind servo on which dump

was placed.

10. Early release of files. F, m
1

, LOCA

(same as 7)

11. Locate on overlay 0, (LDID: m
2

, LOCA

LEGEND (same as 7)

m = Address of facility list (X F R E) •
1

SAMPLE CODING: Jettison with print dump rewind dump tape

I
m = Tag of load statement. TAG C FORM CONTENT

I
2 (

AR2= Return address from locator. I I I I , I , I 1 1 ll'llI3 1 '1 J I EITI TIP I T D,P I '1

AR3= External iile to receive dump I I I • , • , • I I, AI , I , I T lUI N I " ,,$, l, ° C 2 ,3 , \
(

(XFAD). , , , , , , , * XlllO,C RI J] PI' 1'1 I I I I I I I I (

AR4= Address of facility list J,E,T,TP TOP - XIF,A,D 2, " ' I I I , j I I I I I I(

XFRE words). -- -

1

APPENDIX O. KEYPUNCHING AND SEQUENCING

ASSEMBLY CARD INPUT

This appendix describes the SALT Assembly input cards and the sequence in which they
are to be introduced to the computer.

The relationship of command codes is depicted in Figure 0-1. The instructions for punching

SAL T code cards are presented in Table 0-2.

UNIVAC ill SALT

Library Command
--------.

1. { LlBRARY* l
SALT Assembly Commands

There must be
at least 1;

2. "'""-

-----------1

\ :
ASSEMBLY I

for each library 1
entry

I
I
I

Routine Commands
----------:1

{ LABEL

I 2 { DELE

any combination I 3 { CORR**
3.~~~ ________________________________ ~

I
I
I
I
I
I
I
I
1

up·
2558

Correction Commands
I

I I
:II

1
4 <

I

(

Examples of Different Combinations:

(1) (2)
LI BRARY LIBRARY
ASSEMBLY ASSEMBLY
LABEL DELE

(5)
LIBRARY
ASSEMBL Y
CORR

* INDEX may be used in content field.

** PRINT may be used in content field.

optional--{

1 {

~ 2 { any
combi nation

\ 3 { L{
(3)

LIBRARY
ASSEMBL Y
CORR
REFR
REPL

REFR

REPL

ERAS

ERAS

PTCH

(4)
LIBRARY
ASSEMBLY
CORR
REFR
REPL
ERAS
PTCH

Figure 0-1. Relationship of Command Cards

SECTION:

Appendix 0

PAGE:

1

SECTION:

Appendix 0
UNIVAC m SALT

PAGE: UP·

2 2558

SAL T code is to be key.punched into cards in the following manner:

FIELD COLUMNS

Program Identification 1 - 8 (optional)
Card Number (page & line) 9 - 13 (optional)
Optional external use 14 - 20
Item Number 21 - 28
Tag 29-36
Class 37
Form 38 - 41
Content 42 - 80
OPtional external use 81 - 90 (90 Column only)

The following special symbols used in SALT should be punched with the multi-punch combinations indicated.

SYMBOL PUNCH CONFIGURATION CHARACTERS TO PRODUCE
CONFIGURATION

80 COLUMN 90 COLUMN 80 COLUMN 90 COLUMN

) 1-4-8 1-3-5-7 @ and 1 P, and 5
; (sem i-colon)} * 4-5-8 1-3-5-7-9 @ and 5 F, and I

= 4-5-8 1-3-5-7-9 @ and 5 F, and I
(3-5-8 0-5-7-9 # and 5 X, and 5
: (colon) 12-4-8 1-3-7-9)(P, and 9

(period) 12-3-8 1-3-5-9 . (period) A, and 3
* (asterisk) 11-4-8 0-1 * (asterisk) sym. key

$ 11-3-8 0-1-3-5-9 $ B, and V

+ 4-8 1-5-7-9 @ F, and 5
I 0-1 0-3-5-7 I W, and 5

, (comma) 0-3-8 0-3-5-9 , (comma) V, and 5
- {minus} 11 3-5-7-9 - T, and 5 . (aspostrophe) 4-6-8 0-1-3-7-9 @ and 6 W, and 2
3-8 0-1-5-7 # U, and 1

& 12 0-1-3-5-7 & D, and R

% 0-1-5 @ and 0 (zero) B, and (zero)

Program card for SO-column keypunch may' be plJnched in the following format.

COLUMNS PUNCHES CHARACTER

1 1 1
2- 8 12 - 1 A

9 1 1
10-13 12 - 1 A

14 1 1
15-20 12 - 1 A

21 1 1
22-28 12 - 1 A
29 1 1
30-36 12 - 1 A
37 1 1
38-41 12 - 1 A
42 1 1
43-80 12 - 1 A

• These characters are normally mutually exclusive in a sinSle system.

Table 0-7. Instructions for Punching SA L T Code Cards

SECTION:

UNIVAC ill SALT
Index

I
up-

. 2558
PAGE:

1

INDEX

A B
Abso! ute Locations Ann~nriiY n_~ Basic Area (low-order memory) Appendix D r 11"1""'11""1" _ ""

0-4 Binary Format 2-B-1
Activating Diagnostic Functions 9-0-1 Bypass of Bad Records 5-F-4

to Bypass Sentinels Appendix F-1,
9-0-6 F-3

Address 2-C-3 C
abbreviated implied address 2-C-7
absolute address 2-C-11 Call ing Statements: 5-A-2

address modifiers 2-C-8 card punch routine (80-column) 5-0-4

components 2-C-11 card punch routine (90-column) 5-E-4

decimal address 2-C-8 card reader routine (80-column) 5-8-3

implied address 2-C-6 card reader routine (90-column) 5-C-4

i nd i rect add ress 2-0-1 diagnostic routine 8-A-4,

local reference point (LRP) 2-A-3, 8-A-5

2-C-4, paper tape punch 5-G-4

2-C-5 paper tape reader 5-F-5

multiword addressing 2-C-9, printer routine 5-H-4

2-C-10 UNISERVO IIA 6-A-5

permanent tag address 2-C-3 UN ISERVO lilA 6-8-9

program relative address 2-C-11 Card Codes Appendix 0

reflexive address 2-C-4 Card File, opening the 5-C-3

segment relative address 2-C-11 Card Image 5-B-2,

standard location addressing 2-C-9 5-C-3

temporary storage tag address 2-C-5 Card Number Field 2-A-3

Addressing Card Images 5-8-1 Card Punch (80-column) 5-0-1

Addressing Items 5-A-5 macro-instructions: 5-0-7,

Advancing: 5-0-8

card image areas 5-B-2, m*ADV 5-0-7

5-C-3 m*IHIT 5-0-7

card storage areas 5-0-3, m*PUHCH 5-0-8

5-E-4 Card Punch (90-co lumn) 5-E-1

item areas 6-B-5 macro-instructions: 5-E-6,

paper tape character storage areas 5-F-4 5-E-7,

ADV Group Call Statement 6-8-10 5-E-8

Alphanumeric Format 2-8-2 m*ADV 5-E-7

Alternate Method of Paper Advance Appendix M-2 m*IHIT 5-E-6

AREA Form 3-A-l m*-fUNCtt 5-£-8

Area Retention 5-H-1, Card Punching File 5-0-3

5-H-2 Card Reader (80-column) 5-8-1

Arithmetic Registers. (see Register) to

Assembly 9-B-1, 5-B-7

Appendix K-5 macro-instructions: 5-B-6

Assembly Entry 9-A-8 m*ADV 5-B-6

Asterisk (*) 2-A-4 m*IHIT 5-8-6

SECTION:

Index

PAGE: I , u p-
2

I

2558

UNIVAC m SALT

Card Reader (90-column) 5-C-1 INDEX 9-A-10

to LIBRARY 9-A-14
5-C-7 OMIT 9-A-14

macro-instructions: 5-C-6 PTCH 9-A-ll

m*ADV 5-C-7 REFR 9-A-10
m*INIT 5-C-6 REPL 9-A-ll

Card Storage Areas 5-0-3, SERS 9-A-13
5-E-3 SERVOSUM 9-A-13

Card-to-Tape Conversion 9-A-5 STOP 9-A-17
Card-to-Tape Messages Appendix K-ll Current Card Image Area 5-8-2
Categories of SA L T Statements 1-8-1 Current Card Storage Area 5-0-3,
Character Code Chart Appendix H 5-E-3
Character Codes Appendix E Current Input Item Area 6-8-5
Character to be Typed Appendix C-9 Current Output Item Area 6-8-5
Character Words 5-G-1 Current Paper Tape Character Storage Area 5-F-4,
Class 3-8-2, 5-G-3

3-8-3 Creating a New Library File 9-A-6
Class Field 2-A-4
Clock Reading 4-E-2 D
Codedit 9-8-1
Codedit Forms Appendix I -8 Data 810cks Appendix F-1,
Coded i t Li sti ng Appendix I Appendix F-3
Coding Form 2-A-1, Data Designations 2-8-1

2-A-2 Data Fabrication for Executive Appendix N
Commun ication with the Executive Appendix 0 Routine

Routine Data File Conventions Appendix F
Computer Indicator Designation 2-C-16 Data Forms:
Concurrent Processing 4-H-1 ALPH Appendix 8-1,
Content Field 2-A-4 2-8-2
Colon (use of) 2-A-4 BINY Appendix 8-1,
Contingency Indicators Appendix C-7 2-8-1
Control Word Indication 2-C-15 Data Sto rage 3-A-1
Control Words 2-0-1 Data Tape Formats Appendix F-2

Formats: Data Tape Correction Commands: 9-A-9
field selection 2-0-1, ADD 9-E-ll

2-0-2 CHNG 9-E-12
indirect address 2-0-1, COMP 9-E-4

2-0-2 COpy 9-E-7
index register modification 2-0-1 CORR 9-E-6

Conventions for Writing Designations 2-C-1 DELE 9-E-5
Copied Output File 6-8-3 ERAS 9-E-10
Copying Input Item Areas 6-8-5 OMNIFLEX 9-E-2
Correcting Programs: 9-A-9 PTCH 9-E-ll

ADD 9-A-15 READ 9-E-6
AND 9-A-14 REFR 9-E-10
CORR 9-A-9 REWI 9-E-7
DELE 9-A-12 REWD 9-E-7

9-A-16 SAMP 9-E-12
EDIT 9-A-14 SENT 9-E-7
ERAS 9-A-ll SKIP 9- E-10

SECTION:

UNIVAC ill SALT
Index

up- PAGE:
3 2558

SERVODEF 9-E-3 class 2-A-4

SERVOSUM 9-E-2 content 2-A-4

STOP 9-E-3 File Commands: 9-E-4

WAIT 9-E-8 COMP 9-E-l

Data Tape Service 9-E-1 COpy 9-E-4

to CORR 9-E-6

9-E-12 DELE 9-E-5

Decimal Addresses 2-C-14 READ 9-E-6

Decimal Format 2-8-1 REWI 9-E-7

Decimal Item Address 5-A-5 REWD 9-E-7

Delivered Output File 6-8-2 SENT 9-E-7

Dewey Decimal Numbers 3-8-1, WAIT 9-E-8

3-8-2, File Descriptions 6-8-1

3-C-3 Final Address Append ix J -2

Diagnostic Output Tape Unit 8-A-8 First Address Appendix J -1

Diagnostic Routine 8-A-1 Flag Symbols and Classification Codes Appendix E-2,

activation 9-0-1 4-E-2

general concept 8-A-l Form: Append ix 8,

memory guard 8-A-2 2-A-4

memory print 8-A-2 ~ (blank) Appendix 8-1

messages Appendix K-10 ALPH Appendix 8-1,

processing considerations 8-A-2 2-8-2,

rules of use 8-A-3 2-8-3,

trace 8-A-2 2-C-l,

Diagnostics Output Format Appendix J
4-J -2

DICON3ZZ. (see Diagnostic Routines)
AREA Appendix 8-2
BINY Appendix 8-1,

E 2-8-1,

Encoded Messages Appendix E-2
2-B-3,
2-C-l

End-of-File Sentinels Appendix F-1,
End-of-Reel Sentinels Appendix F-1,

CONF Appendix 8-3

EQDX Form 5-A-6
DATE Appendix 8-1,

EQUL Form 3-A~3
2-8-2,

Errors Detected During Assembly Appendix I -6
DCML Appendix 8-1,

Executive Area Appendix 0,
2-8-1,

3-A-4
2-8-3,
2-C-l

Executive Routine 4-H-1
commun ication Appendix N

DDML Appendix 8-1,

messages Append ix K-2,
2-B-1,

K-3,
2-8-3,
2-8-4

K-4 2-C-7

F DTOB Appendix 8-1,
2-8-1,

Facility Declaration Appendix I -q 2-8-3,
Field-Select, Control Word (FSEL) 2-0-2 2-C-7
Field-Selected Operands 2-0-3 EQDX Appendix 8-1,
Field Selection 2-0-1, 5-A-6,

2-0-2 5-A-7
Field, Coding Form EQUL Appendix 8-1,

card number 2-A-3 3-A-3

SECTION: I

Index I

PAGE: IUp
4 2558

UNIVAC m SALT

FSEL Appendix B-2, SGAD Appendix B-1,
2-0-1, 2-C-ll,
2-0-2 2-C-12,

INAD Appendix B-2, 4-C-2,
2-0-1, 5-A-8
2-0-2 SGMT Appendix B-2

INDX Appendix B-2
INOP Appendix B-3,

SGRT Appendix B-2,

4-0-1
5-A-3

10FS Appendix B-4 SLCT Appendix B-2,

LDID Appendix B-4
5-F-6,

LOAD 5-B-4
5-H-4,

LOCA Appendix B-1, 5-H-5

2-C-ll,
STOP Appendix B-3,

2-C-12 4-E-10

MAPS Appendix B-1,
STRT Appendix B-3,

2-C-13,
4-A-1,

2-C-14 8-A-3

MAXM Appendix B-3, SUBR Appendix B-2,

1 -4 5-A-2,

MCDF Appendix B-2, 5-A-4

2-E-2, TAPE Appendix B-4
2-E-4 TCON Append ix B-3,

MCND Appendix B-2, Appendix G-1,
2-E-2, Appendix G-2,
2-E-4 Appendix G-4,

MCRO Appendix B-2, 4-E-9
2-E-1, TPAK Appendix B-3,
2-E-3, Appendix G-1,
2-E-4, Appendix G-2,
5-A-4 Appendix G-4,

OTOB 2-B-1, 4-E-9
2-B-3, XFAD Appendix B-3,
2-C-7 4-1 -1,

OVER Appendix B-3, 4-1 -2
4-C-1 XFRE Appendix B-4

to XLOC Appendix B-3,
4-C-3 4-J -1,

PAPT Append ix B-4 4-J -2
PART Appendix B-3 XLST Append ix B-3,
PCH9 Appendix B-4 5-H-8
PNCH Appendix B-4 XMOD Appendix B-2,
PRNT Appendix B-4 2-0-1
RDER Appendix B-4 XPAK Append ix B-4
RDR9 Append ix B-4 Format Connector 5-F-5,
SCAT Appendix B-4 5-G-3,
SER2 Appendix B-4 5-G-4
SER3 Append ix B-4 Formats, data-word Appendix C-1,

8-A-8 2-B-1
alphanumeric 2-8-2

SECTION:

UNIVAC ill SALT
Index

up· I PAGE:
2558 5

binary 2-8-1 Input-Output Channe Is Appendix C-6
decima I 2-8-1 Input-Output Indicators Appendix C-7
i nstruction-wo rd 2-C-1 Input-Output Macro-Instructions 5-A-4,
multiword data 2-8-2, 5-A-5

2-8-5 Input-Output Routines 5-A-1
Form Field Summary Appendix 8 Instructions 2-C-1

Functional Description 5-H-1 Instructions for Punching SALT Code Appendix 0-2
Function Card 9-0-2 Cards

G
Instruction Summary Appendix C
Integration of Subroutines with the

Source Program
Group Call statement: card punch (80-co lumn) 5-0-5

ADV 6-8-10 card punch (90-col umn) 5-E-5
COpy 6-8-13 card reader (80-co lumn) 5-8-4
FILE 6-8-16, card reader (90-co lumn) 5-C-5

6-8-17, diagnostics 8-A-6
6-8-18 magnetic tape 5-A-3

HOLD 6-8-14 paper tape punch 5-G-5
MERGE LP 6-8-12 paper tape reader 5-F-6
PRESELECT 6-8-15, printer 5-H-5

6-8-16, UN ISERVO IIA 6-A-6
6-8-38 UNISERVO lilA 6-8-8

-SER3ZZ 6-8-10, Integration with the Source Program 5-A-3
6-8-39 Introduction of SALT System 1-A-1

SORT FP 6-8-12, Inval id Operation Code 4-0-1
6-8-13 Item Addressing with Permanent Tags 5-A-6

SORT LP 6-8-12 Item Description Packet 5-H-2
Item Manipulation 5-H-1

I Item Number 3-8-1,
3-8-2

Impl ied Addressing 2-C-6 Item Number Field 2-A-3

Index Register Address Modifier 2-C-11
Index Register, designation and mapping 2-C-12 J
Index Register Modification Control Word (XMOD) 2-0-4
Index Registers. (see Register) Jettison a Program 4-K-1

Indicator Coding 4-E-3 Jettison with Print Dump 4-K-1

Indicators Append ix C-6,
Job Commands: 9-E-2

OMN IFLEX 9-E-2
busy Append ix C-7 SERVOOEF 9-E-3
comparison Appendix C-3 SERVOSUM 9-E-2
contingency Appen'dix C-7 STOP 9-E-3
data-error Appendix C-7
end-of-tape Appendix C-7 K
initiation A'ppelidlxC-7
input-output interrupt Appendix C-4 Keyboard Request Appendix E-1

processor error Appendix C-4 Keypunching and Sequencing Appendix 0

sense Appendix C-3 Assembly Card Input

Indirect Address Control Word (lNAD) 2-0-1
Indirect Addressing 2-0-1
Informational Memory Dump 4-1 -1
Input File Records 6-A-3

I

SECTION:
I

Index
I

PAG E: [up·
6 2558

UNIVAC m SALT

L MAPS 2-C-13
Marker List (Exhibits) Appendix A-8,

Label Block Append ix F-2 Appendix 1-15
Label Block, Log Tape Append ix G-3 Master Instruction Tape (MIT) 9-C-2
Label Line 4-G-l Master Reference File (MRF) 9-C-l
Labe Is Appendix F-l Memory Address, Accessing 6-B-7
Library Commands: 9-A-13 Memory Address Errors Appendix C-8

AND 9-A-14 Memory Dump 4-1-1
EDIT 9-A-14 Memory Dump Routine 4-1-2
NEW (library) 9-A-14, Memory Guard 8-A-2

9-A-15 Memory Print 8-A-2
OMIT 9-A-14 Memory Print Output Appendix J-3

Library Entry 9-A-8 Miscellaneous Routines 8-A-l
Library File 9-A-l, to

9-A-4 8-A-8
Load Definition I-B-2, Modu 10 - 3 Errors Append ix C-8

3-C-4, Mu Iti pie Message Un i t Request 4-E-9,
3-C-5, 4-E-I0
3-C-6 Mu Itiword Data 2-B-2

Loads 3-C-5 Mu Itiword Data Des ignations 2-B-5
Local Reference Point 2-A-3 Mu Itiword Operands Appendix C-5
Log Information 4-F-l
Logging Appendix G N 4-F-l,

4-F-2 New Page Subroutine: Appendix M-l
Log Tape: entrance cond itions Appendix M-l

intermediate data blocks Append ix G-4 exit conditions Appendix M-l
labe I block Appendix G-3 format Appendix M-l
last data blocks Appendix G-5 Norma I Printing 5-H-9

Log Tape Conventions 4-F-2
Log Tape Formats Appendix G 0

M Object Code 1-B-1
Object Code Service (OCS) 4- J-l,

Machine Code Format Append ix G-2 9-C-l
Macro-i ns tructi ons 2-E-l to

calling 2-E-l 9-C-8
characteristics 2-E-l control card preparation 9-0-2
definition 2-E-1 correction card 9-C-6,
forms: 9-C-7

MCDF 2-E-2, DATE replacement 9-C-3,
2-E-4 9-C-4

MCND 2-E-2, error type-outs Appendix K-8
2-E-4 function card 9-0-2

MCRO 2-E-3, header card 9-C-3
2-E-4 header parameter card 9-C-2

integration of coding 2-E-3 packet cards 9-0-3,
usage 2-E-2, 9-0-6

2-E-3 parameter card 9-C-3
Magnitude Indicators Appendix J-2 program call card 9-C-4,
Mapping List Appendix A-8, 9-C-5

Appendix 1-14 program sentinel card 9-C-7,
Mapping Statements 2-C-12, 9-C-8

2-C-13 sentinel card 9-C-8

UNIVAC ill SALT
I UP- 2558

I
SECTION:

, Index

I PAGE: 7

Object Program Layout
Octa i Operator
OMNIFLEX III Routine.

(See Data Tape Service)

Opening:
card punching file

card reader fi Ie

magnetic tape fi Ie
paper tape punching routine

Operation Code
mnemonic

octa I
Operator

Orderly Stop
Output Fi Ie Records
Overflow

OVER Form
Overlay

Overlay Load
Own Code Label Processing
Own Code Labe I Routines

p
Packet Cards
Paper Positi on ing
Paper Tape Punch

macro-instructions:
m*INI T
m*RDPT

Paper Tape Reader

macro-instructions:
m*IN I T
m*PUNPT

Permanent Tag
Positioning Segments

3-A-1
Append ix C-l

9-E-l
to

9-E-12

5-0-3,
5-E-3
5-8-2,
5-C-3
6-A-3
5-G-3

Appendix C
Appendix C-2,

C-5
Appendix C-2

2-C-2,
2-C-3
4-J-1
6-A-3
4-C-1,
4-C-2,
4-C-3
4-C-2
4-8-1,
4-8-2
4-8-1

Append ix L-1
Append ix L-1

9-0-3
5-H-2
5-G-1

to
5-G-7
5-G-;6
5-F-8
5-F-8
5-F-1

to
5-F-9
[" r- n
;'}-r-Q

5-G-6
5-G-6
2-A-3
5-8-5,
5-C-5,
5-0-6,
5-E-5,
5-F -7,
5-G-5,
5-H -6,
6-A-7,
A-Ll-h

Positioning the Load

Preselect File Groups

Printer

macro-instructions:

m*INIT
m*PADN
m*PADTOL
m*PR I NT
m*SELECT

rna Ifunction
PRNT01ZZ message
Processing Considerations
Processing Diagnostic Output Tapes
Processing Paper Tape Character

Words
Processor Error Indicators
Program Area to be Covered and

Excluded in Diagnostic Functions
Program Commands
Program Contro I Statements
Program Instructions

Program Labe Is
Programming
Program Relative Address
Punched Card Preparation
Punch ing Cards from Storage Areas

Punching Paper Tape Character
Words

Punctuation Symbols:
asterisk
colon

comma
hyphen
minus sign
parenthes is
plus sign

5-8-4,
5-C-5,
5-0-5,
5-E-5,
5-F-6
5-G-5,
5-H-5,
6-A-6
6-8-38,
6-8-39
5-H-1

to
5-H -10
5-H -7,
5-H-8
5-H-7
5-H-9
5-H -10
5-H-8
5-H-7
5-H-3

Appendix K-6
8-A-2
9-0-6
5-F-l

Appendix C-8
8-A-3

9-A-4
4-A-l
2-C-1

A P pe n d i x C-1
4-G-l
1-8-1
2-C-ll
9-A-3
5-0-3,
5-E-3
5-G-1

2-8-2
2-A-4
2-A-5,
2-8-2
2-8-2
Z-A-4
2-8-2
2-8-2
2-8-2

SECTION:
Index

UNIVAC m SALT
PAGE:

8 2558

R segment definition 3-C-l
segment re lative address 2-C-ll

Reading or Writing Magnetic Tape 6-A-l segment ZERO 3-C-2
Recovery Coding Appendix M-2, SEGnnn, 3-C-2

5-A-7 specifications by subroutines 3-C-4
entrance conditions Append ix M-2 Segments 1-8-2
exit conditions Append ix M-2 source program 2-C-7
format Append ix M-2 Se lect Option 4-E-12

Reflexive Address 2-C-4, Sense Indicators Appendix C- 6

2-E-l Sentine I Card 9-A-5
Register: 2-C-8 Servo Swap 6-A-19

address modifier 2-C-ll SERV02ZZ 6-A-l
arithmeti c 2-C-2 Sequentia I Ass ignment 3-8-1
index 2-C-2 Shift Count Designation 2-C-15

Relationship of Command Cards Appendix 0-1 (SR, SL, SAR, SAL, SBC)
Relative Address 2-C-ll Single Message Unit Request 4-E-6,
Rerun 4-L-l 4-E-7
Rerun Memory Dump 4-L-l Solicited Type-Ins Appendix E-l

Retaining Access to a Card Image 5-8-2, Sort/Merge message Appendix K-7

5-C-3 Source Code 1-8-1

Reta in iog Access to a Paper Tape 5-F-4 Source-Coded Routines Supplementing Appendix M

Character Storage Area PRNTOIZZ

Rewinding Magnetic Tape 6-A-4, Source-Coded Routines Supplementing Appendix L

6-8-23, -SER3ZZ

6-8-25,
Source Code Format Appendix G-2

6-8-26
Source Code Service I (SCS I): 9-A-l

6-8-30
adding to existing library 9-A-8

6-8-34
correcting source programs 9-A-9

Routine Designator 4-E-2
functions 9-A-6

Ru les for: Source Code Service II (SCS II) 9-A-12

activating diagnostic function 9-0-1
correction commands 9-A-12

using the diagnostic routines 8-A-3
functions 9-A-13
I ibrary commands 9-A-13

5 new program 9-A-16
program commands 9-A-15

SAL T Error Notes Appendix 1-4 sentinel command (STOP) 9-A-17
SAL T System l-A-l servo command (SERS) 9-A-13,
SAL T System Coding 2-A-l 9-A-15
SAL T System Message Tabulation Appendix K servo summary order (SERVOSUM) 9-A-13
Samp Ie Program Appendix A Sorting and Merging 7-1
SCS I. (See Source Code Service I) Source Program Print Packets Appendix M-3
SCS II. (See Source Code Service I) Special Programming Considerations 5-F-3,

5-G-2
Segmentation 3-C-l Standard Li brary 9-A-l

to Standard Location Addressing 2-C-9
3-C-6 Start (STRT) 4-A-l

forms: Starting Address 4-A-l
LOCA 2-C-12 Status Word 5-F-3,
MAPS 2-C-13, 5-G-2,

2-C-14 5-G-3
SGAD 2-C-12, Storage Area 6-A-2,

4-C-2 5-H-2
SGMT 3-C-l, Storing Data 5-C-l,

3-C-2 5-C-2,
SGRT 5-A-3 5-0-1

UNIVAC ill SALT
I SECTION:

I Index

2558 : PAGE: 9

Stori ng Data for Punch ing 5-E-l Tape to Piint (TPTOP ROl) messages Appendix K-ll,
Subroutines: 5-A-1 K-12

addressing 5-A-5, Trace 8-A-2
5-A-6 Trace and Memory Print Output Append ix J-4

calling statements 5-A-2 Trace Output Appendix J-1
forms, associated TUN Operator 4-C-3

SUBR 5-A-2 TUNS Form 4-C-3
SGRT 5-A-3 Two-Way Merge Appendix A
MCRO 5-A-4 Type 4-E-7

index registers and arithmetic Type-ins Appendix E-1,
registers mapping 5-A-4, Append ix K-2

Appendix A-8 Type-outs Appendix E-1,
markers 5-A-3, Appendix K-3,

Appendix A-8 K-4
parameters 5-A-1 Typewriter Control 4-E-1
recovery coding 5-A-7 to
segments 5-A-3 4-E-12

Successor Load 4-J-1 Typewriter Conventions Appendix E
Successor Program 4-J-1 4-E-1,
System Parameters 6-8-8 4-E-2
System Procedure Chart 9-A-2 Typewriter Message Log Appendix A-9

Tag Ed it List Appendix A-8,
Append ix I -13

U Tags:
fie Id: 2-A-3
loca I reference point 2-A-3, UN ISE RVO II A - Input-Output Macro-Instruction: 6-A-8

2-C-4 m*BWRITE 6-A-12
markers 5-A-3 m*INI T 6-A-8,
permanent 2-A-3, 6-A-ll

2-C-3 m*READ 6-A-9
temporary storage 2-C-5 m*RWI 6-A-10,

Tape Control Packet 6-A-4, 6-A-14
6-A-16 m*RWO 6-A-10,

Tape Control Word Registers Appendix C-9, 6-A-14
6-A-16 m*SWRITE 6-A-13

Tape Packet Appendix 0-2, general considerations for use 6-A-15
Appendix L-2 general exit conditions 6-A-15

Tape Routines 6-A-1, program requ irements 6-A-15
6-8-1 program restrictions 6-A-15

UNISERVO II A 6-A-1 UN ISE RVO III A - Input-Output 6-8-19
to Macro-Instructions:

6-A-20 m*ADV P 6-8-22,
UNISERVO IliA 6-8-1 6-8-27,

to 6-8-32,
6-S-3S 6-8-33,

TCON Form Appendix G-1, 6-8-35,
4-E-9 6-8-37

Termination 4-J-1 m*COPY F 6-8-28
TPAK Form Appendix G-1, m*COPY V F 6-8-29

4-E-9, m*ENDR F 6-8-25,
4-E-10, 6-8-30,
4-F-1 6-8-36

SECTION: I
Index i :

PAGE: 10-TJP.~~;-I
! !

UNIVAC m SALT

m*EHD F 6-8-23, W
6-8-26,
6-8-30,
6-8-34, Wa it Instruction's 9-0-1
6-8-37 Working Registers 2-C-2

m*FREE 6-8-31
m*HOLD 6- 8-31
m*START F 6-8-21,

6-8-24, X
6-8-28,
6-8-32,
6-8-35 XMOD Form 2-0-4

UNISERVO II A Tape Unit Control 6-A-1 XFAD Form 4-1-1
Subroutine to XFRE Form Appendix 8-4

6-A-20 XLOC Form Appendix N-1,
UNISERVO III A Tape Unit Control 6-8-1 4-8-1,

Subroutine to 4- J-1,
6-8-39 4-K-1

Unsolicited Type-Ins Appendix E-1, XL ST Form 4-E-7
Appendix K-2 XPAK Form Append ix 8-4

UNIVAC
OIVISION OF SPERRY RANO CORPORATION

UP.2558

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-A_01
	1-B_01
	1-B_02
	2-A_01
	2-A_02
	2-A_03
	2-A_04
	2-A_05
	2-B_01
	2-B_02
	2-B_03
	2-B_04
	2-B_05
	2-C_01
	2-C_02
	2-C_03
	2-C_04
	2-C_05
	2-C_06
	2-C_07
	2-C_08
	2-C_09
	2-C_10
	2-C_11
	2-C_12
	2-C_13
	2-C_14
	2-C_15
	2-C_16
	2-D_01
	2-D_02
	2-D_03
	2-D_04
	2-E_01
	2-E_02
	2-E_03
	2-E_04
	3-A_01
	3-A_02
	3-A_03
	3-A_04
	3-B_01
	3-B_02
	3-B_03
	3-C_01
	3-C_02
	3-C_03
	3-C_04
	3-C_05
	3-C_06
	4-A_01
	4-B_01
	4-B_02
	4-C_01
	4-C_02
	4-C_03
	4-D_01
	4-E_01
	4-E_02
	4-E_03
	4-E_04
	4-E_05
	4-E_06
	4-E_07
	4-E_08
	4-E_09
	4-E_10
	4-E_11
	4-E_12
	4-E_13
	4-F_01
	4-F_02
	4-G_01
	4-H_01
	4-I_01
	4-I_02
	4-J_01
	4-J_02
	4-K_01
	4-L_01
	4-L_02
	4-L_03
	5-A_01
	5-A_02
	5-A_03
	5-A_04
	5-A_05
	5-A_06
	5-A_07
	5-A_08
	5-B_01
	5-B_02
	5-B_03
	5-B_04
	5-B_05
	5-B_06
	5-B_07
	5-C_01
	5-C_02
	5-C_03
	5-C_04
	5-C_05
	5-C_06
	5-C_07
	5-D_01
	5-D_02
	5-D_03
	5-D_04
	5-D_05
	5-D_06
	5-D_07
	5-D_08
	5-D_09
	5-E_01
	5-E_02
	5-E_03
	5-E_04
	5-E_05
	5-E_06
	5-E_07
	5-E_08
	5-E_09
	5-F_01
	5-F_02
	5-F_03
	5-F_04
	5-F_05
	5-F_06
	5-F_07
	5-F_08
	5-F_09
	5-G_01
	5-G_02
	5-G_03
	5-G_04
	5-G_05
	5-G_06
	5-G_07
	5-H_01
	5-H_02
	5-H_03
	5-H_04
	5-H_05
	5-H_06
	5-H_07
	5-H_08
	5-H_09
	5-H_10
	6-A_01
	6-A_02
	6-A_03
	6-A_04
	6-A_05
	6-A_06
	6-A_07
	6-A_08
	6-A_09
	6-A_10
	6-A_11
	6-A_12
	6-A_13
	6-A_14
	6-A_15
	6-A_16
	6-A_17
	6-A_18
	6-A_19
	6-A_20
	6-B_01
	6-B_02
	6-B_03
	6-B_04
	6-B_05
	6-B_06
	6-B_07
	6-B_08
	6-B_09
	6-B_10
	6-B_11
	6-B_12
	6-B_13
	6-B_14
	6-B_15
	6-B_16
	6-B_17
	6-B_18
	6-B_19
	6-B_20
	6-B_21
	6-B_22
	6-B_23
	6-B_24
	6-B_25
	6-B_26
	6-B_27
	6-B_28
	6-B_29
	6-B_30
	6-B_31
	6-B_32
	6-B_33
	6-B_34
	6-B_35
	6-B_36
	6-B_37
	6-B_38
	6-B_39
	7_01
	8-A_01
	8-A_02
	8-A_03
	8-A_04
	8-A_05
	8-A_06
	8-A_07
	8-A_08
	9-A_01
	9-A_02
	9-A_03
	9-A_04
	9-A_05
	9-A_06
	9-A_07
	9-A_08
	9-A_09
	9-A_10
	9-A_11
	9-A_12
	9-A_13
	9-A_14
	9-A_15
	9-A_16
	9-A_17
	9-B_01
	9-C_01
	9-C_02
	9-C_03
	9-C_04
	9-C_05
	9-C_06
	9-C_07
	9-C_08
	9-D_01
	9-D_02
	9-D_03
	9-D_04
	9-D_05
	9-D_06
	9-E_01
	9-E_02
	9-E_03
	9-E_04
	9-E_05
	9-E_06
	9-E_07
	9-E_08
	9-E_09
	9-E_10
	9-E_11
	9-E_12
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-001
	B-002
	B-01
	B-02
	B-03
	B-04
	C-001
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	D-001
	D-01
	D-02
	D-03
	D-04
	E-001
	E-01
	E-02
	E-03
	F-001
	F-01
	F-02
	F-03
	G-001
	G-01
	G-02
	G-03
	G-04
	G-05
	H-001
	H-002
	H-01
	I-001
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	J-001
	J-01
	J-02
	J-03
	J-04
	K-001
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	K-08
	K-09
	K-10
	K-11
	K-12
	L-001
	L-01
	L-02
	L-03
	M-001
	M-01
	M-02
	M-03
	N-001
	N-01
	O-001
	O-002
	O-01
	O-02
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	xBack

