
TECHNICAL BULLETIN

ProgralHlHer·s Guide

August 9,1962

The mnemonics for machine operation codes as printed in this manual are
considered acceptable but non-standard by UNIVAC. This means that:

1. The LPf.MOST processor will accept programs written using either this
set of mnemonics or the standard UNIVAC III set.

or,

2. A program viII be furnished which will convert source programs with
the non-standard mnemonics to source programs containing standard
mnemonics.

The following table gives the relationship between standard and non-standard
mnemonics:

SALT
(standard)

L
LCS
EXT
ST
STCS

A
S
AH
SH
M
D
BA
BAH
BS
BSH
SR
SL .
SAR
SAL
SBC
CA
C
CONE
ezRO
T~
THI
TLO
TrOS
TUN
m-
SSI
RSI
TSI

UTMOST
(non-standard)

LA
LAN
LF
SA
SAN
SZ
DA
DS
DAH
DSH
DM
DD
BA
BAH
BS
BSH
DSR
DSL
ASR
ASL
BRR
CM
C
CPA
CPZ
JE
JG
JL
JP
J
St;l
SS
RS
JS

SALT
(standard)

ATD
DTA
ZUP
SUP
ERS
LX
STX
IX
ICX
Tel
RCI
TPE
RPE
TIO
TIO
TIO
Tel
TCI
RIO
RIO
RIO
AID
PIO
TIOP
IOF
IOF
IOF
NOP
STMC
TR*
STMC
STMC
STMC
STCR
STCR
STCR
WAIT
LT
DIS
RT
WT
ACT

UTMOST
(non-standard)

LAD
SA!
LAE
OR
AND
LX
SX
IX
IXC
TC
RC
TPE
RPE
TID
'l'W
TR
TOV
TOP
RIO
RW
RR
AI
PI
JIP
LC
LWC
LRC
NOP
SC
SCJ
SL
SWC
SRC
ST
SRT
SWT
HJ
RCK
WD
RT
WT
AT

An assembler directive will be supplied for specifying the desired set of
mnemonics. The method of accomplishing this will be specified later.

Manual Number:

N'! 01047

UNIVAC III UTMOST

MANUAL REGISTRATION SHEET

CHARGE TO: NAME ____________________________________ _

BRANCH __________________________________ _

ADDRESS ________________________________ ___

DATE ____________________________________ _

This registration entitles the holder of this manual to receive all updating materials.

Remove this sheet and supply the above information. Immediately mail to:

U-3520 (REGIS)

MANAGER, PROGRAM LIBRARY SERVICES

UNIVAC
315 PARK AVENUE SOUTH

NEW YORK 10, NEW YORK

UNIVAC III UTMOST

N'1 01047

REVISION: SECTION:

UNIVAC m UTMOST Index

DATE: PAGE:

July 1, 1962 1

TABLE OF CONTENTS

1. INTRODUCTION I- I

II. BASIC INTRODUCTION TO UTMOST ASSEMBLER LANGUAGE II- I

1. Computers and Languages II- I

2. The UTMOST Assembler II- 2

3. Symbolic Coding Format II- 2

a. Label Field II- 3
b. Operation Field II- 4
c. Operand Field II- 5
d. Line Control II- 6

4. Expres sions II- 7

a. Elementary Items II- 7
b. Operators II - 12

5. Data Word Generation II - 18

a. ICW, Increment and Compare Word II - 18
b. TWC, Two Word Constants II - 18
c. + or - Operation Fields II - 19

6. Mnemonic Instructions II - 22

7. Line Items II - 23

8. Assembler Directives II - 25

a. EQU II - 26
). RES II - 26
(;. USE II - 27
d. FORM II - 28
e. SET II - 30
f. FLD II - 31

REVISION: SECTION:

UNIVAC m UTMOST Index

DATE: PAGE:

July 1, 1962 2

TABLE OF CONTENTS (Cont'd)

g. END IT - 31
h. DO II - 32
i. PROC IT - 33
j. NAME II - 35
k. Procedure Reference Lists II - 36

9. Sample Problem II - 41

10. Sample Floating Dollar Sign Editing Procedure II - 44

11. Sample MOVE Procedure II-50

ITI. PROGRAMMER'S REFERENCE GUIDE ill- 1

A. Line Control ill- 1

B. Label Field ill- 1

C. Operation Field III - 1

D. Operand Field III - 2

E. Expressions III - 2

F. Mnemonic Instructions lIT - 5

H. Line Item llI- 5

1. Addressing III - 7

J. Assembler Directives III - 7

K. Procedure Reference Line III - 11

L. Inter-Program Communication III - 11

REVISION: SECTION:

UNIVAC m UTMOST Index
DATE: PAGE:

July 1, 1962 3

TABLE OF CONTENTS (Cont'd)

IV. OPERATING PROCEDURES IV - 1

V. UNIVAC III CENTRAL PROCESSOR V-I

VI. BOSS III COMMUNICATIONS VI- 1

VII. MNEMONIC INSTRUCTIONS VII - 1

UNIVAC m UTMOST

I REVISION:

I

I

I SECTIDN: Notes

PAGE:

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

1. INTRODUCTION

UTMOST @NIVAC THREE MACHINE ORIENTED SYMBOLIC TRANSLATOR) is
an easy to learn and easy to use assembly language designed to permit rapid
efficient coding for UNIVAC ill. UTMOST is a two-pass assembly system pro
viding rapid translation from symbolic to object coding.

The UTMOST system contains a wide and sophisticated variety of operators
which provide the ability to fabricate fields during assembly without restrictions
on the programmer. The mnemonic operation codes describe machine functions
and prevent the programmer from having to learn a wide variety of octal machine
codes. The system has a series of ten assembly directing instructions which aid
greatly in promoting easy communication with input-output and executive systems.
In addition, the assembly directives provide the programmer with the ability to
write short routines which are variable at assembly time. These routines and
standard routines are easy to incorporate in the program, thereby reducing the
effort of the programmer and increaSing programming production.

UTMOST produces relocatable binary output in a card form suitable for processing
by a binary card loader. It also supplies a listing of the original symbolic coding
together with an octal representation of the word generated. Certain error flags
are also supplied in the listing.

The UTMOST manual is in several sections. Section IT is designed to aid the pro
grammer unfamiliar with this type of system. Section ITI is designed to act as a
brief programmers' reference guide to the UTMOST system.

I

1

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

II. A BASIC INTRODUCTION TO THE UTMOST ASSEMBLER LANGUAGE

A. GENERAL

1. Computers and Languages

In order to solve a problem, a computer must be given a series of
instructions which determine how the computer is to operate. In
addition, the computer must be given one or more sets of data upon
which to operate. This combination of instructions and data is called
a program. A program must define in complete detail exactly what
the computer is to do, under every conceivable combination of cir
cumstances, with the data which is read into or processed by the
computer. The number of instructions required for the complete
solution of a problem may be a few hundred or many thousands,
depending upon the problem. The computer may refer to these
instructions one after another. It can also be instructed to repeat,
modify, or skip over certain instructions, depending upon inter
mediate results or circumstances. The ability to repeat operations,
usually called looping, combined with other facilities of modifying
and skipping over instructions, permits a Significant reduction in
the number of instructions required to perform a given job. For
example, two sets of numbers exist and it is desired to add the
corresponding numbers of each set together. Instructions may be
written to add the first number of the first set to the first number
of the second set, then to repeat this operation with the second, third,
fourth, etc., numbers of each set. In this way, a few instructions
may cause thousands of additions.

Since the computer __ does not respond to the English language, the
program must be encoded in a form known as machine language.
Considerable time and effort have been expended in developing
programming systems that allow the programmer to write in a
symbolic language more easily comprehensible to him than machine
language. Associated with a programming system is a machine
language program called a processor. The processor accepts a
program written in the symbolic language (source program) and
converts it into a machine language program (object program). The
symbolic language utilized to program for UNIVAC ill is known as
UTMOST@Ilivac Three· Machine Oriented .§ymboIicTranslator}.

II

1

REVISION: SECTION:

UNIVAC m UTMOST
II

OATE: PAGE:

July 1, 1962 2

2. The UTMOST Assembler

The UTMOST assembly program was designed to provide a programmer
with an easy to learn and easy to use assembly system. UTMOST is
a straightforward data processing program, accepting input data
(symbolic coding) and processing it and producing as system output,
object coding usable by UNIVAC III directly.

As the symbolic coding is processed, the UTMOST assembler tallies
the number of lines produced in a location counter. The location
counter can be referenced by the programmer in his symbolic coding
and may be utilized throughout his program. UTMOST also provides
the programmer with a series of 'operators r permitting him to fab
ricate any object code values which he may need. A small number of
extren1ely powerful assembly directives are also made available which
allow the programmer to direct the assembly in an extremely positive
manner during the actual assembly. In addition, the programmer
may use mnemonic operation codes which explain machine functions
by their very nature rather than having to learn the machine code bit
configurations.

The UTMOST assembler provides output in the form of a loadable
object program plus a listing of the symbolic program arl.d the object
program. The listing also provides the programmer with error flags
at whatever points the assembly system detected the errors.

In the section following, each feature of the UTMOST assembly system
is examined in detail with examples of each operation, as well as an
illustrative problem demonstrating a legitimate approach to the
solution of a simple data processing problem for UNIVAC III utilizing
the UTMOST language.

3. Symbolic Coding Format

In writing a program in UTMOST symbolic language, the programmer
is primarily concerned withthree fields, a label field, operation field
and operand field. In addition, it is possible to annotate the symbolic
language at the time it is written through the use of comments which
will provide clarity for the programmer and relate the coding to its
associated flowchart.

I REVISION: SECTION:

UNIVAC m UTMOST II

PROGRAM

DATE: PAGE:

July 1, 1962

In writing in UTlVIOST language, the programmer is not bound by a
fixed length field concept as is the case with older assembly languages.
All of the fields in UTMOST are in free form, and are designed to
provide the greatest convenience possible for the programmer.

PROGRAMMER DATE PAGE _OF _ PAGES

3

1 LABEL fl OPERATION fl OPERAND COMMENTS

1"1111111111111 1 '
. 1-.-LLLlJ I . I

a. Label Field

A label is a method of identifying either a symbolic line of coding,
or a word of data. In writing a label in UTMOST, the programmer
may use any meaningful combination of one to eight characters.
Of these eight characters, the first must be an alphabetic (A ... Z),
and the others, if present, may be either alphabetics or numerics
(0-9). Sample labels are listed below:

PRNT
ONE
A

ARRANGE
ADOL
OVER2

In writing a label in the label field of a symbolic line, the first
character of the label must be left justified within the line and
the field terminated by a blank. There must be no blanks within
the label field itself. When the label is analyzed by the UTMOST
assembly program, it is equated to the current value of the
location counter except in the cases of a label associated with
the EQU, FORM, DO, FLD, PROC and NAME assembly direc
tives. Each of these special cases is discussed separately in
the portions of the manual dealing with the specific' directive.

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

LABEL tJ. OPERATION OPERAND

In the symbolic lines illustrated above, each of the labels in the
label field, OVER, ONE and ARRANGE follow the requirements
of the label field. Each starts with an alphabetic in column 1,
is from one to eight characters in length, and is terminated by
a space.

b. Operation Field

The operation field of a symbolic line informs the assembler of
the purpose of the line. An operation field may b9 up to eight
characters in length, and may contain a mnemonic machine
operation code, an assembler directive, a label associated with
a FORM NAME or PROC directive or a data generating code.
Each of the above categories will be discussed in detail in its
appropriate section.

An entry in the operation field is terminated by a blank unless
it is a plus or minus sign, in which case the operand field may
begin in the succeeding column. If the line does not have a label,
the operation field may begin in the second column of the coding
form.

II

4

If an operation field contains an assembler directive other than
RES (which increments the location counter), the location counter
will not be affected. In all other cases, the location counter will
be incremented by one after the line has been generated.

REVISION: I SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

LASEL 11 OPERATION OPERAND

In the illustration of operation fields above, Line 1 contains an
operation field LA following the label ONE.

Line 2 contains an operation field, CM, starting in column 2,
showing that no label is present.

Line 3 contains an assembler directive as an operation field,
RES.

Line 4 also contains an assembler directive in the operation
field, USE.

Note that each operation field follows the rules stated above.

c. Operand Field

The operand field of a symbolic line follows the label and opera
tion fields. It consists of one or more expressions defining the
information required by the operation field of the line.

Expressions within the operand field are separated by commas,
and the comma indicates that another expression follows. Ter
mination procedures are discussed under Line Control, below.
The maximum number of expressions on a line is determined by
the content of the operation field of the line. However, any line
may contain less than the maximum number of expressions
indicated by the operation field; so long as it has at least one.
The unwritten expressions will be assumed by the assembler to
be zero.

II

5

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

LABEL II OPERATION OPERAND

In the examples, the 0 following LA represents a single
expression in the operand field. The second line of symbolic
coding represents a three expression operand field, each
expression separated from the previous one by a comma.

d. Line Control

The information content of a line to the assembler consists of

II

6

a label, operation, and operand fields. The information content
is normally terminated when the maximum number of expressions
required by the operation have been encountered (or maximum
number of lists in the case of a procedure referenc~, or by
column 72, whichever occurs first. There are two special marks
which override the normal rule:

1) Continuation: If a ";" is encountered outside of an alpha
betic item, the current line is continued with the first non
blank on the following line and there is no more information
to the assembler on the line in which the ";Tt occurred.

2) Termination: If a "." followed by a blank is encountered
outside of an alphabetic i tern, the line i.s terminated at
this point. If additional expressions are required by the
operation field, they are assumed by the assembler to be
zero.

A continuation or termination mark may occur anywhere on a
line. Following the information control of a line, any characters
may be entered.

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

LABEL d OPERATION OPERAND

The semicolons indicate that the line is continued on the next
line. The assembler would treat the three lines as though
they were the following line.

II

7

I

The three lines above use a period followed by a space to
terminate the lines. Any information following the period
space is considered to be a comment and will be printed on
the symbolic output listing. The assembler will take no
action on the information following the period.

4. Expressions

An expression is an elementary item or a series of elementary
items connected by operators. It norn1ally appears in the operand
field of a symbolic line.

a. Elementary Items

UTMOST permits the utilization of a series of elementary
items which may be used in expressions.

1) Label: Any label may be used as an elementary item.
The structure of a label corresponds to the description
of the label field discussed earlier. A label may be
from one to eight characters in length, the first of which
inust l.ieanaiphabe-tlc.---Wheii-:iiaheI has been e-ncount
ered in the label field of a symbolic line (with exceptions

REVISIDN: SECTIDN:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

noted under Label Field), it is assigned the current
value of the location counter. Thereafter, when it is
encountered within an expression, the integer value
initially assigned to it will be substituted for the label
within the expression.

Various sample labels are illustrated above as they
would appear as elementary items in the operand field.

2} Location:

The current value of the location counter may be used
as an elementary item within the operand field of a sym
bolic line. The format of a reference to t~e location
counter is the dollar sign ($). When this sign appears
in an expression, the value of the locatiorl counter is
substituted for it. It is useful in reflexive addressing.

In the example above, if the current value of the loca
tion counter was 5280, the integer value 5280 would be
substituted for the dollar sign ($) in its expression, and
right justified within the object field.

n

8

3) Octal: Octal values (base eight) may be represented in
expressions as elementary items by preceding the des
ired value with a zero. The assembler will convert these
values to their corresponding binary (base two) equival
ents. The converted binary integer will be right justi
fied in its object coded field.

REVISION: SECTION:

UNIVAC m UTMOST
II

DATE: PAGE:

July 1, 1962 9

In the examples above:

017 is equivalent to 000 000 000 000 000 000 001 111
07007 is equivalent to 000 000 000 000 111 000 000 111
in their converted object code.

4) Decimal: Decimal values may be used as elementary
items within an expression. Where they appear, decimal
values (base 10) will be converted into their binary equiva
lents and right justified within their object fields. A
decimal item is represented as a non-zero digit followed
by decimal (0-9) digits.

In the examples above:

9 is equivalent to
1024 is equivalent to

000000000000000000001001
000000000000010000000000

5) BCD: UNIVAC ill binary coded decimal excess three
values in four bit notation may be utilized in elementary
items by preceding the value with a colon (:). When a
decimal value appears in this format, it will be trans
lated by the assembler into its corresponding 4 hit base
16 value and right justified within its field.

I REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

I : : :!:i:~~:J : : : : : : : : : : : : : :
I I I I I

In the examples above:

:9 is equivalent to
:1024 is equivalent to

0000 0000 0000 0000 0000 1100
0000 0000 0100 0011 0101 0111

6) Alphabetics: Excess three six bit alphabetic characters
may be represented in an elementary item by enclosing
the desired characters within apostrophes (r). Since the
assembler recognizes an apostrophe as the end of the
alphabetic value, it is not permitted to use an apostrophe
within the alphabetic grouping. The six bit object code
resulting from an alphabetic item will be right justified
within its field and preceded by binary zeros (space
codes).

In the example above:

'PAGE' is equivalent to
, Z' is equivalent to

101010 010100 011010 011000
000000 000000 000000 111100

7) Floating Point Numbers: Floating point numbers may be
represented within an elementary expression by including
a decimal point (period) within the desired decimal value.
the converted value will be in standard UNIVAC excess
50 floating point format with a ten digit mantissa and a
two digit characteristic.

I : : : i ~:.:, I,,: : ; i : ; : i ; ; ; i ; ;
I I I I

In the example above:

3. 14 is equivalent to 513140000000 in 4 bit BDC digits.

II

10

I REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

8) Field: A field may be referenced as an elementary
expression by writing a field label followed by an expres
sion enclosed in parentheses representing the address
of the partial word. The field item is discus sed in
greater detail in the section on Assembler Directives,
FLD directive.

! I I I , I , , , I I

I . . .
II I 1£lxITI(NIAILlllIE\)I

I I I

In the example above:

EXT represents the bit control pattern for field selection,
(VALUE) represents the address from which the field
will be selected.

9) Parameter: A parameter may exist as an elementary
item by following the procedure label with one or two
expressions enclosed in parentheses. The parameter
item is discussed in detail under Assembly Directives,
PROC directive.

10) Line: An entire line may exist as an elementary item by
enclosing the line within parentheses. The assembler
will generate the value of the word that the line would
generate if it existed as a separately coded line.

I : : : :(:<:D:();~/:): ; : : : ;: : :
• I I I I I I I I I I I I I I I I I I

In the above example:

('DON') would generate the constant DON in six bit excess
three alphabetics preceded by binary zeros in the same
manner that 'DON' would on a symbolic line by itself.

IT

11

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

b. Operators

An expression may consist either of an elementary item, or a
series of elementary items connected by operators as shown
in the table below:

+ Arithmetic Sum

Arithmetic Difference

* Arithmetic Product

I Arithmetic Quotient

++ Logical Sum (OR)

**

II

=

>

<

*+

*-

Logical Difference (EXCLUSIVE OR)

Logical Product (AND)

Covered Quotient (allb = a+b-1)
b

Equals

Greater Than

Less Than

a*+b = a*10
b

-b
a*-b = a*10

1) + Arithmetic Sum: The arithmetic sum operator may be
used to combine two or more items. The assembler will
sum the integer values of the items and the resultant
integer value will be utilized in the resulting expression.

I : : : ~~~:~t:: : : : : : : : : : I : : : : : : : :
I I I I I I I

In the above examples:

7 + 3 would produce the integer lOin binary.
$ + 15 would produce the current value of the location
counter incremented by 15 in binary.

2) - Arithmetic Difference: The arithmetic difference
operator may be used to subtract one item f:rom another.
The assembler will subtract the integer value of the
second item from that of the first, and the resultant
integer difference will be substituted in the expression.

II

12

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

In the above examples:

$ - 3 will produce the current contents of the location
counter less three.
VALUE - 10 will produce the integer equivalent of the
label "V ALUEn minus ten.
7 - 4 will produce the integer three.

3} * Arithmetic Product: The arithmetic product operator
may be used to ulultiply one item by another producing
the arithmetic product. The assembler will multiply the
integer value of the first item by the integer value of the
second item and the resultant integer value will be sub-

I ~ti~~~: F ~rrr:i:T: : : : :
I I I

In the above examples:

7*3 will produce the integer value 21.

IT

13

$*2 will produce an integer value equivalent to the current
contents of the location counter times 2.

4) / Arithmetic Quotient: The arithmetic quotient operator
may be used to divide one item by another producing the
arithmetic quotient. The assembler will divide the
integer value of the first item by the integer value of the
second item, and the resultant quotient will be utilized in
the expression. The remainder is discarded by the
assembler.

REVISION: SECTION:

UNIVAC m UTMOST IT
DATE: PAGE:

July 1, 1962 14

, I I I I I I I , I , I ..

In the above examples:

44/4 will produce the integer value 11.
$/1024 will produce an integer value equivalent to the
number of possible index registers required for area
addressing in the program up to this point in the program.
33/2 will produce an integer value of 16 (remainder has
been discarded).

5) ++ Logical Sum (OR): The logical sum operator (OR)
may be used to logically sum the binary equivalents of
two items. The assembler will logically add the two
values and the resulting logical sum will be utilized in
the expression.

In the above example:

'A' in six bit code is 010100
'3' in six bit code is 000110
Logical sum generated 010110

6) -- Logical Difference (EXCLUSIVE OR): The logical
difference operator may be used to obtain the logical
difference between the integer values of two items. The
assembler will perform an EXCLUSIVE OR on the two
items (where a bit is present in corresponding position
in both items, the result is binary 0, where no bit is
present in corresponding positions, the result is binary
0, where a bit is present in either one of corresponding
pOSitions, the result is 1). The resultant integer is then
utilized as the value of the expression.

UNIVAC m UTMOST

In the above example:

'V' in six bit code is
IT' in six bit code is
Logical difference is

REVISION:

DATE:

July 1, 1962

111000
110110
001110

SECTION:

PAGE:

7) ** Logical Product (AND): The logical product operator
may be used to AND (Logically multiply) the integer

IT

15

value of one item by another. The assembler will logically
multiply the two values and the resulting logical product
will be utilized in the expression.

In the above example:

'V' in six bit code is
'T' in six bit code is
Logical product is

111000
110110
110000

. a+b-1
8) / / Covered Quotient (a/ /b = b): The covered quotient

operator may be used to divide the integer value of an item
by the integer value of a second item or expression. The
effect is the same as adding one to the integer value of the
quotient in straight division (A/b) if there were a remainder.
The resultant integer will be utilized in the expression. I : I : ~I : IJ :~ : I : I : I :: I I I , ~ +~-,S~T~:, OO~iMo!~1 I I I

In. the above example:

($-START)/ /1024 (where START is the first location
required by the program and greater than 1024) will produce
a covered quotient equivalent to the number of index reg
isters required for area addressing up to the point where
theexpress-i()ftllppeared~

REVISION: SECTION:

UNIVAC m UTMOST IT

DATE: PAGE:

July 1, 1962 16

9) = Equal: The equals operator may be used to compare
the integer values of two items or expressions. If the
two integer values are equal, the assembler will generate
a binary 1 as the resultant field. If the two integer values
are not equal, the assembler will generate a binary 0 as
the resultant field.

In the above example:

If $ = 7083, a value of binary 1 will be generated.
If $ j 7083, a value of binary 0 will be generated.

10) > Greater Than: The greater than operator may be used
to compare the integer values ,of two items or expressions.
If the integer value of the first item or expression is
greater than the integer value of the second, the assembler
will generate a binary 1 as the resultant field. If the first
value is less than or equal to the second, the assembler
will generate a binary 0 as the resultant field.

I : : :A:~D:~JT:~ : : : : ; : : :
I I I I

In the above example:

If the value of AMOUNT is greater than 2, a binary 1 will
he generated, otherwise a binary 0 will be generated.

11) < Less Than: The less than operator may be used to
compare the integer values of two items or expressions.
If the integer value of the first item or expression is less
than the integer value of the second, the assembler will
generate a binary 1 as the resultant field. If the first
value is greater than or equal to the integer value of the
second, a binary 0 will be generated.

I I I I I I I I

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

In the above example:

If the value of COUNT is less than 5, a binary 1 will be
generated, otherwise a binary 0 will be generated.

12) *+ Positive Exponent: The positive exponent operator
may be used to create a two word floating point constant
in Tfcess 50 notation where a * + b is equivalent to a
*10. Both words must be excess three binary coded
decimal numerics.

In the above example:

:10.0*+:15 will produce 671000000000

13) *- Negative Exponent: The negative exponent operator is
similar to the positive exponent operator except that it
will produce a floating point word in excess 50 notation
with a characteristic from 0 to 50.

In the above example:

:15.0*-:3 will produce 491500000000 as the integer equiv
alent in standard UNIVAC excess 50 floating point format.

IT

17

In all of the foregoing cases where items are connected by operators, if
the value produced by an expression is a negative integer, it will be represented
by a 2' s complement unless the operation field of the line contains an EQU directive
or, in some cases, the operation field is + or -.

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

5. Data Word Generation

The UTMOST assembly system provides three means of generating
data words other than expressions. These data words consist of
Increment and Compare Words, two word constants; and words with
a plus (+) or minus (-) operation field. The last category provides
the ability to generate one word constants, indirect address words
and field select words with or without index register indices.

a. Increment and Compare WORD, lCW

The increment and compare word is used to prepare a word
suitable for incrementing and comparing an index register
(with the IX and IXC instructions).

The Increment and Compare word is written with lCW in the
operation field of the line, followed in the operand field by two
expressions, e

1
and e

2
• The first expression, e

1
, represents

the comparison amoun"t and the second expression, e
2

, repre
sents the increment. The format of the generated word is
illustrated below:

lCW

In the above example:

lCW informs the assembler that this is an increment and
compare word. $ + 30, the first expression,represents the
comparison amount;1, the second expression,represents the
increment.

b. Two Word Constant Generation, TWC

A two word constant may be generated by placing TWC in the
operation field of a line, and the constant in the operand field.
This symbolic line must have a label. The assembler will
generate the value of the expression in the operand field, right
justify filling with binary zeros the resultant value in the two
word field, and assign an address to the label. The left half .

IT

18

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

of the two word constant may be addressed by using the label,
the right half by using the label plus one.

: : : : : :
F'V'R' I ITrtVlC! I I(I ~ lPIJhS I~ IMol .. I'I)\ I I I I I I I I I

In the above examples:

ZERO TWC (0) will produce a two word constant of binary
zeros.

HDR TWC ('PAGE NO. ') will generate a header line for
editing purposes.

The first example may be referenced by ZERO+ 1 and a two
register indicator in the "aTT field of an instruction, the second
by HDR+l, and a two register indicator in the "a" field.

n

19

c. + or - Operation Field: A + or - operation field plus from one
to four expressions in the operand field may be used to generate
specific constants consisting of a one word constant of datum,
an indirect address word, a field select word without index
register notation (or implied index notation), and a field
select word with specific index register notation.

1) One word data constants; One word constants may be
generated by placing a + or a - in the operation field
followed by one expression in the operand field. It is
not necessary to leave a blank between the + or - sign
in the operation field and the operand field.

REVISION: SECTIDN:

UNIVAC m UTMOST n
DATE: PAGE:

July 1, 1962

In the above examples:

A will produce a one word alphabetic constant in six bit
code containing the word "DATA".

B will produce a one word constant containing the current
value of the location counter in binary, right justified
with preceding binary Os and a negative sign.

C will produce a positive binary constant containing
the address plus ten of label "VALUE".

D will contain a negative constant in excess three binary
coded decimal notation preceded by binary zeros of the
value" 5280" •

20

2) Indirect Address Words: Indirect address words may be
generated through the use of a + or - operat~on field plus
two expressions in the operand field. The first expression
will be generated as a fifteen bit UNIVAC ill address, and
the second expression will be generated as a four bit index
register code. The sign of the word will be the sign in
the operation field.

In the above example:

An indirect address word will be generated containing
the fifteen bit address of the expression rpATA+l0r in the
least significant fifteen bits of the word, Index Register
#9 in the four most significant bits of the word, and the
sign of the word will be positive, indi cating that no chain
ing of indirect addresses is desired.

REVISION: SECTION:

UNIVAC m UTMOST
IT

DATE: PAGE:

July .1, 1962 21

3) Field Select Words: Field select words may be generated
through the use of a + or - operation field plus three
expressions in the operand field. The first expression
will be generated into a five bit left bit control (Plus
binary three) integer indicating the left boundary of the
field to be selected. The second expression will generate

integer plus binary three.

The third expression will generate a ten bit binary address
for the word(s) from which the field is to be selected. The
sign of the generated word must be positive.

I : : ~: :l :~: :~): :~A:L:~~ : : : : :
I I I I I

In the above example:

The first expression will generate 01111 (binary 15) as
the left bit control, the second will generate 01000
(binary 8) as the right bit control, and the ten bit address
equivalent to 'v ALUEr from the third expression.

4) Field Select Words: As in 3, above, a field select word
may be generated using four expressions in the operand
field following a + or - operation field. The first express
ion will generate the left bit parameter, the second ex
pression the right bit parameter, the third expression the
ten bit tmt address, and the fourth will be used to generate
the index register designator.

In the above example:

The first expression will generate binary 15 as the left
bit control, the second will generate binary 8 as the right
bit control, the third will generate a ten bit address equiv
alent to 'VALUE', as modified by the index register, 8,
specified in .. tb.efourth expression.

REVISION: SECTION:

UNIVAC m UTMOST n
DATE: PAGE:

July 1, 1962 22

6. Mnemonic Instructions

The UTMOST assembly system utilizes a series of mnemonic instruct
ions corresponding to the octal machine code instructions in object
coding which are recognizable by the computer. The mnemonic opera
tion codes describe the function of the instructions, thereby removing
the problem of learning the octal operation codes, or their binary
equivalents. In some cases, a combination of octal operation code
and bits in the AR portion form instructions. Mnemonics have been
created to save a programmer from writing or knowing the parameter
AR bit configuration for most of these.

UNIVAC m's instruction word consists of a 24 bit word with the sign
in bit 25 used to indicate either indirect addressing or field selection.
The format of the word on a bit basis is illustrated below:

24 21 20 15 14 11 10 1

S 1.-1 b--L--I _oP---,-I_a ~I _m -----sl

where "b" indicates the index register designator,

"op" the operation code,

"a" the arithmetic register(s) designator, and

"m" the ten bit area address of the operand.

Since UTMOST provides semi-automatic insertion of area index
register assignments, it is unnecessary to write a "b" designator
in many cases.

(USE Directive) The order of writing a symbolic instruction line has
been altered from the hardware format to provide greater convenience
in programming. The format is:

op a,m,b

REVISION: SECTION:

UNIVAC m UTMOST IT
DATE: PAGE:

July 1, 1962 23

Type 0 Instructions: Type 0 instructions have three fields repre
senting the It aft, "m", and "b" fields of the instruction word, re
spectively. The sign of the instruction will be + unless the "m"
portion of the instruction is preceded by an asterisk indicating
indirect addressing or field selection.

181 ILle! ,I Ill)! /(,',.lolll'l)j III I , I

In the above illustration:

LA, OR, and SA are mnemonic instruction codes of type 0 category,
requiring in each case the If an, um", and "bn fields. (The "b" field
may be omitted, if the USE assembler directive has been inserted in
the program prior to the assembly encountering these instructions.

Type 1 Instructions: Type 1 instructions have two fields representing
the "m" and "bit portions of the instruction word, respectively. The
sign of the instruction word will be + unless the "m" portion of the
instruction is preceded by an asterisk indicating indirect addressing

I ;:O:~~~[I:I:): :11 : : : I : : : i : : : ! :
In the above illustration:

J is the mnemonic code for the Jump instructions, the first instruct
ion utilizing direct addressing, the second indirect addressing.

7. Line Item

A line item is an instruction line,. form reference line, or data
word line without label field and without leading or trailing blanks,
enclosed in parentheses.

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

In the above examples:

LA 1, (J $+5) The last expression is an instruction line written as
line item.

n

24

LA 2, (MASK 70707070) The parenthetical expression (MASK 70707070)
is a form reference line written as a line item.

LA 4 ('DON') The parenthetical expression (lDON') is a data word
line written as a line item.

In each case, the assembler will generate an address which will be
the address of the translated parenthetical expression. The translated
parenthetical expression is called a literal. If the literal is identical
to any other literal, the location assigned is the location of the previous
literal, thus eliminating duplication.

When a line item appears in the address field of an IX or IXC instruct
ion and has two expressions, it is evaluated as a data word with lCW
in the operation field.

I ~~ ~i :;j: it :t; ;i~T;J:1 io;); ; i ; ; ;
I I I I

In the above example:

The assembler will generate an. index register increment and compare
word equivalent to the same expressions in an lCW line.

A literal will be double precision if the line was a TWC line or if it
was a data line with one expression and the mode of the expression
was floating.

In the above examples:

The first example will generate a two word constant (double precision)
of the alphabetic constant "PAGE NO. If

The second example will generate a two word excess 50 floo. ting point
constant where 3. 14 is equivalent to 513140000000.

REVISION: SECTION:

UNIVAC m UTMOST
IT

DATE: PAGE:

July 1, 1962 25

8. Assembler Directives

The UTMOST assembler provides the programmer with a series of
powerful operation codes in the form of Assembler Directives. These
assembler directives do not produce coding in and of themselves, but
effectively provide a programmed means of controlling the process of
assembly.

There are ten assembler directives as shown in the table below:

Directive
- .

PurpOse

1. EQU Equate operand value to label field.

2. RES Reserve memory locations.

3. USE Assign index registers for area addressing.

4. FORM Designate arbitrary word format.

5. FLD Specify Field Selection pattern.

6. END Designate end of program or procedure.

7. DO Generate designated line(s) of coding.

8. PROC Generate associated coding if referenced.

9. NAME Qualify procedural coding.

10. SET Set index register to assumed value.

None of the assembler directives except RES will cause the location
counter to be incremented. However, if coding is generated as a
result of an. assembler directive, the location counter will be incre
mented in the usual manner. A detailed discussion of each directive
follows in this section.

UNIVAC m UTMOST

I REVISION: SECTION:

II

DATE: PAGE:

July '1, 1962 26

a. EQU

The EQU assembler directive causes the label in the label field
of its line to be equated in all succeeding references in the coding
to the value of the expression in the operand field of the symbolic
line. Thereafter, the label may be used in an expression, and
the assembler will substitute for the label the integer value of
the original expression in the operand field of the EQU line.

In the above example:

The four arithmetic register names have been equated to the
binary values utilized in object code to address the respective
registers. After these four EQU directives have been encountered
by the assembler, the AR portion of an instruction may contain
the label names of the registers, and the assembfer will recog
nizethem as the associated binary values. Accordingly, coding
referencing these registers could read as follows:

, I
b. RES

The.RES assembler directive causes the value of the expression
~n the operand field to be added to the location counter. It may
be used to reserve a specific or variable number of locations
Jor input/output storage, or any other programmable purpose.
(If the expression in the operand field is negative, the value of
the expression will effectively be deducted from the location
counter.) If it is desired to address any location within a reserved
area, the label associated with the reserve directive may be used.

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

I I

In the above example:

The RES directive will cause 32 words of storage to be set
aside (32 will be added to the location counter). These 32 words
are equivalent to the 32 words or 128 characters required for
one line on the High Speed Printer.

The two symbolic lines reference words 15 and 16, and 31 and
32 in the reserved area respectively.

c. USE

The USE assembler directive is utilized to load index registers
with base values relative to the value contained in the location
counter at the time the USE directive is encountered by the
assembler. Mter a USE directive is encountered, it is not
necessary to indicate index register designators in the operand
field of a symbolic instruction line, since the assembler will
insert the values automatically, unless a specific index register
is desired by the programmer.

The USE directive, when encountered by the assembler will
assign the current value of the location counter to the first
index register specified in the operand field of the USE line,
the current value plus 1024 to the second, and so on through the
number of index registers specified in the operand field of the
line.

II

27

It is possible to use more than one USE directive in a program,
however, the value assigned an index register by a USE directive
is loaded into that register at object time. Therefore, any
particular index register may not be referred to more than one
in a USE directive, or series of USE directives.-

I REVISION: SECTIDN:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

In the above example:

Assuming that the location counter reads 4000 at the time the
directive is encountered, m 5 will contain the value 4000, m 6
will contain 5024, and m 7 will contain 6048. mrs 5, 6, and 7
will automatically be inserted into object code where required
by the program, and no indexing has been specified by the
symbolic coding.

d. FORM

The FORM assembler directive may be used to define arbitrary
word formats, label these formats, and thereafter reference
the format by using the associated format label as an operation
code in the operation field. When the assembler encounters a
FORM directive, it notes the pattern specified in the operand
field. Thereafter, the expressions in the operand field of the
associated label, appearing as an operation code, will be inter
preted and generated in the "form" specified by the initial
directive.

n

28

In writing a FORM directive, the label field must contain a label,
the operation field must contain the directive FORM, and the
operand field must contain a series of expressions whose sum
is equal to 25, the total number of bits in a UNIVAC ill word
(a single expression = 25 is illegal)

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

In the above example:

The FORM directive has been used to define an object code
format equivalent to a UNIVAC ill instruction word. When INST
is encountered by the assembler in the operation fie ld of a
symbolic line, the expressions in the operand field will be
generated into a sign bit, 4 bit "b" field, 6 bit "op" field, 4 bit
"au field, and a 10 bit Urn" field.

In the above example:

The FORM directive has been used to provide a simple means
of writing a masking constant in octal mode equivalent to a
UNIVAC ill word. Whenever the label MASK appears in the
operation field, the assembler will generate the appropriate
masking constant. As illustrated in the second line above, the
use of MASK in the operation field followed by the expressions
0,0,0,7,0,0,0,0,7 will generate a masking constant in the
following pattern: + 000 000 111 000 000 000 000 111.

IT

29

REVISION: SECTION:

UNIVAC m UTMOST n
DATE: PAGE:

July 1, 1962 30

I I IOh Ibl '1::21~ III \ 11131 ozi.5ftl
In the above example:

The FORM directive has been used to define a printer control
word. The first example below tile form directive will generate
a line of object code which will cause tile paper to be spaced
5 lines, and printing to take place from location 1004 through
location 1035. The second example will cause the paper to be
spaced 2 lines. The third example will cause the generation of
a line which will cause tile paper to be spaced 6 lines, and
printing to take place from location 13254 through location
13285. In all cases interrupt is specified.

3. SET

The SET assembler directive may be used to arbitrarily indicate
to the assembler that a specific value should be assigned to an
index register for assembly purposes. The value assigned will
be utilized by the assembler for automatic index register assign
ment until another SET directive specifying the same index
register is encountered by the assembler. The assembler does
not load the index register, that is the responsibility of the
programmer. The format of a SET directive consists of SET
in the operation field followed by two expressions. The first
expression indicates the index register to be set~ the second
expression indicates the value to which th..e register is t.Q be set.

I : : : ~x:: :J~:: ~: II I ;:
- .. - _£In " __ 1 _'/1 I I I

In the above example:

Index Register 15 will be assumed by the assembler to contain the
integer value equivalent to the current content of the location
counter. The index register load instruction immediately pre
ceding physically will accomplish the actual loading of ill. 15 with
the value of $.

REVISION: SECTION:

UNIVAC m UTMOST IT
DATE: PAGE:

July 1, 1962

f. FLD

The FLD assembler directive may be used to define the leftmost
and rightmost bit limits of a field. A FLD directive line must
have a label in the label field, FLD in the operation field, and
the operand field must contain two expressions defining the left
and right bit boundaries of the field. After a FLD directive has
..J~.c':~~..J ~ .c':~1..J ""t...~ 1~t...~1 ~~_. t...~ •• ~~..J .c~11~_ •• ~..J t..._. ""t...~ 1~t...~1 .! __
Ut:a~.ut;;U d. .ut:au, w..1~ ~i:UJt:a .1Ud.y Ut;; Ul:)t;;U ~u~~uvv t;;U uy l.I..1~ ~d.U~~ ill

parentheses of the word(s) containing the field.

In the above example:

The label LMT has been defined as a field label through the use
of the FLD directive. Its leftmost bit is bit 12, its rightmost
bit is bit 1.

In the symbolic coding following, AR1 is being loaded from word
VALUE as defined by the field LMT; i. e., bits 1-12 of word
VALUE are being loaded into AR1.

31

The END assembler directive indicates to the UTMOST assembler
that the last line of symbolic code in a program or procedure
(PROC assembler directive) has been read by the assembler.
This directive is required both at the end of a program and of a
procedure. In the case of a procedure, the operand field is
ignored by the assembler. In the case of a program, the starting
address of the program should be placed in the operand field in
the form of an expression.

REVISION: SECTIDN:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

In the above example:

END :indicates that the last line of cod:ing in the program has
preceded the END directive. The label STRT will be the starting
address of the assembled program.

In the above example:

END indicates that the last line of cod:ing of a procedure has
been read. The content of the operand field of a procedural
END directive is ignored.

h. DO

The DO assembler directive may be used to optionally generate
a line of coding a variable number of times. A DO symbolic
line consists of an optional label, DO in the operation field, an
expression in the operand field stat:ing the number of times the
DO is to be performed, and any symbolic line.

The format of a DO assembler directive is:

label DO e
1

, line.

The label associated with a DO directive varies from the usual
type of label in that, when referenced, its integer value will be
equal to the number of times that the DO directive has been
performed.

II

32

REVISION: SECTION:

UNIVAC m UTMOST

*

DATE: PAGE:

JtUy 1, 1962

The expression of a DO directive, e
1

, is a value which indicates
to the assembler the number of times the associated line is to
be generated. The 'line' may be any legitimate symbolic line
of coding, or any directive except EQU, FORM, PROC, NAME,
an.d END.

I' , , I I I I I I I I I I I , I I I I I I I I I I I I I I I

. I I J I l,
In the above example:

If the current value of the location counter is greater than the
initial value of the location counter plus 3072 (3xl024), a 1
will be generated by the = operator. In that case, the assembler
will be controlled by the USE directive line in the DO symbolic
line, and three additional index registers will be set up by the
assembler. If the condition is not met, a 0 will be generated,
and the USE line will not become effective.

i. PROC·

A PROC assembler directive informs the assembler that all
succeeding symbolic lines until an END directive is read, are
not to be assembled, but retained by the assembler until refer
enced by some other portion of the symbolic program. When
the PROC (procedure) is referenced, the symbolic coding
associated with the PROC will then be assembled and inserted
into the object program.

A PROC directive line must have a label and the expression in
the operand field indicates the maximum number of lists of
expressions associated with the procedure, if any. * If no
expression is given, the number of lists is indeterminate. (No
expression is indicated by a period followed by a blank. In this
case, every reference· to the PROC must have a period followed
by a blank following the last line.)

A discussion of PROC lists follows under the NAME directive.

n

33

REVISION: SECTION:

UNIVAC m UTMOST
IT

DATE: PAGE:

July 1, 1962 34

In the above example:

The PROC line has the label TRAN (for TRANsfer), PROC in
the operation field and a 0 in the operand field indicating that
there are no lists associated with the PROC. The four lines
of coding following make up a very simple straight line four word
transfer routine followed by an END directive.

The previous procedure may be referenced by the following
symbolic coding:

The 00 directive line will cause the procedure to be generated
five times, since the expression in the DO line is 5, effectively
generating the following symbolic coding transferring twenty
words.

I REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

LABEL II OPERATION OPERAND

j. NAME

A NAME directive, or several NAME assembler directives,
may be used to qualify a PROC procedure. The NAME line(s)
must follow the PROC line within the procedure. Each NAME
line must have a label, and may have an expression in the
operand field.

IT

35

A procedure may be referenced by placing any of the procedure
names or the label associated with the PROC line in the operation
field of the referencing line.

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

In the above example:

The procedure is a routine to generate a floating dollar sign
edit routine. The two names applying to the routine are ADOL
and NDOL respectively, ADOL if the value to be edited is in
six bit excess three format, and NOOL if the value is in 4 bit
numeric format.

IT

36

The coding above references the floating dollar subroutine. Since
the alphanumeric variant of the routine is applicable to the data
to be edited, the subroutine is called by writing the NAME of
the alphanumeric version in the operation field, ADOL and since
there are no lists required by the routine, nothing need be
written in the operand field of the symbolic line. When the
assembler encounters this symbolic line, the floating dollar
procedure will be generated and inserted in the program at this
point.

k. Procedure Lists

Procedures may be written referencing lists of variables which
are submitted by the calling program. During the assembly of
the procedure, when variables are required, the assembler will
call upon the lists submitted with the calling line.

1) PROC symbolic line: As stated under the PROC directive,
the PROC symbolic line consists of a label, PROC in the
operation field, and an expression in the operand field
indicating the number of lists expected by the procedure
during generation. If the procedure expects a variable
number of lists, the expression should be a period followed
by a blank.

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

In the above example:

The PROC line states that the procedure does not require
any lists"

~:o:V~! : :B&~:~.: ! : : : ! : '
In the above example:

The PROC line states that the procedure requires a
variable number of lists.

2) List References within a procedure_: When information is
required by a procedure from the calling program, it is
obtained by referencing the label of the procedure by an
expression in the operand field stating the procedure label.

a) To reference an. expression within a list, the expres
sion is written as: label (s, e) where label is the
label of the procedure, S is the number of the list,
and e is the number of the expression within list s.

LABEL II OPERATION OPERAND

IT

37

I I I I I

In the example above which is taken from the MOVE
PROC, line 22:

MOVE(1,4) refers to list =lF1, 4th expression in the
calling symbolic line in the main program. In this
case, it would be the number of an index register.

MOVE(l, 1) refers to list #=1, 1st expression. This
expression within the list provides the address of
the first word to be moved.

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

b) To reference the number of lists supplied by the
calling symbolic line in the main program, the
expression is written as: label where label is the
label of the procedure. The assembler will substi
tute the number of lists currently submitted by the
referencing line as the integer value of the
expression.

LABEL tJ. OPERATION OPERAND

I I I

In the above example:

The condition MOVE >3, refers to the number of
lists submitted by the referencing line in the main
program. If the number of lists is greater than
three an integer 1 will be generated.

If the expression had been written:

MOVE (1) >3,

it would refer to the number of expressions within
the first list of the referencing line.

c) To reference the expression in the operand field of
a NAME line within a procedure, the expression is
written as: label (0, 0) where label is the label of
the procedure, and (0,0) is the operand field of the
NAME line which is currently referencing the
procedure.

II

38

UNIVAC m UTMOST

REVISION:

DATE:

July 1, 1962

- - 1_- I~ _ I. _. I ~_.I
IVIOI IFIDIOIL..I<"IOI) 10 IJ r:;;;;lll) I I~IHIA I

I 1 1 I

In the above example:

SECTION:

PAGE:

__ I ___ 1_ , _

1"1;; I I Tit IIIIP 11'"1-21

The operand field of the ADOL NAME line is 0, the
operand field of the NDOL Name line is 1. The two
DO lines reference the procedure label, FDOL,
with the expression FDOL(O, 0) and the equal
operator will generate an integer 1 in whichever
line the condition is met, causing the associated

IT

39

line to be generated once. In this way, the assembler
has determined which NAME was used to reference
the procedure in the main program.

3) References to a procedure from outside the procedure:
The label of the appropriate procedure or qualifying NAME
line is written in the operation field of the referencing
line. It is followed by the lists of parameters required by
the procedure, if any.

LISTS

When referencing a procedure, the operand field of the
calling line contains the lists required by the procedure.
A list consists of a series of expressions separated by
commas. Lists are separated by blanks. If the PROC
line contains a period followed by a blank in the operand
field indicating an indeterminate number of lists required
by the procedure, the last list of the calling line must be
terminated by a period followed by a blank.

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

I ~:D~;~ : : ; : : II ; : : : ; : :

In the above example:

The floating dollar procedure requires no lists, therefore
the operand field of the calling line will be ignored by the
assembler.

In the example above:

The MOVE procedure requires a variable number of lists.
The example line calls for straight line move coding to

IT

40

be generated through the use of the ST name in the operation
field. Three lists are submitted. The lists are terminated
by a period followed by a blank since the MOVE procedure
calls for an indeterminate number of lists.

IC~~:~6~ : ~:T: : ~E~:£:)~: :TL:~2~t:~ : ~~ : :J~:':
I I I I I I I I

In the example above:

The example line calls for iterative coding to be generated.
Four lists are submitted. The expressions within the
lists are separated by commas, the lists by a blank. The
last list is terminated by a period followed by a blank.

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

9. Sample Problem--Two Way Merge with Editing

The attached sample problem is deliberately simple and designed to
illustrate a number of the features of the UTMOST assembler for
UNIVAC III. It consists of a basic business oriented two way merge
between a master file and a change file. Where record identifiers
are identical, the change record is substituted for the master record,
and the dollar value of the change record edited by a floating dollar
sign editing routine in preparation for printing. In addition, the
floating dollar sign routine is generated by a procedural reference,
and all data transfers are accomplished by a MOVE procedure which
will provide iterative or straight line transfers at the option of the
user.

Input/ output record advance routines are shown as subroutines, but
not included within the coding. (All input/output area addresses are
supplied by the record advance routines in Index Registers at the
time of return to the main pr()gram.)

II

41

DATE PAGE -'-OF..J:6.. PAGES

LABEL ~ OPERATION OPERAND COMMENTS 7273 80

J~l~~lllj-~ J Ofl. I I I

JEl.e;:l~L~dlq{Ll , , I I I

TIJKlTJ _ 0Ll¢Lti.., , I I I

PEWJ}:l_~cl~W~'!_-1~3,,",,1 }-1-' --L-..L-"--''-'--'-'''~~~'''''-4L~~=--U'-'---'-=--=--'!'u--'=

'-
E-
'<
.....
.....
\0
0\
t-.J

UP·ZII07 CODING FORM ING. BK.

~
~

c:

c
>
-I
PI

11
>
Ii)
PI

Z -<
l> n

S
c ...
~ o en ...

I-f
I-f

;U
PI
~
m
0
z

OJ
PI
n
::!
0
z

Z
C
~
U
I&J
OJ

Z
C
OJ

:>
I&J
~

t::Il
I&J
[!J
0(

Ien o
~
I-
:::l

a
u
<C
> -Z

n.

w
I-
0(
C

J

M
...qt

N
\0
0\
....-t

..
....-t

~
""'""'

'}lS '~NI YHIO:ll !)NIOO:) Lou;- .. n

I I I I I 1 1 I 1 I I IIIIIIIIIIITIII I 1 I I I I I I I I I 1 I I I 1 I I 1 I I I 11

Tli I I I' , I I I I~-TTTTTTT II I I 1 I I TTTTT'l'TTrT-ril-TTTTTTTTTTTTn-i-rTi

Tli I I II I I I I I 1 I I IIT"rri -TT II I I 1 II II 1 TTl 1 II I 1T1' 1 I l-r-rT-rTYT iTi-r1 ·· T

-TTT'I II I I I 1 II I I II I I II ITIII 11"I'ITTTTTl I I I 1 I 1 1 11'TTT~-T iTT-r'Tl

-Tl'll-rTl 1 I I 1 I li'l-l--r-r-r-TT [-T Ti 1 I I I 1 1 I 1 I 1 1 II 1 1 I I / 1 I 1 l--r-rrTTfl- fi
I I I I I II I I I I I I I I I 1 I ' , iii I I I 1 1 , I I I I I ' I I I ' 1

-Tl-rTl I I 1 I TlTT,-rTrrT T1,uTT 1"1 Trrn-TTli-rTr,'l I I I I 1 lTf-rTTrl-T'TTTT1-n-,v,
·-r-,--,--~.........---+-----r---"--TT'I I I' 1 II I ill~'TrTTT'"l I"-r I I II I TTTTrT'TrrT'rrr[l-r rTTT"rI11"TT1'TlTiTT'

'1iTTT I I I I I I ITlil-TTTTl 1T /T 1 1 I 1 I IliTTTT rTrTrrTTTTTTTTi"TTTT'lT-T ITll

·-.--'--'--~.--r--+--r---"--Tl'""T -r I I I I TiTT-rTT'1 T- r 1T"1' I"T TT I 1 I I I T I r T r T-rTT'TTTT'Trri'TTTlTTTTTfTT

1111111 11111111111111111111111111 111111/1111111111111
J.--r,---.---r-r-r---r--r---+I-r-, --,.--, Tfin I I I I TTTT'Iif-rT-IJl"TT I"T Trrri I I rTTTTTTTTfTTTT TTifTiTTTTTT' rT-,-

11,'nlTTTTTTTliiTT'iTTTT1""T irr-ITl""TlTTTTT"rT' I I I I I I TTiTTTTTTTTTiTITTi-

1-----,--,---,-,.-..---......--+-r--.-rrTTTTTTIf-lTTp-rIfTITlTrT ["TTl \ I I I I I I i I I TllTrlTTT I [I I I 1 r'ITTTfl- l-rT~~
IT'TI I I I I I I I I I 1 I I 11 I I I I 11-/-T I I I 11IWI&i8I~I/Ii'J](!1 T1Wf-lrW1TrTTTrTTrTTT1L~- rlCWj?ftTu1

I I I I I II I I I I I I \ I i I I I I I I I I Ifl I I I Iii I I I I I I I (p:I.tIxl..:~ I i I \ I I I I \ 1-\l\-I?1I~NjV1BlaQpt'1 LB
1-.---y-"1'--'--~"""_..tr.....J -...3';;r.;;liSf'T:"':"I"'t21....-. -'1 Q11Fi., ""Yt7.>;"..;.· 17'<m"""I'9""'pt·~r9VVftl(!P>l';)rl~T)ff'~ BT:?rrT.ZTl1lYf'll1!r~;lINlY 131/ r-TTTTITl-[)l~13r1'~r lL} "10ll-

-rrrnli I 1 I I I 1 I I I I r-TTTTT-r-T-IT I I I I 1 I I 1 \ I Tn"-'T-T-rTrr-TrrTT'TT'--Wfl~Jli.~;Tq-"l1JfEI
1-·--,---,---,-,.-..---......--+1 ..,--, .,-, -"'-1 -'--1 -'1 -'1-'-1 jTl I I F;lW I ZfZ.WIIT'8rar-TT1'rPfIT"l(Jl~ :1f:fT.7lIpvmcrrr:r -trr?tr";tJpI3T 'JI ~J.1TqEJ[-r rTT TTT'l-r'IT-rllfiF'tr ~nr"lHT7r

-rrT-rrTTTTTTTT T ,-1-'11 - 1 ~T 7 Tt1TJ l-l?IlQI "'I '1((2'1 <1l 1V.1?J1Zf~ T5j Ylcr21.;rT rrTT T T r '11 b rrr-iUJ,NT"f<1 r't'f .rrq-w~~~"
-I I 1 1 I I I I I 1~I/\i(:!I<tj'i5II~ 11-1"(16'1 13Vl71111tSIQI k.>rLiu.I61~i11 13I2iVI~15WI31~ 1 ITT 1 I I I I--r-TTTT ' , , , hid,

... ·-T,--r---,~..--r--..----+--I -..--, -.-, 11"'11 I I 1141 ~t-I/Tl.~T1I;Til&lyr-l-Pl!.WI:rr Hrr3l.!11J<!UTTprffrllS.¥~r1:7f>1rnblr)frln~-'l'-T It I (IE~ 1L.lI'~if 1 r;719r~ffl1f8r
I r-rr-,rrrri I I 1 I I 1 I 1 I liT1TrrriT I I 1 I 1 1 1 I I li-rrrTT""r 1 rr T rTTT-rrTTTrTfTTT

... ·~-,--'-.--r-~+-I -..--, -+-, 'rr-,njlrrrrfTTrr'TiTl-rTrrl ·1(.11 JiI4'"iJ;f,~r T21YfffWr r5:.1 i)f~ :>f¢lr~Ofi- rT-r r-rTTTl T Tl-r T r' T3r~T
-rT,-rrl I I 1 I 1 I I I I F-IWttUTnf7j'(tl(lrnrSr l({lUl=:1111 ~vwrvru E7J.L lJ"Pl3rVB[T I-TT rTT r"1 -1T1M:1T::-J'rvrHDT~il~I'

08 £llU SlN3WWO:> v aNV~3dO v NOllYM3dO IV '38Y'

S3!)Vdi5;~O ~3!)Vd 3.lVa I< ;uv8t1/1 1]iJ')Y. ~3VnVV~!)O~d ..!..NJ.'ild '.!2xJ.37"r---=J-"'(JgW~l..i7V\Y WV~!)O~d

REVISION: SECTION:

UNIVAC m UTMOST
DATE: PAGE:

July 1, 1962

10. Sample Floating Dollar Sign Editing Procedure
•

The following coding represents a procedure designed to edit an
11 character field, inserting a decimal point, commas where
required, and floating a dollar sign to the character position immed
iately preceding the first significant digit in the field.

II

The procedure will accept either 6 bit alphanumeric values or 4 bit
numeric values, and the coding generated is dependent upon the name
by which the procedure is referenced in the main body of coding.

Programming reference:

The routine expects the value to be edited to be present in AR's, 2, 3,
and 4 if in alphanumeric format, in AR's 3 and 4 if numeric format.
To call-the Alphanumeric version, ADOL should be written in the op
eration field of the line where it is desired to generate the routine. If
the numeric version is desired, NDOL should be written in the opera
tion field of the referencing line.

v'/U?'Nt: r P'AGE I--OF 5"- PAGE~ C
DATE

Z
!::J. COMMENTS 7273 80 -<

PROGRAM FL(JJl1rrN6 ~¢I.'JU~ PR¢ CEUUliE PROGRAMMER '&.613

LABEL !::J.: OPERATION !::J. OPERAND

I I I I I I~I I I I I III IJ I Lt~~ l>
I I I I I 1 1-'-1 / 1 I I I I III 1 I I 1 1 I~ti~-l n

I I l--LI I I I I-L~ I a lUI I I I I I I I 1 I

I lui I I I I I 1 I
I f I I ~. I 1 I 1 I I I I

I I I I I I I I I I I I I I I I C
I J~LLlL~ 1 I I I

I

~
I Jll I I I I 0 I~I I I I CIt

I
I I I

I I I I I
I I I I I~I

I 1 I I 1 I I 1 I I I J I 1 I I I I I I

ll-LLLiLL I 1 I

I I I I I~I I I IJ~LLhI I I I I I LL
I I I I-.L I I I I I J~I I I I I LLL1~_
I 1 I I I I I I I I I I I I II~U
I I I I 1 1 I I I I I I I I I I I I

I I I I I I I I I I I-LLLLL c ;u

I~I I I~
)- PI

I I -i <
'- !':' c:: OJ

I I I I I I ~ 0

I J I I ~
z

I ~

l-.L-D I
I
1

I I ~

\0 I
I I 0\

~ I I I

I I I I I

I I I I II.lU

I I l_L1~U
'1J OJ
)- PI
Ii] []

UP.ZI07 CODING FORM ING. BK, PI :::!
0
z

~
<:.TI

.......

DATE PAGE ~OF _£ PAGES

LABEL 11 OPERATION 11 OPERAND 11 COMMENTS 7273 80

----'----Li---'------L----L..-l-L-L.-!.--'-----LI -1...1---,1---,I-LLlL.~I--LI--1I-,---,---1 L~LL->-I ~~-'--'-----'--'--->----J-
I I I I I I~~~I~I---'I_I~~~~~.~-'-----L~~~~~~~~~L.-!.--'-----L~~~~~~
I I I I I I I

'-s:::
~
~ ..
~

\0
0-
t-.)

UP-2tl07 CODING FORM ING. BK.

*"" ~

c
>-
~
PI

11
>-
IiJ
PI

c:
Z -< » n

a
c
~ o en

~
~

;u
PI
~
m
0
z

OJ
PI
n
:!
0
z

z
D
t=
0
III
m

Z
D

m
:>
III
0:

~I

1&1
[!J
~
D..

I "
I ~

....
en o
~
::l

~
U «
> -Z
J

t-
"o:::t"

N
\0
0\
...-t

...-t

~
::J
~

')IS '!lNI WHO:'- DNIOO:l LOSZ-dn

I I I I I I I I I I I I iii I I I I I I I ill ,- i I I 1 I I i I', 1 1 1 , ~' 1 ll.,

I--r,-r, -r, -r,-r,--.--r--+I-r-'-r, f1 i I Iii I i I I I 1 I T-r-r-rTTITIT-TlT 1 1 I I I I I 1 I Il-n- 'T I I I 1 T-TiT-rTT T'I"(1,T,' T~T\r.r~TT-lWX

f1TTT I I I I I I I 1 I 1 'I I I TTiTDT-I T I I 1 1 1 I I I I I I If 1 I I 1 I -TTr'TTrr, rTT-rTTfl -fr,TliT,3fyr--

I 1 I I I' I Iii I I I I I I liT I 1 I I I Tl I I I I I I I 1 I I I 1 I I If I 1 I 1 I 1 If I I I I I-Tlr,fl J'WipIOl'-tTr'lVf7r
1-~~-'-'-'-I-r-r-'rTTTT I I I I I I I I I I '-rrTTTTTTT-, T I I I 1 I I I I I 1 1 I I IfT,r:pL!TXI;1fTT'TTT'Tr-'Tr~9rit

I I I I, I I I II I I I I I I I I I I, I 1 I I I I I I I I II rn
I--r-, -.-, -.-,---.,--.,--.,--..-+-I .--. r--. rTTTT 1 I I I I I I I 1 I "TTTr-rTTTl 'r-I -'-1 -'-1 --r-I--r-I ~I-rl-'---'I---tl---rl

rTTlI I I I I I TTT'rT"TTTTTTTT--, I I 1 1 I I I
l--..--. -.-. -.-.---..---..--..---..-1.-.--. r--. flTl-iTTI'TTT'TT,TrTTTTTTTl r rTT~1 -rl --rl-r-rl--'I~I

TTTl, 1 I I I TTlfT''rTTil-iTT'1 TITfl

-I 1 I I I I I I I I Iii I I I 1 I I I I I I I l' I I I I I I I I I I I I 1 I I I I ill I I I I I ' ,-,,' ii. sw, " ~, ., , , .. " 1

1----.-, -r, -r, .--, -,--, -.---.---+I-r, --.,' fTTli1 I I I I I I I I n--rTT-r -r r 1 f] T rTJTTI
TTiT-rTrflj-T' rrfT''l-TTTTTTT lr rT1'-'I-'I--.-rI---t'I-r-I-rt -.-

I---r-, -.-, -,-. -,-. --.-. -,--,--+-1 -r, -r-.' rl-TTTTTIlj I 1 I 1 TTTrTTITT T'" rl T r-l--rrn

Tl-nil I I I I I I I 1 I I I I I TTTfTT1" I I I I I I
11 I I I i I I I I I I 1 1 1 1 I I Iii I 1 I I rr -r'1 -rl--rl--'I~I '-1 "'-1 ~I -'-1 -'-1 -r1-"1""'"11--'--1 '-1-...-, ..-, ..,..., ""T'", -,-, -r,'

1---,---,----r-.-,---,----.--+-,---,--TTTTT1TTITTrT-rTTTTTTlT'TTl T-I 1 1 1 I ,

'ifTTT 1 I I I I I 1 I I TT'TTn-TTTTl r rTTT'--'-' -'-1-'1 -'1---', Tf'i-TTT TT T 1 1 rr I 'r-r--r r T rT-T r~ 1'1 It!' r T'?IJf'

I- • 1 • • r-r--r-T • • • , • • , • • rTTTTTil ITT T 1 T '-1 1 I 1 I TI--nTITTrrTiT T-r IT T T -II r T rr.pTJ1W?rl] (1€:wflTJ';)!

fTTTTrTTT1' rHI r I r r 1 -II I I I I I 1 I TTl"-11 -r TTTTTrT 1 11'-1 ! T 1 In T T 'iT rn ~rlO"E
I I I I I I 1 I I I I I I I I I I I I I I 1 I I I I 1 I I I I 1 I I I I 1 I I i I I I I I I I I I I I I I ii, I 1 1 Ii

Tl-TiTTn I 1 I I I I I I IT TTTTT r-T1 r ri--T-TiTTl I I 1 ITTTTTTflf-=T-rr'rTTTTrtl ... ·rJlWlp}D l18rfi!'rdl~r"
1--"-1-'-1-'-1--'1--'1-'--1 T""'I +I-'-I-r-I TT TTTTTTTT-TTlfTiITTn-liTTl I I I I 1 I 1 I 1 I Il,-T I I T I TI 1TrTTT'T-rTTT'- T-fT-ln \~r-~I3"1

Tl-n-T1T-r Tl r-Ti-I r fTTTTlfT rTl r II T I I I I I I I I I I I rTTTT11rrl-r--'l-1 1r ,'r rrlTl':)r-r J.;?illf

I--r, --., -.,--..--..-.--.--+-I .--, -r-. TT T' TTTTTTT-rn-rrTTTTTi-TT-rTl TTTTTTTTTTT-llT IT T TTP--I-TTTT -Tlul r-Ttp:1Jlf&llfl1 Tire, r- tt:1 aT:) -

08 £llU SlN3WWO::> V' aNV~3dO V' NOIIVH3dO ~ 138Y1

S3DVdV :lOb' 3DVd 31.VO !(;'i\}~IV" P..JE! ~3WWV~DO~d g;:·ne :7 e7:J&d 8fl171f(!--~NZT~7I WV~DOHd

DATE PAGE ~OF S.- PAGES

LABEL Il OPERATION Il OPERAND COMMENTS 7273 80

I I I I I I

I I I I I I
I I I I I I

'-c::
~
~

~

\0
a-
t-.,)

UP.IU07 CODING FORM ING. BK.

H:::-
00

0

~
1'1

"0
>
Ii]
1'1

c:
Z -<
)-
n

a
c:
~ o en

I-(
I-(

XI
PI

!!
III

0
z

m
1'1
n
::!
0
Z

Z
0
i= u
w
UJ

Z
0
UJ

> W
~

~I

i.i
CJ
.(
D.

ten o
!
::)

a
u
<C
> -z
::)

i.i
~
C

(j)

'o::t'

N
\()
0\
.....

~
t---a

'loI8 "!)NI WHOd !>NIOO:) LOUodn

I I I I I I I I I I I I ,

TTl' I , 1I'fT'-r .-, r--r--.--,----.--,--,-

I-r---r--lr-y-r-r-.-"~-~ I I I 1 I

I I I I 1 I 1 I I 1 I I I I I I I I I I 1 I 1 I I I I I ,I 1 ~-~-~~~-~~~~"'~~'''-'-~-,.---,--t--

f-T-r--r--1r-r-r~--r-r- fl I I I' I T r I I I I

I II II II I II I II I, i jill ITIII n

1-.-,.--,...,.-,--,--r-+-....--,-~11I I 1 ,I 1 I 1 1 1 r'rrifTTT r-rl-'I-'--""""--'-'-""-

Till 1,1 III, 1~'TTTrTTrTl n
-.--.-.-,-,-,.....,--+-r-""-Tlin I 1 I 1 1 I 1~"'fT'Tr''''''-I-'I-'--''''''''--'-'--r-

TT-'-TT-r I ,I 1 I T"l1i I I I liT r--T 1 I I

I I I I I II I I I I I I I I I I 1 I I , I I I I I I I I II I I I I I II I I I I I I I I I I I I I I
l--",......,,~, r-,-, -r-r-+I -r-, -.-, TTl 1 I I ' I I. I I 1 1 , I 1 1 liIlTTT1-,-T I 1 I I I I I 1 I rrn-Tl I I 1 I I rTT-r1 -.-, --'-1 ;--1

-TTT,.i I I , I I I 1 I , ' 1 1 l'ilfTTTrn n
.. -"....-,.r-r-, r-' r-' r-r--+I ..,.-, If 1 I I , 1 I I 11T'TlTlliiTTTTTr-1 -'--1 ...-, -'-1 -'-,"-1 -,-1-,-'...,-1-.-1---.1-..1--.'---.--

-11TH II I I II I 'l'~i I I II I II

\ I I I I II \ I I I I I I I I j I I I

"'-"r--r-, -.--...--r-.-...-+I ..,-, -,-, ll-rn , I I , I 1 I I lillj'-TTTT I I I 1 I
rp--I I III 1 III I I' I I II II I' I'll II II IIIII

a.-,-,,,--.--r-,.-,--h-, TTTTT I 1 I I 1 1 I liIljIITT'-rT rTT I I I I I I

-rT'n I I I I 1 I I I I I 1 liTlTTTTI I I I I I I I I I 1

I I I I I II I I I I 1 I I ' I I I 1 I 1 I I I I I I I I I I 1 I I I I I I I I I , I I I , I I I I I I I I I
I--..,--,,--.,r-,..-• ..-..--, .-, -1-1 -r-,-, rr,n I I I I I I I I I (I I I' \ I I I I rrT \ I I \ I I Pl'i'Trr I I I I I I \ I TTTTr" TTTTTtr7!+\ f1 \9l,t

frTT-r1i11 , I I I , I I I 1 I liTTp--rTI-r I I I 1 I I I I I I I rrTT ' , I IIIIT 1 I 1 I rTT-rrTl7Trr)f~T~r
I-'--r,-...-,-o,-o-,-r-,-o • ...,-, -+-1-,...-, -r-I rrrT-T'TTi' I I 1 I TfTlfTITTTTrlT I I I 1 I I I IlTrTTifTn-rT1TTTTTf~/I"lwW-!.rtTl1T~

-rT-r-nl I I 1 I I 1 1 11TTT"TTrp,-rl-TI I I I I I I I I 'TTT-rrTTrrr-rTllllr:\.~-T-TTrrrl~\E"pTf![uT-Trr-

08 £1Il:l S.LN3WWO:> v ONYH3dO V NOUYH3dO 'V 13&Y1

S3!>Vd S :lO~ 3!>Vd 3.lVO I< ;:N8(;!/1 p't>C!.. ~3V4.V4V~!>O~d 3~)'i(f_:¥-:>?J?ld atl71ci~r.l P¢"'3 V4V~!>O~d

REVISION: BECTION:

UNIVAC m UTMOST
n

DATE: PAGE:

July 1, 1962 50

11. Sample MOVE PROCEDURE

This MOVE PROC is a generalized routine to move n words from
one area in memory to another. It is activated and appropriate coding
generated by a procedure reference line: one of the following

IT
ST
IT
ST

Label
Label
O,ill
0, IR

Label
Label
0, IR
C, ill

of words
#= of words
of words
of words

IR (4 lists)
(3 lists)
(3 lists)
(3 lists)

The above reference lines indicate that the sending and receiving
addresses may be given as a label or in an index register. If itera
tive coding is called for but the number of words (list 3) is not greater
than twenty, then straight line coding will be provided. This allows
the number of words to be computed elsewhere in the program and the
routine to determine the better coding.

The MOVE procedure is composed of a number of procedures to deter
mine which coding should be generated and how much coding is needed
in the case of straight line coding.

Lines 1 - 6

The opening lines are the entrances to the MOVE PROC. The period
in the MOVE statement indicates that the number of lists provided to
the PROC is variable. The DO statement in line 4 tests to see whether
STraight line or ITerative coding is called for. If ITerative coding is
desired PROC A will be generated, if STraight line coding is desired,
PROC B will be generated.

Lines 7 - 10 PROC A

PROC A is reached by IT in the reference line. These lines further
determine whether the addresses (sending and receiving) were given
as a label or in an index register.

Lines 11 - 14 PROCB

PROC B makes the same test as PROC A, but the switches are
different as they must create coding to handle straight line coding.

REVISION: SECTION:

UNIVAC m UTMOST II

OATE: PAGE:

July 1, 1962 51

Line 15 - 18 PROC C

PROC C performs the test for the number of words to be moved. It
is generated in PROC A and therefore is a continuation of the coding
necessary to generate iterative coding with an address supplied in an
index register. If the number of words were 20 or less, then straight
line coding would be generated.

Lines 19 - 22 PROC D

This procedure makes the same test as PROC C but sets the switches
so that the coding generated will handle the words to be moved with
labels provided instead of in an index register.

Lines 23 - 36 PROC E

PROC E would be generated if there were more than 20 words to be
moved and the addresses to be manipulated were in index registers.
Line 24
First a test is made to determine and move any words not multiples
of four. PROC L would be called for and it has one list. The express
ion given would create the correct bit pattern to be placed in the AR
portion of the word .. Lines 25 - 30 are used to manipulate the beginn
ing address and create the proper increment and compare control
word for use in iteration.

Lines 31 - 35 compromise the entire cooing needed to move four
words iterating on index register given as containing the beginning
area address. Line 36 is the conclusion of a PROC, an END line.

Lines 37 - 44 PROC F

PROC F, generated by PROC D, moves the words iteratively; the
addresses having been supplied as labels. Note in this PROC that
the non-multiples of four words are moved at the conclusion of the
4-word-multiples.

Lines 45 - 48. PROC G

This PROC isused by both straight line and iterative coding procedures
to move non-multiples of four when the addresses were given in labels
rather than index registers.

REVISION: SECTION:

UNIVAC m UTMOST
IT

DATE: PAGE:

July 1, 1962 52

Lines 49 - 52 PROC H

These lines would be generated if straight line coding would be desired
and the area address were given as labels. The first DO determines
if there are any non-multiples of four words and generates a PROC to
move them.

Line 51 creates the number of four word loads and stores necessary
to move all multiples of four. The DO statement has a "label" which
will be used by the M PROC called for in this DO line.

Lines 53 - 56 PROC J

This PROC accomplishes the same thing as PROC H, but the switches
here would call for a PROC necessary to create straight line cooing
where the index register contain the area addresses.

Lines 57 - 60 PROC K

This PROC contains the two four word load and store lines for straight line
coding. Note the use of the indexing feature of the DO "label" to incre
ment the m address. Each time the coding is generated the COUNT
will be one greater and when multiplied by four will give the proper
address increment.

Lines 61 - 64 PROC L

This PROC is called for in PROC E where the non-multiples of 4 have
to be moved before the iterative process can commence.

Lines 65 - 68 PROC M

This PROC generates the coding necessary to move words in straight
line coding, but it differs from PROC K, in that the addresses of the
sending and receiving areas are in index registers. Notice the use
of the indexing feature of a DO "label".

PROGRAM roo VIE: peoc, PROGRAMMER]2lMJ FR 16-6-£ DATE~4t J, 19' 2

LABEL fl. OPERATION fl OPERAND fl COMMENTS 7273 80

--'---'----1--,-1 -,-I -1-1 -!--L---'----1------L---,------,-1 --,---I J~ 1 I I 1 1 1 1 I 1 I 1 1 I 1 I~l-L
1 1 I 1 1 ---L-.l1--l1--11---'-----.J1~1 ,----,-----,--,--I 1--' _L I I 1 1 L . .l-I -,-I -'--'-----'------'----L.-L---'--1--l--L-L-I 1 1 I u~G

1 1 1 1 -'----'---'-I-'-I---'I~_'___'___'___'_____'______'_~I_1 I 1 I I I L.L-I -1-1 -'--'-----'------'----L.-L--1--1--l--L-L-. I 1 II U-.LG I

-'"---4'!~~~'-""<..I.oL-,-=,-,"~--"IA-u-I-,-I-,-I--"· 1'-----1 I 1 I 1 1 I L I 1 1 I I I I 1 / I I 1 I 1 I LLLG
8 II I II II III 1/ III 1 1 1 I 1 1

~L-I 1--1 ~ 1 1 1 1 I I ~ I I 1 1 L.L-I --L-L-I---L~L_l._--I--L-....L-I.-'-L...-L.--'--I I I 1 1 1 1 1

1 1 I 1 1 1 I 1 I I L 1 I 1 1 1 I I 1 I / 1 I 1 I

(:1 I 1 1 1 I 1 I I L I I 1 1 LL-I --'----L~~L_l.___L__L---'------'--'-L...-L.-_h__I__. --'---'~"--,-...L.-...L---'---'----L-" I 1 I I 1 1 I I 1

~~-,-#-,-,'-"'--"'----""LJ,--¥-~I D,,--G~ I I I ~J_L 1 I 1 1 L-I-I --L---L---'--L---L-.L----'------l---'--L-.L-'-L--'---'--I 1 1 1 I 1

I 1 I 1 1 1 I" I 1 I I 1 1 , I , I 1 I 1 1 I 1

I I I I ~~I~I--,---,-I-,--,-~~I~I~.I_LI III I L~I~~.~~~~~ I 1

, 1 I I I I 1 1 I I I 1 I I 1 1 1

I 1 I ,
1 I 1 1

I 1 1 1 1 1 1 I I 1 1 I 1 1 I 1 1

~~~~~~~B~I~I~I --I--L-I~I....L-I.I~L_l._I L-I-,--,-~I. lil , LlLLL-,--'----L~~_I__~ 
.~""'-"""'-+-'-~~~~HJ-L-I _LI ---'--+--'---JIL-IL...-L.-I .!-I -'--L--.L-.L-'----'__'I_Ll 1 I I I , L-,-I -,-I -,-I ~-L-.-L-'---'---1--.L 
.-'--'--'---'---'--'------L--L---1-~~ _ _'I__',~_'______'__L1 -,-I -,-I-,-I~,--,--~--"--'--I I~~L __ .LL-,-I -,-I --'--.1 --L-'-~-'---'~~.L.-

1 I 

1 I 

I I 

1 I 1 I 1 

U---Ll_L 

U-.LI-L 

LLLLL 

u_~_L 

t=-'-~--'----'----'--'----JL-J~.L--""'-'---'-_.J-.-L-'----'--'--'--'--.l--'--'---'----'--'--'--'-~'----L-~~I-,--,--'---"~I L I_LLl~-LL-,-1 --L---L---'--L-L-.L----'------l~L-'--L_. 

up-n07 CODING FORM ING. BK. 

0 
)-
-i 

'-4 ~ c:: ...... 
.,< 
~ .. 
~ 

\0 
0\ 
t-..) 

11 
)-
Ii] 
I'! 

Cl1 
C-I:) 

c: 
Z -< » n 

a 
c ... 
~ o en ... 

t-f 
t-f 

AI 
I'! 
~ 
In 

0 
z 

In 
I'! 
n 
::! 
0 
z 



PROGRAM PROGRAMMER It /6-kt DATE PAGE kOF..3.. PAGES 

LABEL II OPERAND COMMENTS 7273 80 

...... 
c: 
~ 
..... .. 
..... 
\C 
0\ 
~ 

up·aB07 CODING FORM ING. BK. 

-

c: 
Z -< 
~ n 

0 
)-
-t 
1'1 

a 
c ... 
~ o en ... 

;u 
1'1 
~ 
In 

0 
z 

In 
1'1 
n 
::! 
o 
z 



PROGRAM Qi..L£ Ph o c._ PROGRAMMER '}xtv' pgJr/·C-t:.-:' DATE.:::rl'Ly I) Jett 2_ PAGE~OF-.J..PAGES 
1 LABEL i!l OPERATION !l OPERAND !l COMMENTS 7273 80 

hl~J-.L~uJJYJ.OLVtl(31)11 ~ it!i;J-ll_LLLLJ.LuJ_LLJ LLl JJ ILl L~J 11 J. LL LLLLLLLLLu--.L-'----'-----'----'--F-.L.L.I..-...l.-'--'---"---L---I 

ttl Ll LLiJ.EIJhDI 11 ILl J I III lLL1J_J J~LL I I I I I I 11 L LI I IlL 1 L1 1 LIJ 1_ LLLLl JJ __ .Ll~_LJ __ L-'---.l.u-+---L--t<-L"'-.L--L-'----'--'____'__I 

Ji I 1 1 1 I 1 UPIRJOIC1~J L LJ I I J 1 I I LLLLLJLli I I 1 1 I 1 1 1 I I IlJ 1 1 I I I~ 1 I I I I I I 1 1 1 I I I I I 

LLL! L L 1~I~OI IIJlYJlowl£i (61)11 i) l~l~ L)lLj;LL1G~~oJYJ£1(dl )lLJ}I.ft~r 15tj12~' I I I I 1 I Im~-,----,-----,----,--f-"LL-'-.L.-.L-~'----'--l 
J) , ~PrvlR(~I) I/~ ,/ffI), I I I 1<1 1 I I 1 I I I 1 I I 1 I I I I I I I I 1 I 1 I 1 I I I I I I I I I I 

._.LLL1_LLL]EJlJIDL1J I LLI LLJ 1 I J I 111 I I LLJ...L.LLlulL LJ LI LLLLLJ_-.Ll.J_'_ . .Ll.-lJ_-,-1 -,---,--I -,-1-,-1-,-1---l.1--,1--l1L-~'--'--~-=-.L..-'--'----'---'.--'--t 
K.-LJJ_L 1~Jpt10CJ"J L L L-l 1.1 j L 1 I 1 I L t I L..LLlJ-.J-LL.lL_LLl LL1~lJ I I 1 I I I I I I 1~-'--1---'----'--t=-'-''-'---'--'----'---'--L-t 
_ LLLLJ L tUL,AI I I J ,/15L~LP]JfJ}iJtj G J 1 ) Iii) rh (l'fi1<C ou ~~llJ)ul L1 IJ_I I I I 1 I I 1 I I I 1 1 I I I 

-.LJ.JJJLLlISJALJ 1 J / r5i.)1 {)1t01VtlG21~')rhGl~CLokJ~JTdlj) 1 1 I L11_Ll---LLL~ 1 I I I I 1 I I 

: 111111111111111111111111111111111111111111 1111 

1 .Lil l_Ll~R~ jL~_1 Ll_1LL1_L~_L~J_.L_L~ I I I I I I I 1 I 1 11_~~-.J~~~~_1~~~~~1.~1~1~1~.~~~~~~_~ 
LLLI J LL~141AII ml jI"lCll}JJ )1~_P}JOIVIf;JC131)J/!)L-J¥P}OtV~I(I/I) eULl I 1 I I I~ I I I I I 1 I I I I 

_LJLLL LLllSl}LLLJ..l(tLl) II ~l~ t>}t> ~1£1 (01 )1/1) eJ I) I 0110 tvli.t-~~vLLLlLJ._l.-l I I I I I I I I 1 I I 

1 I I I l-.Llll~i!fdLLLLI~-L~LLL1LLl LLI_~Ll~LLLhu Ll~l IJ~JJL~~~~ I I I I~~-l--L--'---'----i""-'-'L...I..-.-L-'----'---'.....J.---t 
I-'-.L......I.-~ ................. i -L.~~C:;...&.",:,l,.' .1 1 II I I II I I I I I I II I I II I I I I I I I I 1 I I I I I I I I I I I I I I I I I I 

. LL LIl J L ~~lJl_ L J J 16'l~#I~i\)1~J)1 jfh01Vi.·t.GJ~~J_l~~LLLL1 LILLi LLJ~LLLL~-'--.1 -'--.1 --'---.L..-'--'---'--'I--ll'---'-_i.--'-----'----'--+'---'-''-L-.L-'----'---'--'--I 

L.LL J ILL LlSfk I I J J I5LJ-ff~l>~- d I) I t~l£ttil£1 (rGl ) ~I) 1 I I 1 I I Ll lJ~LUJJ.-l I I I I I I I I I I I 

LI. LJ 1. LdlCJlvIDL11 LtJ~ l_L1JLJL1J _LLl...LLL~--Ll~lL1 LLLLL_LL~LL~~_'---1 L-I -L-I -,--I -,--I --'----L--'----L--L-....II......JI'-.L... . .L......L...-'---.l.u~"-L.......L--'----L--'---'-f 
.--Ll~ __ LL.LuLJ I II J J LJ L L J 1 L I I I I I I IL L Lj~_LLiLLl L'_l Ll LLL LILLL.J._.LLLu~_l~--'--'I---'I----'--.i.--'-----'----'--+-'---'--'---'---L--'--'--I 
..Ll..J~ I 1;1 I LLll.1 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

_1_1LJ-L l.J.lilLLJ J L L1-.l L_lL LLJ~._l~LlJ..l.LLlLuJ~_Ll_LL 1_1 LLLLI L.-l---L.L.l~ 1 I 1 I 1 Il_.Ll_L..l.-L...-'---'--+--'----'--L--'--'----'--'----t 

I I J I t 1 LliHI I I 11 I LL, Ll~.LLLJ_.L1LLLU I I I I I Ll_.LlLl LLLLLLLL..Ll.l-1_Llu_ I 1~l...J._L . ..l.-L...-'---'--+--'----'--L--'--'----'--'-_I 

I I 1 J 1 I LUll I I 1 I LJ 1 l .. LL L LL LLL LLL I I I I I I I I I Ll lJ~l..lL.LLLLL I I I I I I 1 I .-i.l...J---L--'--'---'--'--t---'--'--'---'----'----'----''--f 

LLJJ J lJU I L J I J LlJ_ L L1 __ 1 L 1 L1LL LLLLL I I 1 I I 1 I I i LLLLLlt~_..Ll.l_.l_Llu I I I ~~LLL-'--'--_'___'_-t---'--'--'---'----'-.....J.---I'--f 
I I I 1.1. I I" I .LLll.1 I I I 1 I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I I I I I I I I I I I I I I I I I I 

UP-21107 CODING FORM ING. BK. 

Co....! 

= ~ 

~ 
..... 
..... 
\0 
0\ 
t-.) 

0 
> 
-I 
PI 

c: 
Z -< » n 

a 
c .... 
~ 
o 
CIt .... 

"'D 
> 
GJ 
PI 

;u 
PI 
< 
In 

0 
z 

In 
PI 
o 
::! 
o 
z 



UNIVAC m UTMOST 

I REVISION: 

I 

I I SECTIDN: 

I Notes 
I PAGE: --_ .. _.-



REVISION: SECTION: 

ITl 
UNIVAC m UTMOST 

DATE: PAGE: 

July 1, 1962 1 

III. PROGRAMMERS' REFERENCE SECTION 

A. LINE CONTROL 

The information content of a line to the assembler consists of the label, 
operation and operand fields. The information content is normally terminated 
when the maximum number of expressions required by the operation have been 
encountered (or maximum number of lists in the case of a procedure reference). 

There are two special marks which override the normal rule: 

1. Continuation 

If a If; If is encountered (outside of an alphabetic item) the current 
line is continued with the first non-blank on the following line, and 
there is no more information to the assembler on this line. 

2. Termination 

If a If. If followed by a blank is encountered (outside of an alphabetic 
item) the line is terminated at this point. If any more expressions 
are required, they are taken to be zero. 

A continuation or termination mark may occur anywhere on the line. Following 
the information content of a line any characters may be entered. 

B. LABEL FIELD 

If a line is to have a label, it is written in the label field. A label is composed 
of one to eight alphanumeric characters, the first of which is an alphabetic 
character. The label field starts in column one and is terminated by a blank. 
Except for the EQU, FORM, DO, FLD, PROC and NAME directives, the label 
is equated to the current value of the location counter. 

C. OPERATION FIELD 

The operation field is up to eight characters in length, and may contain an 
assembler directive, a mnemonic machine operation code, a label associated 
with the FORM, PROC or NAME directive, or a data generating code. The 
operation field starts in the first non-blank following the label field and is 
terminated by a blank unlessit-eGll&ists of a + (plus} Gr-(minusj-si-gn, in 
which case the + or - signs is the operation field and the next column need 



REVISION: SECTION: 

III 
UNIVAC m UTMOST ~---------+------."------,--

DATE: PAGE: 

July 1, 1962 

not be blank. If the operation field contains an assembler directive other than 
RES (which increments the location counter), the location counter will not be 
affected. If the operation field contains TWC, the location counter is incre
mented by two. In all other cases, the location counter is incremented by one 
after the line is generated. 

D. OPERAND FIELD 

The operand field starts in the first column following the operation field and 
is composed of lists of expressions. Lists are separated by blanks. The 
number of lists is one except in the case of a procedure reference line. Each 
expression in a list except the last is terminated by a comma. 

E. EXPRESSIONS 

An expression is an elementary item or a series of elementary items 
connected by the operators shown in the table below. An item may have 
preceding blanks. 

+ Arithmetic Sum 
Arithmetic Difference 

* Arithmetic Product 
I Arithmetic Quotient 
++ Logical Sum {OR} 

Logical Difference (exclusive or) 
** Logical Product (AND) 
II Covered Quotient (allb=a+b-l) 

b 
= Equal a=b is 1 if a=b 

a=b is 0 if atfb 

> Greater Than a>b is 1 if a>b 
a>b is 0 if a<b 

< Less Than a<b is 1 if a<b 
a<b is 0 if a>b 

*+ a*+b=a*lO 
b 

*- a*-b=a*lO 
-b 

An expression may also have a leading + or - sign. Any negative value 
produced by an expression will be represented by a 2' s complement unless 
the operation field of the line contains an EQU assembler directive, or TWC, 
or, in some cases, if the operation field is + or -

2 



REVISION: SECTION: 

III 
UNIVAC m UTMOST 

DATE: PAGE: 

July 1, 1962 3 

If an expression represents an address, it may be preceded by an *. This 
will cause the sign of the generated word containing the expression to be -
(indirect address or field select). 

The various types of items and their values are given in the following table. 



REVISION: SECTION: 

ttl 
UNIVAC m UTMOST 

DATE: PAGE: 

July 1, 1962 4 

TYPE FORM VALUE EXAMPLE 

Label any label value assigned to label L 

Location $ value of location counter $ 

Octal the digit 0 followed value interpreted as base 017 
by octal (0-7) digits 8 (binary representation) 

Decimal non-zero digit value interpreted as base 14 
followed by decimal 10 (binary representation) 
(0-9) digits 

BCD : followed by value interpreted as :14 
decimal digits base 16 (Excess 3) 

Alphabetic ' (apostrophe) value of each character 'BOB' 
followed by any in corresponding position 
characters except , followed by , 

Floating decimal digits values represented in 3.14 
followed by . internal floating point 
followed by decimal format (always double 
digits precision) 

Field field label followed address of word OP ($ + 2) 
by expression enclosed selecting the field 
in parentheses 

Parameter procedure label or value of corresponding MAX (2, 1) 
procedure label followed parameter as defined by 
by 1 or 2 expressions the current reference 
enclosed in parentheses (see Procedure Reference) 

Line * ( followed by line value of the word the line (J $ + 2) 
followed by ) would generate 

All items in the above table will be right justified in their generated resultant field, 
and leading bit positions will be binary zeros. 

* See description of line item. 



I REVISION' SECTION: 

UNIVAC m UTMOST 
DATE: PAGE: 

July 1, 1962 

F. MNEMONIC INSTRUCTIONS 

The operation field may contain any of the mnemonic instruction names listed 
in Appendix 1. The instructions are of two types. Type 0 instructions have 
three expressions representing the "a", "m" and "b" fields of the 
instruction respectively. Type 1 instructions have two expressions repre
senting the "m" and "b" fields of the instruction respectively. The 
absolute operation code is placed in the oPeration field of the instru.ction 
word and, if the instruction is type 1, the absolute "a" register cqde listed 
is placed in the "a" field of the instruction word. These fields are described 
by the format: 

24 21 20 15 14 11 10 1 
S b op a I m I 

The sign of the instruction will be + unless the first character of "m" is 
* (indirect address or field select) or an implied literal is generated 
(see Section I). 

G. DATA WORD GENERATION 

There are two methods of indicating a data word (other than an instruction). 

1. Increment and Compare Word, ICW 

This data generation operation is used to prepare a word suitable 
for incrementing and compating an index register (with the IX and 
!XC instructions). It is followed by two expreSSions: e

1 
repre

senting the comparison amount, and e
2 

representing the increment. 

The format of the generated word is illustrated below: 

24 10 9 1 
ICW S 1_---=-el __ -J-I __ e~2 _-JI 

The sign of the word generated is the Sign of e
2 

and bits 9 to 1 
cOTItainthemagnitude-of--ei---mod--5-l-2-;-

III 

5 



REVISION: SECTION: 

UNIVAC m UTMOST 
DATE: PAGE: 

July 1, 1962 

2. + or - Operation Field 

A + or - operation field causes generation of a one-word constant 
whose format depends upon the number of expressions in the operand 
field. The formats generated for the corresponding number of 
expressions are described below: 

24 21 1 

m 

6 

1 s L--________ e...:;I:.....-________ --I1 one-word datum 

2 s 

3 + 

4 + 

24 21 15 1 

L-_e2 __ ...-:.... ___ ~ ____ e_1 _____ __'1 indirect address word 

24 21 20 16 15 11 10 1 

24 21 20 16 
e +3 

1 

15 11 10 1 

field select word 

field select word' 

3. Two Word Constant, TWC 

A TWC data generating word will actually generate two words. All 
floating point expressions should be preceded by TWC (except in the 
case of literals). The sign of both words will be the same and equal 
to the sign of the value of the expression given. 

H. LINE ITEM 

A line item is an instruction line, form reference line, or data word line 
without label field and without leading or trailing blanks, enclosed in paren
theses. The line item has the value which the word generated by the line 
would have unless the line occurred in the address field of an IX or IXC 
instruction and has two expressions. In this latter case, it is evaluated as 
a data word with ICW in the operation field. If the line is a data word line, 
the leading + or - may be omitted. If an entire expression (except for 
possible leading *) consists of such an item, the value of the expression is 
the address of the cell containing the word generated by the line. The word 
generated is called a literal. If the literal is identical to any other literal, 
the location assigned is the location of the previous literal, thus eliminating 
duplication. 



REVISION: SECTION: 

UNIVAC m UTMOST 
DATE: PAGE: 

July 1, 1962 

A literal will be double precision if the line was a "TWCif line or if it was 
a data line with one expression and the mode of the expression was floating. 

An item within such an item can be of this type up to a level of 8 parentheses. 

I. ADDRESSING 

The programmer writes addresses as if they were I5-bit quantities and 
normally is not concerned with the fact that they are 10-bit quantitief? The 
resultant object code generated depends upon which of the following cases is 
satisfied (where m represents the value of the address expression and b 
represents the value of the index expression of an instruction and x. are 

1 
the index registers assigned to the assembler by USE directives). 

2
10 

24 21 20 15 14 11 10 
l. m< sl b I op I a I m 

2. b =0, and 
24 21 20 15 14 11 10 

10 
S I x. I op I a I m-{Xi ) 

1 
m>2 and 

for some i 
10 o < m - (x.) < 2 

- 1 

3. If neither 1 nor 2 is satisfied, the object code generated will be 
identical to that which would have been generated if the programmer 
had enclosed m, b in parentheses and preceded the left parenthesis 
by an *. (This is an implied literal. ) 

1 

I 
1 

4. If the address addresses a literal IOf&.tion, y, (implied or otherwise) 
and does not satisfy 0 < y - (x.) < 2 for any i, a range error flag 
is set and the address ~ontainJ y (mod 210). 

Note: In 1 and 2, S is + unless the first character of m is * = 

J. ASSEMBLER DIRECTIVES 

Assembler directives supply information to the UTMOST assembler. There 
are several assembler directives as listed below and described on succeeding 
pages. Any labels referred to in an expression on a directive line must have 
been previously defined (i. e., they must have previously appeared in the label 

field) . 

m 

7 



REVISION: SECTION: 

UNIVAC m UTMOST 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

DATE: PAGE: 

July 1, 1962 

EQU 
RES 
FLD 
FORM 
END 
PROC 
NAME 
DO 
USE 
SET 

The EQU assembler directive causes the label in the label field 
of its symbolic line to be equated to the value of the expression in 
the operand field of the symbolic line. 

FORMA T: label EQU e
1 

2. RES 

The RES assembler directive causes the value of the expression 
in the operand field to be added to the location counter. 

FORMAT: RES e
1 

3. FLD 

The FLD assembler directive is utilized to indicate the leftmost 
and rightmost bit limits of a field. It must have a label. The first 
expression represents the leftmost bit limit, the second expression, 
the rightmost bit limit. 

FORMAT: label FLD e
1

, e
2 

USE FORMAT: op AR, label (m) 

When a field reference item is used as an address, a field select 
literal selecting the field is generated and the address is the 
address of this literal. The sign of the instruction generating the 
Ii te ral is minus. 

ITt 

8 



REVISION: SECTION: 

UNIVAC m UTMOST 
DATE: PAGE: 

July 1, 1962 

4. FORl\rl 

The FORM assembler directive is used to define arbitrary data 
formats. This directive must have a label in the label field, and 
the sum of the values of the expressions in the operand field must 
equal 25. A single expression equal to 25 is not permitted. 

The FORl\1: directive permits the programmer to define arbitra~J 
word formats by calling upon the pattern specified with a line ,of 
coding having the associated label in the operation field and the 
appropriate number of expressions in the operand field. 

FORMAT: 

REFERENCE: 

5. END 

label FORM e
1 

... e
1

; 

label e
1

, e
2

, .•. en 

The END assembler directive indicates to the assembler that the 
last line of symbolic coding for the procedure or program has been 
read by the assembler. In the case of a procedure, the operand 
field is ignored. In the case of an entire program, the expression 
in the operand field represents the starting address. 

FORMAT: END e
1

. 

6. PROC 

A PROC directive line must have a label, and the expression in 
the operand field indicates the maximum number of lists of 
expressions associated with the procedure (if any). If no expres
sion is given, the number of lists is indeterminate. (No expression 
is indicated by a period-blank. In this case, every reference to the 
PROC must have a period-blank following the last list). 

A procedure must be defined previous to any references to the 
procedure. 

The PROC line is (optionally) followed by NAME lines (see NAME 
directive) and any validf3YDJJ)olic IJI1~~ ll.P t9 a.l1d il1~!ll~ing_anEND 
line. If there are n intervening PROC lines, the n + first END 
line will terminate the procedure. 

ill 

9 



REVISION: SECTION: 

UNIVAC m UTMOST 
DATE: PAGE: 

July 1, 1962 

Any labels defined within the procedure are considered not defined 
outside the procedure unless the label is followed by an "*", in 
which case the label is treated as if it appeared in the referencing 
procedure without an asterisk. If a label is referred to within the 
procedure and is not defined within the procedure, the definition of 
the label outside of the procedure (if any) is taken. 

7. NAME 

All NAME directives associated with a given procedure must follow 
the PROC line immediately. A NAME line must be given a label. 
Its operand field contains an expression. 

FORMA T: label NAME e
1 

A procedure may be referenced by placing any of the Procedure 
names (including the name on the procedure line) in the operation 
field of a line. 

8. 00 

The DO directive is used to generate a line a given number of times. 
If a label is present, the value of the label will be n the nfth time 
the line is done. The expression in the operand field indicates the 
number of times the line is to be done. The line may be any line of 
slTmbolic coding except EQU, FORM, moe, NAME and END. 

FORMAT: label DO e
1

, line of coding 

9. USE 

This directive is followed by not more than 16 expressions which 
represent index registers. The first of these registers is assigned 
the current value of the location counter. Succeeding registers are 
assigned the value of the preceding register plus 210. These 
registers are loaded with their assigned values when the program' is 
loaded and cannot be modified by the program unless a SET directive 
is given referring to the register. The same index register should 
not appear in more than one USE directive. 

ITl 

10 



REVISION: SECTION: 

UNIVAC m UTMOST 
DATE: PAGE: 

July 1, 1962 

10. SET 

The SET directive has two expressions. The first expression 
represents an index register and the second expression represents 
a memory address. The assembler will assume the value given is 
in the index register from the point the set is given until another set 
referring to the same register is given. 

The register is essentially a "USE" register and the information 
supplied by the SET directive will be used for addressing purposes 
as explained under "ADDRESSING". 

Note that the assembler will not cause the register to be loaded. 

K. PROCEDURE REFERENCE LINE 

Lists of variables may be submitted when referincing a procedure. Expres
sions within a list are separated by commas; lists are separated by blank 
columns. 

If the name of the procedure is P, within procedure coding, P refers to 
the number of lists supplied by the current reference, P(e) refers· to the 
number of expressions in the e'th list and P(e, f) refers to the value of the 
f'th expression of the elth list (e and f are expressions). The list containing 
the procedure name (operation field) is considered list 0 and is always present. 
The procedure name may be followed by expressions. P (0, 0) refers to the 
value of the expression on the NAME line by which the procedure was 
referenced, and P (0, e) refers to the elth expression in the name list (list 0). 

L. INTER-PROGRAM COMMUNICATION 

1. Definition 

If a label in the label field is immediately followed by an "*" and 
the line is not within a procedure, this is an external label which 
can be referenced by other programs, assembled separately, when 
the set of programs is loaded. References to the external label in 
the progralu which defines it are the same as for any other label. 

2. References 

If an address expression consists of a label plus or minus a constant, 
and the label is not defined within this program, a reference to an 
external label will be generated. 

In 

11 



I REVISION: 

I 
I SECTIDN: 

I Notes 
PAGE: 

UNIVAC m UTMOST 



I REVISION: SECTION: 

UNIVAC m UTMOST IV 
DATE: PAGE: 

July 1, 1962 1 

Operating procedures will be specified later. 



I REVISION, I SECTION: 

1 

UNIVAC m UTMOST Notes 

DATE: PAGE: 

July 1, 1962 



REVISION: SECTION: 

UNIVAC m UTMOST 
DATE: PAGE: 

July 1, 1962 

Section V is a reprint of UT 2465, the UNIVAC III Central Processor 

Manual, with illustrations changed to the UTMOST language and with notes 

brought up to date by the latest information on the hardware aspects of the 

computer. It is here included in order to make this manual as comprehensive 

as possible. 

v 

INTRO. 



I REVISION: I SECTION: 

I NOTES 
PAGE: 

UNIVAC m UTMOST 



UNIVAC m UTMOSY 

CENTRAL PROCESSOR 

The Central Processor consists of five modules: 
the memory unit, the arithmetic and control unit, 
the general purpose channels, the power supply 
and the power control. The functions of the first 
three are described below. 

Control Unit 

The control unit contains a number of special 
registers and additional circuitry whose func
tions are to select in proper sequence, inter
pret, and initiate the execution of the individual 
instructions of the stored program governing the 
operations of the en tire s ys tern. The ins truction 
logic is 1-address and the instructions are exe
cuted sequentially. 

In addition to the normal sequencing, addressing, 
and control registers, the control unit includes up 
to 15 index registers, and a Memory Address Adder. 
The Memory Address Adder is separate from the 
adder of the arithmetic unit. The index registers 
together with the specia"! adder permit the system 
to make the indexing cycle an integral part of the 
instruction set-up cycle. Therefore, no additional 
memory cycles are required for indexing. The 
instruction execution cycle is explained in detail 
in Section 3. 

Arithmetic Unit 

The arithmetic unit contains an adder for both 
decimal and binary arithmetio, four arithmetic 
registers, and additional circuitry to permit a 
wide range of logical abilities. 

Addition in the UNIVAC III System is parallel by 
bits of a digit and serial by digits. Because the 
digit rate through the adder is ~ microsecond, 
the serial additions of the six digits within a 
word are completed in the 4-microsecond basic 
memory cycle. 

The four arithmetic registers can be linked in 
all processing operations to permit the handling 
of two- three - or four-word operands. Utilizing 
this featme-, the programme-ris801e to reference, 
with a single instruction, 4, 8, 12 or 16 alpha
betic characters; 6, 12, 18 or 24 decimal digits; 
or 24, 48, 72 or 96 binary digits. 

All additions and subtractions are automatically 
checked by congruence arithmetic on a modulo 3 
basis. 

I REVISION: I SECTION: 

v 
DATE: PAGE: 

July 1, 1962 1 

Magnetic Core Storage 

The primary storage of the UNIVAC III System 
is a ferrite core storage unit of 8,192 UNIVAC 
III words. Additional modules of storage can be 
added to increase this capacity to 16,384; 24,576; 
or 32,768 UNIVAC III words. 

The complete memory cycle including selection; 
read-out and regeneration of a word is 4 micro
seconds. 

The basic unit of storage in the UNIVAC III Data
Processing System is a fixed-length word consist
ing of 27 binary bits. Twenty-five information bits 
represent data, instructions, or control words. A 
twenty-fifth bit is used to indicate the sign in a 
data word. The remaining two bits are used to check 
the accuracy of the transfer of all information to 
and from magnetic core storage. 

UNISERVO III SYNCHRONIZER AND TAPE 
UNITS 

The UNISERVO * III synchronizer serves as a 
communication device linking the system's core 
storage to its UNISERVO III tape units. When re
ceiving or transmitting data, the Central Pro
cessor is never linked directly with the com
paratively slower UNISERVO III tape units, but 
instead with the high-speed synchronizer. 

Once a UNISERVO III input-output instruction is 
initiated by the Central Processor, the subsequent 
control of the operation is relegated to the syn
chronizer. This device automatically carries out 
the execution of the function specified, releasing 
the control unit so that the Central Processor 
continues with the execution of subsequent in
structions. 

Each UNISERVO III synchronizer has a pair of data 
ch anne Is with separate control circuitry. The 
result is that UNISERVO III tape reading and 
tape writing proceed in parallel with one another 
and with Central Processor computation (and with 
operations of the general purpose input-output 
channels which are introduced below). Data 
entering or leaving magnetlc core storage through 
the high-speed tape channels requires a memory 
cycle of 4 microseconds per word. 

In transfers from core storage, the tape syn~ 

chroni-zer receives the 27-bit word and segments 
the word into three 9-bit groups, called frames. 

• Tr.d .... rJc 01 the Sperry R.nd Cor por.tlon 



UNISERVO III 

SYNCHRONIZER 

HIGH.SPEED 
READER 

HIGH·SPEED 
PRINTER 

CENTRAL PROCESSOR 

CORE STORAGE - 8,192/32,768 

UNISERVO II 

SYNCHRONIZER 

UNISERVO III 

SYNCHRONIZER 

CARD·PUNCH 
UNIT 

000 
ADDITIONAL PERIPHERALS MAY 

BE ADDED TO THESE CHANNELS 

PAPER TAPE 
READER 

AND PUNCH 

Figure 1-7. Maximum Configuration of the UNIVAC II' 

System 

~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 

0 
> 
-I 

'- PI 
c: 
~ 
...... 

...... 
\0 
(J\ 
t-.l 

11 
> 
iii 
PI 

c 
Z 
< » n 

a 
c: .... 
~ o en .... 

< 

;u 
PI 
~ 
1ft 

0 
z 

1ft 
PI 
11 
j 
0 
z 



UNIVAC m UTMOST 

The frames are transferred serially to the read
write head of the specified UNISERVO III tape 
unit. Each 9-bit frame is then written in parallel 
channels across the tape. On transfers into core 
storage the synchronizer essentially reverses its 
role. Nine-bit frames are sensed at the read-write 
head, trans ferred serially to the synchronizer, 
composed into a 27 -bit word, and the entire word 
transferred to the magnetic core storage. 

A single UNISERVO III synchronizer with as
sociated power, control and switching circuitry 
can control up to 16 UNISERVO III tape units. 
Two UNISERVO III synchronizers can be attached 
to a UNIVAC III System, each operating inde
pendently of the other. 

The pair of data channels on each UNISERVO III 
synchronizer is normally used to provide simul
taneous read and write in parallel with internal 
computation. As an optional feature, the write 
channel may be enabled to read as well as write. 
With this read-read feature installed, the write 
channel will accept and execute read orders in 
all respects as if it were a read channel. This 
feature thus gives the UNIVAC III System, with 
a single UNISERVO III synchronizer, the ability 
to accommodate two simultaneous reads in parallel 
with computation. 

The UNISERVO III tape units are the principal 
means of input and output to the UNIVAC III 
System and will be the only input-output devices 
used in the large majority of UNIVAC III pro
cessing runs. They employ as their storage 

* medium MYLAR base, oxide-coated magnetic 
tape of Y:z inch width. The length of magnetic 
tape on a single reel is 2,400 feet. 

As noted above, data is transferred from the 
synchronizer and recorded across the magnetic 
tape in 9 information channels. A single 9-posi
tion pattern of bits across the width of the tape 
represents one frame and three consecutive 
frames constitute a UNIVAC III word in magnetic 
core storage. The information-packing density on 
tape is in excess of 1,000 frames per inch, and, 
during reading or writtng, tape spe.ed und.eI the 
read-write head is maintained at 100 inches per 
second. These specifications provide an in
stantaneous transfer rate in excess of 100,000 
frames per second, representing over 800,000 
binary digits, 200,000 decimal digits or 133,300 
alphabetic characters per second. 

• MY LAR iB a re~iBtered trademark 01 E.I. du Pont de 
NemourB & Co., Inc. 

1 REVISION: SECTION: 

v 
DATE: I PAGE: 

July 1, 1962 3 

Data may be grouped on magnetic tape in blocks 
varying in length, at the programmer's option, in 
multiples of three frames (one UNIVAC III word). 
The interblock spacing is approximately 0.7 inch. 
Assuming 2,000 word blocks, a fully recorded 
2,400-foot reel of magnetic tape would contain 
from 34,000,000 characters (if the data was 
completely alphabetic) to 51,000,000 digits (if 
the data was completely in numeric form). A data 
file equivalent to 515,820 cards (assuming 50% 
numeric and 50% alpha-numeric data) occupying 
one full reel of UNISERVO In tape can be read, 
modified in the Central Processor and reproduced 
in updated form in less than 5 minutes. 

The UNISERVO III tape unit employs a phase 
modulation recording and sensing technique to 
achieve high density packing with highest re
liability reading. This form of data-recording on 
magnetic tape enables the UNISERVO III tape 
unit to discriminate bit patterns accurately at 
very high packing densities. The skew registers 
permit the UNISERVO III tape unit to accept, 
without fault, the normal skew associated with 
high-speed tape movement. 

The detailed functional specifications and control 
operations for the UNISERVO III tape unit and the 
UNISERVO III synchronizer will be found in a 
separate technical bulletin. 

GENERAL PURPOSE CHANNELS AND PERI· 
PHERAL INPUT·OUTPUT DEVICES 

In addition to the four high-speed data channels 
associated with the two UNISERVO III syn
chronizers (and a fifth associated with the UNI
SERVO II or compatible tape synchronizer), eight 
general purpose channels are attached to the 
UNIVAC III System. These channels serve as the 
communication circuits linking the Central Pro
cessor's magnetic core memory with the card, 
paperatape and printing peripherals. (The term 
peripherals, as used in these technical bulletins, 
indicates the group of input-output devices ex
clusive of UNISERVO tape units.) 

The general purpose channels synchronize the 
operation of any combination of peripherals with 
the magnetic core storage and provide the same 
function of parallel operations for the peripherals 
that the tape synchronizer Plovides for the UNI
SERVO tape units. As a result, up to 13 input
output operations (plus unlimited rewinds of 



REVISION: SECTION: 

UNIVAC m UTMOST 
DATE: PAGE: 

July 1, 1962 

1. UNIVAC III Data-Processing System 

The UNIVAC ®III System is a medium-cost, high 
performance electronic data-processing system 
designed and engineered to provide maximum pro
ductivity at minimal cost in a wide variety of busi
ness applications. The UNIVAC III System is 
modular in its major components and flexible in 
the variety and numbers of peripheral units which 
can be attached. These components utilize solid
state circuitry of proven reliability. 

The high rate of basic internal speed in the UNIVAC 
III System is enhanced by advanced concepts of 
systems organization and design logic and it is 
matched with high-speed input-output units to per
mit extremely efficient, low .. cost-per-unit per
ductivity in the broadest range of commercial 
applications. 

A UNIVAC III Data-Processing System consists of 
a Central Processor with magnetic core storage and 
the arithmetic and control units, magnetic tape 
units, and varying types and numbers of peripheral 
devices. An expanded UNIVAC III System issche
matically represented in Figure 1-1. The general 
specifications of these major components are 
discussed in this section. Detailed functional 
specifications and analysis of operations are 
covered in the separate technical bulletins on 
each component. 

FEATURES 

• Systems modularity ptoviding the ability for 
smooth and eHicient expansion by the addition 
of magnetic core storage, magnetic tape units 
and a f..,11 array of punched card, punched paper 
tape and printing peripherals. 

• Sustained magnetic tape to magnetic tape pro
cessing with concurrent peripheral operations 
on-line. 

eRe". tered trademark 01 the Sperry Rand Corporation 

• Up to 13 simultaneous input-output operations 
paralleling computer processing. 

• The fastest magnetic tape system available, 
providing a tape transfer rate of 133,300 
alphabetic and 200,000 numeric characters. 

• Fast access, magnetic core storage available 
in memory sizes of 8,192; 16,384; 24,576; or 
32,768 words. 

• A 4 -microsecond machine cycle providing 
internal processing speeds usually associated 
with computers designed for engineering and 
scientific applications (for example, LOAD, 

ADD, STORE, BRANCH, and so on, are all 
accomplished in 8 microseconds). 

• A multiple-word operand feature plus field 
selection which allows the system to take full 
advantage of word addressable storage and of 
the high incidence of short fields in data
processing applications with no offsetting 
disadvantages. 

• Bit-handlingfacilities which enable the UNIVAC 
III to be programmed to perform many types of 
special manipulations and allOWing the system 
to utilize a variety of binary input-output codes. 

• A powerful programm ing log ic based on a com
prehensive single-address instruction repertoire 
and including automatic index register modi
fication, multiple word operands, field selection, 
indirect addressing, and scatter-read-gather. 
write tape operations. 

• A completely integrated software package con
taining an executive routine capable of con
tro II ing con c une nt per i phe ra I ope rat ions on-I ine, 

a COBOL compiler, an advanced symbolic 
assembly system incorporating macro-instruc
tions and '1n extens ive library of comm on rou
tines, and a sort/merge generator as well as 
the usual complement of service and diagnostic 
routines. 

v 

4 



UNIVAC m UTMOST 

UNISERVO tape units) could occur in parallel 
with one another and simultaneously with Central 
Processor operations. 

High-Speed Reader 

Both 80-column or 90-column card readers are 
available with the UNIVAC III System. Any 
number of card readers may be under simultaneous 
control of a single system up to the number of 
available general purpose channels. 

Data is read into the system from punched cards 
at the maximum rate of 700 cards per minute. The 
data may be represented internally in either card 
code (a binary one per hole in the equivalent 
punch position) or in machine code (as the result 
of an a utoma tic translation during the read-in of 
data). 

The card transport system of the High-Speed 
Reader is unclutched and consists of: a 2,000-
card input magazine; a read station for transfer 
of data to memory; a separate read station for 
check reading, providing automatic verification 
of sensing; and three program-selectable 1,000-
card-capacity stackers. 

Program controlled functions include: 

Feed Card 

Translate Image 

Select Stacker 

Select Memory Address 

Interrupt Program 

Misfeeds, row misregistrations, card jams, full 
stackers and empty magazine are detected and 
indicated by signal to the program and to the 
operator. 

Card-Punch Unit 

Both 80-column or 90-column punch units are 
available with the UNIVAC III System and multi
ple punches may be operated simultaneously 
under the control of a single UNIVAC III System 
up to the number of available general purpose 
channels. 

Data from magnetic core storage is punched into 
cards at the maximum rate of 300 cards per minute. 
As with the card reader, data may be transferred 
in either card code or machine code. 

I REVISION: SECTION: 

v 
DATE: PAGE: 

July 1, 1962 5 

Under program control, cards move in a succession 
of 4 card cycles along a path composed of a 
1,000-card input magazine; a clutched first wait 
station; a clutched second wait station; a clutched 
punch station; and a check-read station which 
provides automatic verification of card-punching. 
At the check-read station the card enters con
tinuously driven eject rollers to be delivered 
to one of two program-selectable, 1,000-card
capacity stackers. 

Program controlled functions include: 

Feed Card 

Move Card from Station to Station 

Translate Image 

Punch 

Select Stacker 

Interrupt Program 

An empty input magazine, card jam, full stacker 
and full chip-box are detected and signalled to 
the program and to the operator. 

High-Speed Printer 

The High-Speed Printer of the UNIVAC III Sys tem 
has a line printing rate from a minimum of 700 
lines per minute with alpha-numeric information 
and up to 922 lines per minute with completely 
numeric printing. Multiple High-Speed Printers 
may be operated simultaneously under the control 
of a single UNIVAC III System up to the number 
of available general purpose channels. 

The printing span of a single line of print is 128 
characters. Any of the 128 print positions can 
contain any of the 26 alphabetic characters, the 
ten digits 0 through 9, or one of 15 special symbols, 
as follows: 

comma / solidus 

period 
, apostrophe 

equals sign * asterisk 

< less than > more than 

semicolon $ dollar sign 

minus or hyphen ( open parenthesis 

+ plus ) close parenthesis 

colon 



UNIVAC m UTMOST 

The internally stored program specifies the 32 
consecutive words of memory which will com
pose the print line. To satisfy the requirements 
of the particular format, each of the 128 con
secutive print positions may contain printing 
characters to produce a solid line of type, or the 
positions may be subdivided into words or fields 
of various lengths. This completely variable 
format is under the control of an editing program. 

The printed characters are spaced 10 per inch 
horizontally. Vertical s pacing of 6 or 8 lines 
per inch may be selected by the operator. Skip
ping or advancing of paper proceeds at the rate 
of 22 inches per second. 

The paper-feed mechanism accommodates con
tinuous form, sprocket-fed paper ranging up to 
card stock in weight. The form may be either 
blank or preprinted, varying in over-all width 
from 4 to 22 inches. 

Up to five carbon copies of the printing can be 
produced with paper between 11 and 13.5 pounds 
in weight. Further, impression control permits 
variation in the strength of the print-hammer stroke. 
Fine vertical adjustments of the paper position 
may be made while the printer is in operation. 

No paper and paper runaway are detected and 
signalled to the operator. 

The detailed functional specifications and the 
control of the operation for the peripheral input
outpu t devices will be found in separate technical 
bulletins on each device. 

SYSTEMS ORGANIZATION 

It has long been a design objective of computer 
engineers to provide an EDP system which is 
able to co-ordinate and control all of the elements 
of data-processing and data conversion from a 
single set of electronic circuitry. Such a system 
would relieve the user of the expensive support 
of special purpose auxiliary equipment and pro
vide him with a maximum processing power 
relative to his investment in electronic circuits. 

The design of such a system is predicated upon: 

• The existence of electronic components of 
sufficient reliability to insure against total 
systems failure. 

REVISION: SECTION: 

v 
DATE: PAGE: 

July 1, 1962 6 

• An input-output logic sufficiently flexible to 
permit a variety of input-output devices to 
operate in parallel with one another and with 
the Central Processor. 

• The attainment of internal operating speeds 
considerably out of balance with top speeds 
obtainable from card, printing and paper tape 
perip'herals. 

• A transference from engineering to programming 
of the responsibility for systems control. Re
ducing the cost of computer development, and 
allowing for maximum flexibility through the 
creation of sophisticated and efficient control 
routines. 

The UNIVAC III System, while basically a tape
to-tape system, provides for concurrent peripheral 
operations to proceed on-line through: 

• The utilization of reliable solid-state equipment, 
proven in use on the UNIVAC Solid-State and 
and the UNIVAC LARC* Systems. 

• The provision of eight fully-buffered general 
purpose channels (in addition to the five high
speed tape channels) and the automatic pro
gram interrupt feature. 

• The seven-fold increase in internal operating 
speeds contrasted to the 1.1 to 2.8 increase 
obtainable within electromechanical limitations 
with peripheral equipment. 

• The development of an executive routine, 
CHIEF, which controls error conditions, pro
vides for input-output control, and allows itself 
to be modified to meet the specific requirements 
of an operating installation. 

The UNIVAC III System from its inception was 
planned and designed to permit peripheral opera
tions, which, while functionally "out of (the 
tape-to-tape processing) line," would proceed 
through peripherals controlled "in-line" through 
the Central Processor and concurrently with the 
tape-to-tape process ing. 

A simple application of the concept of concurrent 
peripheral operations on-line would require that a 
payroll run not use the printer for paychecks 
directly, but rather produce edited output data on 

Trademark of the Sperry Rand Corporation 



UNIVAC m UTMOST 

magnetic tapes. This tape data would, in turn, be 
printed concurrently with a subsequent run. This 
approach has the added advantage that processing 
speed will not be limited to the speed of the 
printer. The magnetic tape will be used as a 
buffer between the high internal speeds and the 
slower printer speeds. 

REVISION: SECTION: 

v 
DATE: PAGE: 

July 1, 1962 7 

It should be noted that, when the edited payroll 
tape is printed, concurrently with a subsequent 
tape-to-tape run, during a half-hour of operation 
over 21,000 lines could be printed; however, 
high-speed storage would be required for a total 
of 4S seconds during the half-hour and the read 
channel of the UNISERVO III synchronizer would 
be required for a total of 28 seconds. 



UNIVAC m UTMOST 

The UNIVAC III word is the basic unit of storage 
in the system. It is fixed in length and consists 
of 27 binary digits. Twenty-four bits are used to 
represent data, and a twenty-fifth bit denotes the 
sign. The remaining two bits are modulo 3 check 
bits required to produce a modulo 3 sl1m of zero 
for the 27 bits. They are used to automatically 
check the accuracy of word transfers and, by 
congruence arithmetic, to automatically check all 
addition and subtraction operations. 

MODULO 3 CHECK BITS (00-01-10) 

DATA WORD FORMATS 

Data may be represented in any of the three formats 
shown in Figure 2-2, or in any combination. The 
processing circuits do not distinguish between 
data formats. This distinction is completely a 
function of the program. 

Six decimal digits plus sign may be represented 
in a word. Each digit is expressed in excess
three binary coded decimal format. All decimal 
arithmetic operations assume the values to be 
in this format. 

Four alphabetic or special characters may be 
represented in alpha-numeric data word format. 
Each character is composed of six bits, two bits 
for the zone (00 to 11) and four bits' for the numeric 
portion (0000 to 1111); sixty-four different char
acters may therefore be represented. 

REVISION: SECTION: 

v 
DATE: PAGE: 

July 1, 1962 8 

2. UNIVAC III Word 

See Figure 2-1 for the UNIVAC III Character 
Code. 

Values may be expressed in pure binary with 
values up to 224_1. All binary arithmetic opera
tions assume the values to be in this format. 

ZONE 

00 01 10 11 

0000 ~ + 

0001 ; ) * ( 

0010 - . $ , 

0011 0 If 

0100 1 A J / 

0101 2 B K S 

0110 3 C L T 

~ 0111 .. 0 M U 
a:: 
w 1000 5 2: E N V 
::l 
z 1001 6 F 0 W 

1010 7 G P X 

1011 8 H Q y 

1100 9 I R Z 

1101 : = 

1110 < 

1111 > 

F/gur.2-1. UNIVAC'" Cnaracter Cod. 



REVISION: SECTION: 

UNIVAC m UTMOST 
DATE: PAGE: 

July 1, 1962 

DECIMAL WORD* 

Six 4-bit numeric digits along with sign constitute a decimal word. 

S 
I DIGIT DIGIT DIGIT DIGIT DIGIT DIGlT 
G 6 5 4 3 2 1 
N 

25 24 21 20 17 16 13 12 9 8 5 4 1 

S-Bit 25 indicates the sign, 1 for minus and 0 for plus. 
Digits-6f 5, 4, 3, 2, I-Each digit is expressed in excess-three code. See Figure 2-1. 

•••••••••••••••••••••••••••••••••••••••••••••••••••••• ••• Q ••••• O ••••••••••••••••••••••• 8 ••••• ~ 

ALPHA-NUMERIC WORD* 

Four 6-bit alpha-numeric characters constitute an alpha-numeric word. 

S \ 

I CHARACTER CHARACTER CHARACTER CHARACTER 
G 4 3 2 1 N 

25 24 19 18 13 12 7 6 1 

S-Sign. 
Characters-4, 3, 2, I-Each character is represented by 6 bits • 

••• 8 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

BINARY WORO* 

The entire 24-bit data portion of any memory location can be ilsed to represent a 
binary value ranging from 0 through plus or minus 16,717,215. 

S 
I 24-BIT BINARY VALUE G 
N 

25 24 1 

S-Bit indicates the sign, 1 for minus and 0 for plus • 

• Two check-bit positions are omitted for Illustrative purpo.es. 

Figure 2-2. Data Word Formats 

v 

9 



REVISION: SECTION: 

UNIVAC m UTMOST 
v 

DATE: PAGE: 

July 1, 1962 10 

~ 24 21 20 15 14 11 10 1 

~ 
A 

GENERAL INSTRUCTION FORMAT X OP CODE AR m 
F 

OPERAND ADDRESS 's 

SHIFT INSTRUCTIONS I X OP CODE AR SHIFT COUNT /m { 

INDEX REGISTER INSTRUCTION } X OP CODE XO m 
A OPERAND ADDRESS 

INDICATOR, 

INDICATOR INSTRUCTIONS I X OP CODE CLASS, INDICATOR/m ~ OR 
CHANNEL 

INITIATE I/O INSTRUCTION 
ADDRESS OF I/O 

I 
X OP CODE FUNCTION ~ CHANNEL 

SPECIFICATION 

Figure 2-3. Instruction Word Formats 

INSTRUCTION WORD FORMATS 

UNIV AC III Central Processor Instructions are 
in five basic formats. In each format the functional 
grouping of bits is the same. Some bit groups 
perform th e identical function regardless of the 
operation to be performed, while the functions of 
other groups vary, depending on the operation to 
be performed (Figure 2-3). 

BIT POSITION 25 

Indirect Addressing or Field Selection Option 
Designation. Indirect Addressing provides the 
ability to express an operand location, indirectly, 
through an intermediate control word. Nearly all 
instructions of the UNIVAC III repertoire are 
capable of utilizing this feature. In this form, the 
address in the basic instruction does not refer 
directly to the operand to be accessed but rather 
to a control word, which in turn contains the 
operand address. The word containing the operand 
address is termed the Indirect Address Control 
Word (INAD). 

Field Selection provides the ability for an in
struction to operate directly upon data fields 
that are not multiples of a word. This feature is 
availa ble for processing instructions in which 
bit positions 1-10 would normally deSignate an 
operand address. When field selection is desired, 
bit positions 1-10 specify the location of a 

Field Select Control Word (FSEL). The FSEL 
provides the definition of the field size and 
specifies the address of the operand. 

Either option is expressed by the presence of a 
I-bit. The specific choice is determined by the 
format of the control word. 

BIT POSITIONS 21-24 

Binary Address (0001-1111) of the Index Register 
(X) Selected. The contents of the specified index 
register are used to increment bit positions 1-10 
of the instruction. The m-address bits of all in
structions, regardless of type, are automatically 
indexed while being staticized in the control unit
bits 1-10 + (X) produce m'. If 0000 is specified, 
m = m'. Neither the contents of the index register 
specified nor the instruction in memory is altered 
by the indexing. 

BIT POSITIONS 15-20 

Operation Code. 

BIT POSITIONS 11-14 

Depending on the operation to be performed the 
function of this group varies. The function of 
this group depends on the type of instruction. 
It will be the designation of the arithmetic reg
ister(s) selected, the binary address of the index 



UNIVAC m UTMOST 

register to be operated on, the indicator or group 
of indicators to be tested, or the selected input
oU"tpu f channel. 

BIT POSITIONS 1-10 

This bit group is always indexed (if only by 
O's) and becomes a 1S-bit group called m'. 
This is done in the Memory Address Adder during 
the instruction set-up cycle. 

REVISION: SECTION: 

v 
DATE: PAGE: 

July 1, 1962 11 

The function of m' varies with the operation per
formed as reflected in the above formats. 

However, if position 2S is a 1-bit, positions 1-10 
reflect the un indexed address of either an Indirect 
Address Control Word or a Field Select Control 
Word. The original function of positions 1-10 of 
the basic instruction will in these cases be rele
gated to the control words. 



UNIVAC m UTMOST 

The functions of the control registers, a schematic 
of their relationship, and the control cycle of the 
UNIVAC III Processor are given in this section. 

CONTROL COUNTER (CC) 

This register is used to locate the next ins truc· 
tion to be accessed from memory for execution. 
On the last memory cycle of an instruction, the 
lS-bit value of the CC (the address of the in· 
struction currently in progress) is incremented 
by 1 or 2 in the Memory Address Adder and re· 
turned to the Control Counter. The new value 
is also transferred to the Memory Switch Register 
in order to address memory for read·out of the 
instruction in the next memory cycle. 

(CC) t 1 or 2 r MSR 

~CC 

INDEX REGISTER (X) 

These registers are used to develop the final 
operand address. When the instruction is read 
from memory into the Central Processor Re· 
gister, the lO-bit m address (or lS-bit if it is 
a control word) is added to the contents of the 
selected index register. This addition is ac
complished in the Memory Address Adder. The 
sum is then used by the Memory Switch Register 
to locate the operand to be accessed from memory 
in the next memory cycle. The modified storage 
address is also delivered to the Memory Address 
Register. Indexing occurs during the cycle in 
which the instruction was read from memory. 
The contents of the index register are not af
fected by the indexing. 

m+~MSR 

~ MAR 

I REVISION' SECTION: 

v 
DATE: PAGE: 

July 1, 1962 12 

3. Control Unit 

MEMORY SWITCH REGISTER (MSR) 

This register contains the result of all additions 
of the Memory Address Adder. The Memory Switch 
Register addresses the magnetic core storage for 
read-in or read-out of all data, control words, and 
ins tructioris. 

MEMORY ADDRESS REGISTER (MAR) 

This register contains the lS-bit result of m + (X). 
It will only be utilized if the instruction specifies 
a multi·word operand. In the event of a reference 
to a multi-word operand, the contents of the MAR 
will be decremented in the Memory Address Adder 
with the result used to address the next word of 
the operand to be read from memory. The result 
of (MAR) - 1 is also returned to the MAR. 

(MAR) "j 1 ~ MSR 

~MAR 

MEMORY ADDRESS COUNT ERS (MAC) 

These counters, one for each of the thirteen 
input-output channels, contain the lS-bit address 
of the last word of input-output data transferred 
to or from memory through the synchronizer cir
cuitry of the related channel. When any channel is 
granted a memory access, the contents of its 
related MAC are read out and incremented through 
the Memory Address Adder. The result will then 
be used to access memory for read-in or read-out 
in the next memory cycle. 

CENTRAL PROCESSOR REGISTER (CPR) 

Operands, instructions and their associated con
trol words, when accessed, are read from memory 
directly into the CPR register. If an instruction 
is read, the OP Code, the AR portion, and the X 



UNIVAC m UTMOST 

portion are read out and stored in decoders, in 
order - to alert the designated AR and X and to 
build up function table signals for the execution 
of the instruction. The m address is added to the 
contents of the selected index register to produce 
the etiective operand address. During multiplica
tion or division it has the special requirement of 
retaining the multiplicand or divisor. 

Input-output data and input-output function speci
fications do not utilize this register. 

WRITE REGISTER 

All data transferred to memory is routed through 
the Write Register. Its function is to accept in
formation from a 4-bit parallel transmission line 
and to transfer it to the memory location specified 
by the MSR over a 27-bit parallel line. 

Arithmetic Unit~Write~m 
Channel Register MSR 

Synchronizers 

INPUT-OUTPUT REGISTER 

When read from memory, all output, including tape 
control words and input-output function specifica
tions, pass through this register. Its function is to 
convert the 27 -bit parallel transmission from 
memory to a 4-bit parallel transmission to the 
channel synchronizers. 

(m)~I/O~Channel 
MSR Register Synchronizers 

or 
Tape Contro I 
Word Registers 

TAPE CONTROL WORD REGISTERS (TCWR) 

The four TCWR's (one for each UNISERVO III 
channel) are used in conjunction with the scatter
reading and gather-writing features. When memory 
access is gran ted to any of the four channeis 
(and control words for scatter-read or gather
write are being used), the contents of the ap
propriate TCWR are tr~ii}sferred through the M~mory 
Address Adder where the word-count portion is 
decremented by one and the address portion is 
ir1cremen ted by 1. The new address is then used 
to access memory for the read-in or read-out of 
the input-output data in the next memory cycle. 
The adjusted control word is also returned to the 
TCWR. When control words are used for tape 
reading or writing, the Memory Address Counters 

REVISION: I SECTION, 

v 
DATE: PAGE: 

July 1, 1962 13 

for the UNISERVO III Read and Write Channels 
are used to access the next control word when 
required. If control words are not used, the UNI
SERVO III Memory Address Counters are used to 
access memory for input or output data. 

Count -~ TCWR 
(TCWR) 

L + 1 
I I 

~MSR 

MEMORY PRIORITY CIRCUITS (MPC) 

The MPC circuits govern access to the magnetic 
core storage by controlling the selection of the 
contents of the CC , the MAR, an MAC, or a 
TCWR to be transferred to the MSR through the 
Memory Address Adder. 

The selection is based, in the case of the MAC 
and TCWR, on the transfer speed of the related 
peripheral unit. As each peripheral unit's syn
chronizer circuitry determines a memory access 
requirement, a request is sent to the MPC. At every 
4-microsecond memory cycle all memory requests 
are evaluated and the channel with the highest 
priority will be selected. The contents of the 
MAC for the selected channel will be sent to the 
Memory Address Adder and memory read-in or 
read-out performed according to the new setting 
of the MSR. The request is then eliminated from 
the MPC. 

This action will be repeated as long as any 
channel synchronizer requests memory access. 
A t the time when all requests from the channel 
synchronizer have been accommodated, either the 
Control Counter or the Memory Address Register 
will be given access to memory. 

The general order of priority for memory access is 
as follows: 

UNISERVO III Channel Synchronizer 

UNISERVO II Channel Synchronizer 

General Purpose Channel s 

Accessing Mulq-Word Operands 

AcceSSing Instructions 

UNIVAC III PROCESSOR BLOCK DIAGRAM 

The functional relationship of the elements of the 
control unit are schem atically represented by the 
UNIVAC III Processor Block Diagram, Figure 3-1, 
on page 3-3. 



TO WRITE 
REGISTER 

. 
J... J... J...J... "" ,j, 4- 4- 4-.4, 1 MEMORY 

I I 1 I I I I I I 
SWITCH 

REGISTER 

r--- -
U-1I1 GENERAL PURPOSE 

- ) U-II U-III -
TCWR TCWR TCWR TCWR TAPE CHANNELS TAPE ., .2 .3 .4 T WRITE 

- ( -

+ '\'\'\-H'\+ + ......... A MEMORY -
P 

REG. \ .......... 
l-

E f- ) 

TT T 
f-

,. , .. + ... + .. .. + + + .. .. ~ -1 t • I 1/0 " I REGISTER I ( 

t I'~ 

( 

I I CP 
TO REGISTER + 2 ) MAC 

H r I L!::, '" ± I T 
ARI I ,/ 

I DE~~DERI I AR/MAC) 

--1 J--. 
DECODER 

AR2 } j I INST I 
'--- ADDER 

DECODER r---1'~ 

f+- H ~ 
FUNCTION 

ARlI 
TABLE ~r.. 

" y }-. 
,/ 

AR4 ~ CC f----.. 

r------. MAR ~ 

f---I- MAC #1 -+ 

f---+ MAC #2 -+ 

MEMORY AC CESS ACCESS GRANTED f---+ MAC #3 -+ 
~~~G~~~~ 

PRIORITY ENABLE MAC,

CIRCUITS
SIGNAL MAR, TCWR, ~ OR CC

ttttttttftttt ~
--.. MAC 1111 ~

REQUESTS FOR
MEMORY ACCESS ----+- MAC 1112 f---
FROM I/O UNITS

~ MAC 1113 I----AJ

Figure 3-1. UNIVAC III Processor Block Diagram

"\
./

.....
"I

SUM

'" MEMORY
"I ADDRESS

ADDER

1---+ IR III r----
~ IR 112 f---+

r----+ IR #3 r----..
r----to- IR #4 r---
----...~~

~~ --~ IR 1112 -
----+0 IR 1113 -
~ IR #14 -
L.......-..., IR 1115 f---+-

......
~

~
~

~

\0 --TO WRITE Q'\
REGISTER ~

0
)-
-I
1'1

c
Z -< » n

a
c ...
~
o en ...

;a
1'1
~
III

0
z

lJ III
» 1'1
Ii] n
1'1 j

o
z

UNIVAC m UTMOST

THE CONTROL CYCLE

The major function of the control unit is to se
quentially select each instruction! from memory,
interpret it, and perform all of the operations
necessary for its execution.

The sequencing of ins tructions is a function of
the Control Counter (CC). The CC contains the
memory address of the instruction being exe
cuted in a is-bit binary format.

The control unit sequence is divided into 4-
microsecond memory cycles. The description
of the control cycle will be in terms of these
cycles rather than in microseconds.

Sing Ie-Word Operand

During the final Execution Cycle of the preceding
instruction, the is-bit address curren tly contained
in the CC Register is transferred to the Memory
Address Adder. The other input to the adder, the
increment amount, is specified as a function of
the nature of the previous instruction. Most in
structions generate an increment of 1 and step
the program to the next sequential location.
General branching operations may replace the CC
reading with a new address rather than increment
the current address. Special test operations
cause the CC to be incremented by either 1 or 2,
depending on the set of the conditions tested.

The address fabricated by the Memory Address
Adder is sent to the Memory Switch Register
(MSR) and returned to the CC Register replacing
its previous con tents.

Last Cycle (

of the Pre-) (CC) + Increment r Memory Switch
vious Instruc-~ I ~ Register (MSR)
tion 4 Control Counter

(CC)

Instruction Set-Up Cycle

During the Instruction Set-Up Cycle, the 27 bits
at the storage location selected by the Memory
Switch Register are sent to the Central Processor
Register (CPR) where they are staticized. During
the initial part of this cycle, the instruction
being received from memory is decoded through
the Index Register, the Arithmetic Register, and

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 15

Instruction Decoders. The appropriate index re
gister and AR are selected and function table
signals are generated which will affect the exe
cution of the instruction.

During the latter part -of the Instruction Set-Up
Cycle, the contents of the index register speci
fied by the instruction, and the memory address
(from the CPR) are combined in the Memory Ad
dress Adder, and the result is sent to the Memory
Switch Register and the Memory Address Register.
The MSR, which noy.r contains the full is-bit
address of the operand, is used to address memory.

Instruction (m) ---7 CPR--7 Decoders
MSR IR Selected

Set-U pAR Se lected
Function Table

Cycle Signals Gen
erated

---------.,r MS R

~MAR

Execution Cycle

During the Execution Cycle, the contents of the
Memory Switch Register select the memory location
which contains the data to be used in the opera
tion. This data will be routed through the Central
Processor Register to the specified AR(s) which
have been alerted by the decoding of the AR
portion of the instruction on the previous cycle.

During this Execution Cycle, the contents of the
CC are being read out and are being adjusted
by a selected increment. Thus, there is a con
tinuous overlap between the Execution Cycle of
the previous instruction and the fabrication of
the location of the next instruction.

Execution

Cycle

(m)~SR--~) CPR---7AR

(eC) t Incremen'C MSR

CC

UNIVAC m UTMOST

Multi-Word Operand

The incrementing of the CC during the execution
of an operation employing a multi-word operand
is delayed until the final Execution Cycle of the
operation. The control unit is required during all
other Execution Cycles to decrement the contents
of the Memory Address Counter to select in turn
the other words of the operand.

Last Cycle

(CC) +1 Increment C MSR
of Previous . .

CC
Instruction

REVISION: SECTION:

v
DATE: PAGE:

Instruction

Set-Up

Cycle

Execution

Cycle

(first word)

Execution

Cycle

(last word)

July 1 ~ 1962 16

(m) ~CPR--;:. Decoders
MSR IR Selected

AR Selected
FT Signals

Generated
(X) + m CMSR

I CPR
MAR

(m) ~CPR~AR
MSR

(MAR) -;- 1 ~MSR

~MAR

(m) ~CPR~AR
MSR

(CC) t Increment C MSR

CC

REVISION: SECTION:

UNIVAC m UTMOST v
DATE: PAGE:

July 1, 1962 17

4. UNIVAC III

PROGRAMMING FEATURES

The UNIVAC III System provides anum ber of pro
gramming features greatly expanding the power of
its basic command repertoire and providing addi
tional flexibility to the systems designer as well
as to the programmer.

Index Regi sters

In the UNIVAC III System nine or fifteen index re
gisters make possible address modification, pro
gram loop control, and the setting of counters with
out additional time being spent on the execution of
an instruction. This occurs as all instructions
(and control words) go through an indexing phase
in order to develop the final operand address. The
net result of this feature is an expansion of the
memory.

Index registers may be used effectively to reduce
the num ber of instructions required for anyapplica
tion. Their basic function is to permit the modifi
cation of referenced data locations. They do this
by changing the "effective" address sought, with
out altering the "base" address itself. Therefore,

Command Repertoire

the entire processing routine remains unaltered in
memory available for application to any set of data.

Modifying the base operand address of any instruc
tion without reference to the arithmetic registers
has also eliminated the need to handle each varia
ble individually.

Each index register contains a 15-bit unsigned
binary value and is specified in binary (0001-
1111) in bits 21-24 of the instruction word.

During the access of each instruction from memory,
bit positions 1-10 of the instruction and the con
tents of the specified index register are automatic
ally added in binary [m + (X)]. A 15-bit effec
tive operand address, m I, is produced. Address
mod ification in the Ur·aVAC III Sys tern does not
require an additional cycle. Any carry beyond
b_it IS is ignored. The instruction in memory and
the index register addressed are not affected as a
result of the indexing.

If 0000 is specified in bit positions 21-24 of the
instruction, no effective indexing occurs.

UNIVAC m UTMOST

Multi-Word Operands

The UNIVAC III System contains four one-word
arithmetic registers - AR1, AR2, AR4, and ARB.
The arithmetic register involved in the execution
of the instruction is designated by a 1-bit in bit
positions 11-14 of the instruction word as shown
below:

14
1
o
o
o

13
o
1
o
o

Bit Positions

12
o
o
1
o

11
o ARB
o AR4
o AR2
1 ARI

Through any combination of these bit designations
it is possible to manipulate operands of from one
to four words with a single instruction. The number
and position of 1-bits control the size of the
operand and its placement within the arithmetic
registers. AR's not specified will not be affected
by the instruction execution (Figure 4-1).

The AR's selected may be adjacent or non-ad
jacent and in either case they will act as a single
extended register. Multi-word operands in memory,
however, must be from adjacent locations.

The contents of the memory location specified in
the instruction (m ') are considered the leas t signi
ficant word of the operand and are used in con
junction with the lowest numbered AR designated.
The balance of the operand in the lower ordered
memory location(s) are related to thehighernum
bered designated AR's.

The sign of the least significant word of a multi
word operand is treated as the sign of the entire
operand regardless of the sign of the more signifi
cant words. After arithmetic operations the correct
algebraic sign will be placed in all AR's involved,
regardless of their previous signs.

A carry from the least significant AR is propagated
to the next higher numbered register designated in
the instruction. Only a carry beyond the most sig
nificant AR designated causes the Arithmetic
Overflow Indicator to be set and a Contingency
Interrupt to occur.

Generally, when a multi-word operand is specified
an additional machine cycle for each word beyond
one should be added to the basic execution time.

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 18

Ind irect Addres 5 ing

In some programming instances, it is valuable to
be able to specify the location where the address
of an operand is stored rather than to specify the
location of the operand directly. This method of
addressing an operand is called indirect address
ing. It is of use in writing compilers, sort and
merge routines, manipulating subroutines, and in
the for ~nation of various control words for the UNIVAC
III System. Indirect addressing has therefore proven
valuable in reducing programmer effort, processing
time and instruction storage area.

Indirect addressing is specified by placement of a
I-bit in bit position 25 of the instruction word.
The indexed address of the instruction word in
this case will not be the location of the operand,
but rather the location of an Indirect Address Con
trol Word (IN AD). The indexed address of the INAD
will specify the location of the data.

I
/ X 000
A

25 24 21 20 18

I/A

x

Bits 18-20

Bits 16-17

L-Address

oD
.(1)

L-Addr. (I)
«I
c

:=l

17 16 15 1

Indirect address/field selection
option

Binary address of index register,
1 to 15

Must be O's

Unassigned

If 1/ A is a I-hit, the L-address
specifies the unindexed location
of another IN AD or a Field Select
Control Word (FSEL).

If 1/ A is a O-hit, the L-address
specifies the unindexed address
of the data.

If it is desired to delay the expression of the
operand address through another level, a I-bit
should be placed in bit position 25 of the first
level IN AD and its indexed L-address made the
location of the second IN AD. In this way, indirect
addressing can be made to extend through several

1 REVISION:

UNIVAC m UTMOST
DATE:

July 1, 1962

Adjacent Regi sters Used

ARB
NOT

INVOLVED

CARRY

PRODUCING

OVERFLOW

AR DESIGHA TIOH

VALID

CARRY

SIGN OF

OPERAND

ARl
NOT

INVOLVED

f- OPERAND -I

Non-Adjacent Registers Used

ARB

+

PRODUCING

OVERFLOW

AR DESIGHA TIOH

AR4
NOT

INVOLVED

AR2

+

~~

1L.... --- OPERAM:>

CARRY

SIGN OF

OPERAND

AR1

(m)

Figure 4- J. Examples of Multi-Word Operands

SECTION:

v
PAGE:

19

UNIVAC m UTMOST

levels until an INAD with a O-bit in bit position
25 is accessed. The original instruction will then
be executed, using the operand address of the last
INAD. There is no arbitrary limit to the possible
levels of "cascading."

Indirect addressing is not restricted to referencing
data.

Instructions utilizing indirect addressing are exe
cuted in the following manner:

a. The basic instruction word is set-up in the
Instruction Register, an indexed address de
veloped m + (X) and bit 25 is examined.

b. If bit 25 is a I-bit, execution of the instruc
tion is delayed and the contents of the indexed
address are accessed. Again an indexed loca
tion is developed L + (X) and bit position 25
is again examined.

(If bit position 25 is a I-bit, Step b is repeated
until the word accessed contains a O-bit.)

c. If bit position 25 is a O-bit, the control word
is further examined. If bit positions 18-20 con
tain binary O's the developed L-address is the
address of the data.* The instruction is then
executed.

Though the Control Counter is not altered, indirect
addressing will require an additional memory cycle
for each INAD accessed.

Illustration

Load the contents of DATA (0651) into Arithmetic
Register 4 using the indirect address option.
The operand address is stored in the 15 least
significant bits of the Indirect Address Control
Word located at 0700 and tagged CONTROL.

LA 4, * CONTROL,

}
A

X OP Code AR m

1 0000 12 0100 0700

*A I-bit in position 25 may also indicate field selection; however ..
field selection is apecilied by the preaence of bits other than 0-
bits in positions 16-20 of the control word (FSEL).

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 20

(0700) CONTROL + DATA

I

~ X L

0 0000 000 00 0651

(0651) DATA

25 24 21 20 17 16 13 12 9 8 5 4 1

Fie Id Selection

When a data field is not a multiple of a word, field
selection should be employed in order to isolate
only those bits, digits or characters to be operated
on during the instruction execution. The position
of the field to be selected is defined in a Field
Select Control Word (FSEL) as is the field's ad
dress.

The indexed m address of the basic instruction
word is made the location of the FSEL and bit
25 records a I-bit. The FSEL has the following
format:

Left Right
X Boundary Boundary m

Bit

2524 21 20

Bit 25

x

Left Boundary
Bit

Bit

16 15 11 10 1

Always 0

Binary address of index register
0-15

Most significant bit position of
field to be selected. The bit posi
tion is specified in excess-three
and ranges from 4 (LSB of word)
to 27 (MSB of word).

If a multi-word operand is speci
fied in the instruction, the Left
Boundary Bit Designator must be
within the most significant word
of the operand.

UNIVAC m UTMOST

Right Boundary Least significant bit position of
B it the field to be selected. The bit

position is specified in excess
three and ranges from 4 (LSB of
word) to 27 (MSB of word). If a
multi-word operand is specified in
the instructio,n, the Right Boundary
Bit must be within the least signi
ficant word of the operand.

REVISION:

DATE:

July 1, 1962

INSTRUCTION

DA 1,

I
/ X OP Code AR
A
1 0000 20 0001

SECTION:

v
PAGE:

21

* CONTROL

m

0266

m Unindexed address of the word CONTROL (0266)

Notes

containing the least significant
bit of the field

1. The sign bit(s) will not be selected; the signs
of all fields selected will be positive.

2. Portions of the word(s) beyond the boundaries
specified are binary O's. If decimal add or
decimal subtract is specified, these binary O's
are treated as excess-three O's.

3. Field Selection from memory affects or acts in
conjunction with the same relative bit positions
of the arithmetic register(s) unless a carry re
sults beyond the most significant bit or digit
within the register. Such carries may be propa
gated up to the limits of the most significant
arithmetic register designated. Beyond this
limit overflow will occur.

4. When a multi-word operand is specified in the
basic instruction the arithmetic registers may
be non-adjacent but the bits of the operand from
memory must be contiguous.

5. The FSEL may be indirectly addressed. But
indirect addressing may not extend beyond the
field select cycle. Hence. bit position 25 of a
FSEL must be O.

6. One machine cycle is required to access and
analyze the FSEL. The Control Counter is not
affected by this accessing.

Illustration

Arithmetic Register 1 contains a value of 770111.
Add to it the three least significant digits of the
value 99933 in LOC B (0739). The FSEL is loca
ted in CONTROL (0266).

+ 12, Loe B 1, ,

I Left Right
/ X Boundary Boundary m
A Bit Bit

0 0 15 4 0739

RESULT IN ARI = 770444

INSTRUCTION FORMAT

The purpose of this section is to provide the
reader with a complete summary of the UNIVAC III
Central Processor command repertoire as well as a
knowledge of the subtle considerations applicable
to each instruction.

Each instruction description contains a symbolic
representation of the operation as well as its for
mat (Figure 4-2). This format is further elaborated
upon by the use of an example illustrating the
operation described. Each example is illustrated
in two ways. One illustration will be in the equiva
lent of machine representation. That is, the coded
instruction will contain the machine binary equiva
lent when applicable, or its decimal equivalent, in
various segments of the instruction word. (For
example, the index registers will be designated by
a 4-bit binary configuration ranging from 0000-1111.)
The same illustration will be coded in
UTMOST (UNIVAC Three Machine Oriented
Symbolic Translator).

REVISION: SECTION:

UNIVAC m UTMOST
v

DATE: PAGE:

July 1, 1962 22

CC The Control Counter

INSTRUCTION'S FUNCTION
UTMOST

MNEMONIC L A 1S-bit unindexed address

Operation:
Symbolic Representation of In- L'
struction Execution

A 1S-bit indexed address

o p Code:
Operation Code Expressed as
Two Octal Digits

Binary Operation Code Express-

MACi

MAR

One of thirteen Memory Address
Counters

Memory Address Register

Cycles:
ed as Two Octal Digits SLi One of thirteen stand-by locations

Description: Definition of Instruction T B R Typewriter Buffer Register

Instruction Format

Explanation of Each Function of the Instruction

Format

Notes

Considerations in Instruction Usage

Illustration

Illustration of Instruction Usage Showing
UTMOST Mnemonic and Machine Equivalent

Figure 4-2. Instruction Layout

SYMBOLOGY AND ABBREVIATIONS USED
() The contents of

()x

a~b

m

m'

ARi

XOi

The contents ofJas specified by x

a is trans ferred to b

A lU-bit unindexed address

A 1S-bit indexed address

One of the four arithmetic registers

One of the fifteen' index registers
used to modify m

One of the fifteen index registers to
be affected

TCWRi

lew

One of four Tape Control Word Regis
ters

Index Register Modification Control
Word

OPERAND TRANSFER INSTRUCTIONS

These instructions transfer operands from memory
to the arithmetic registers or from the arithmetic
registers to memory.

Reading from memory or the arithmetic registers
does not alter their contents. Reading into memory
locations or the arithmetic registers will replace
the original contents with the operand read in.

LOAD

Operation:
OP Code:
Cycles:

(m')~ARi
12
2

LA

Des c rip t ion: Transfer an operand from the indexed
memory location(s) to the arithmetic register(s)
designated.

UNIVAC m UTMOST

I
X /

A

25 24 21

I/A

x

AR

m

Notes

OP Code AR m

20 15 14 11 10 1

Indirect addressing/field selection
option

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

U nindexed address of the operand

1. Arithmetic register(s) are first automatically
cleared to binary O's.

2. Contents of memory location(s) accessed are
not altered.

3. Indirect addressing, field selection and multi
word operand(s) may be employed.

Illustration

Transfer the operand, FIELD (0689), to AR2.

LA 2,

I
X Op Code AR /

A

0 0000 12 0010

LOAD A NEGATIVELY

Ope nItTo n:
OP Code:
Cycles:

(m)~AR.i

13
2

FIELD A,

m

0689

LAN

Des c rip t ion: Transfer an operand from the indexed
memory location(s) to the arithmetic register(s)
designated, reversing each of the signs.

, i i

I
X /

A

25 24 21

I/A

x

AR

m

Note s

I REVISION: I SECTION:

v
DATE: PAGE:

20

July 1, 1962 23

i i ,
OP Code AR m

15 14 11 10 1

Indirect addressing/field selection
option

Binary address of index register, 0 to
15

Position~l designation of arithmetic
register(s)

U nindexed address of the operand

1. Arithmetic register(s) are first automatically
cleared to binary O's.

2. Contents and sign of memory location(s) ac
cessed are not altered.

3. If field selection is used, the sign of the AR
will always be negative.

4. Indirect addressing, field selection, and multi
word operands may be employed.

Illustration

Transfer the operand, FIELDB (1002), to AR8 re
versing the sign(s) of the operand.

LAN 8, FIELDB

I
X

I

AR ~ o P Code m

0 0000 I 12 1000 1002

LOAD FIELD INTO REGISTER LF

Operation:

OP Code:
Cycles:

(m') ---..ARi

14
3

FSEL

Description: Selectively replace consecutive bits
within the arithmetic register(s) designated with
the bits from corresponding positions of the memory
location(s) specified.

UNIVAC m UTMOST

~ X

25 24 21

x

AR

m

Note s

OP Code AR m

20 15 14 11 10 1

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

Unindexed location of Field Select
Control Word

1. B it positions to be replaced and operand ad
dress are specified in a Field Select Control
Word. (FSEL).

2. If the field selection option is not exercised,
the instruction functions as the Load ins truc
tion except that the sign of AR remains un
changed.

3. Bits outside the limits specified remain un
changed.

4. The sign of the arithmetic register(s) will not
be affected.

5.lndirect addressing and multi-word operands
may be employed.

6. See Field Selection, page 4-4.

Illustration
Extract bit position 1-12 of FIELDA (0789) into
AR 1. The Field Select Control Word is located in
0289.

LF 1, * (12, 1, FIELDA)

I
/ X OP Code AR m
A

1 0000 14 0001 0289

FSEL (0289)

I Left Right
/ X Boundary Boundary L
A Bit Bit

0 0000 15 4 0789

I REVISION: I SECTION,

V

DATE: PAGE:

ST OR E

Operation:
OP Code:
Cycles:

July 1, 1962

(ARi) ---. m'
10
2

24

ST

Description: Transfer the contents of the arithme
tic register(s) designated to the indexed memory
location(s).

I
/
A

25 24

I/A

X

AR

m

Notes

X

21 20

OP Code AR m

15 14 11 10 1

Indirect addressing option

B ioory address of index register, 0
to 15

Positional designation of arithmetic
register(s)

Unindexed address of the operand

1. The indexed memory location(s) are first auto
matically cleared to binary O's.

2. Contents of the arithmetic register(s) are not
altered.

3. Indirect addressing, multi-word operands, but
not field selection, may be employed.

Illustration

Transfer the contents of AR2 and 4 to FIELDB

(0551-0552). SA 6, FIELDB

I
/ X OP Code AR
A

0 0000 10 0110

STORE A NEGATIVELY

Operation:
OP Code:
Cycles:

(ARi)---+-m'
11
2

m

0552

SAN

UNIVAC m UTMOST

Description: Transfer the contents of the arzthme
register(s) designated to the indexed memory loca
tion(s) reversing the sign(s) of the operand.

} X
A

25 24 21 20
, !

I/A

x

AR

m

Notes

OP Code AR m

15 14 11 10 1

Indirect addressing/field selection
option

Binary address of index register, 0

to 15

Positional designation of arithmetic
register(s)

Unindexed address of the operand

1. The indexed memory location(s) are first auto
maticaIIy cleared to binary O's.

2. Contents of the arithmetic register(s) are not
altered.

3. Indirect addressing and multi-word operands,
but not field selection, may be employed.

Illustration

Transfer the contents of AR4 to FIELDC (0482)
reversing the sign.

SAN 4, FIELDC

I
/ X OP Code AR m
A

0 0000 11 0100 0482

ARITHMETIC INSTRUCTIONS

All arithmetic operations are performed in the
adder. One input to the adder, the primary, always
comes from some combInation of the four arithme
tic registers: ARl, AR2, AR4, ARB. The other in
put, the secondary, is from the indexed location
specified by the instruction. The result of an
arithmetic operation is usually returned to the
sam e arithmetic register or registers from which
the primary operand was secured; this return of
the result replaces the original operand in the

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 25

arithmetic register(s). However, the result may be
placed in some other arithmetic register, in which
case the primary operand is 16nchanged. The rule
is: The result of an arithmetic operation wiII be
located in one place and one place only. In decimal
or binary subtractions and additions, the Equal
Comparison Indicator (ECI) is set, if the result is
decimal or binary 0; if the result is non-zero, the
Eel is reset.

DECIMAL ADD DA

Operation:
OP Code:
Cycles:

(ARi) + (m')~AR
20
2

Description: AlgebraicaIIy add In decimal the
operand(augend) in the indexed memory location(s)
and the value (addend) in the designated arithme
tic register(s). The result is placed in the same
arithmetic regis~er(s).

I

~ X

25 24 21 20

I/A

x

AR

m

Notes

OP Code AR m

15 14 11 10 1

Indirect addressing/field selection
option

Binary address of index registers, 0
to 15

Positional designation of arithmetic
register(s)

Unindexed address of the augend

1. Binary O's (0000) in either the addend or augend
wiII be treated as decimal excess-three O's
(0011). See Appendix for treatment of non
numeric binary cDdes.

2. Indirect addressing, field selection, and multl
word operands may be employed.

3. Additional considerations if the operand is
multi-word, or if field selection is to be em
ployed, are discussed in Multi-Word Operands,
and Fie IdS e Ie c t ion Sec t ion s •

UNIVAC m UTMOST

4. See Arithmetic Modes for B discussion ofrecom
plementation and determination of signs.

Illustration

Add FIELDA (0525) to AR8.

DA 8, FIELDA

I
X OP Code AR m

~
0 0000 20 1000 0525

DECIMAL ADD HIGHER _
Operation:
OP Code:
Cycles:

(ARi) + (m') ~ARi where ;' < i
22
2

Description: Algebraically add, in decimal, the
operand (augend) in the indexed memory location(s)
and the value (addend) in the higher arithmetic
register(s), placing the result in the designat
ed arithmetic register(s).

I
X /

A

25 24 21 20

I/A

x

AR

m

Notes

OP Code AR m

15 14 11 10 1

Indirect addressing/field selection
option

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

U nindexed address of the augend

1. The addend will be undisturbed.

2. Pure binary 0' s (0000) in ei ther the addend or
augend will be treated as decimal excess-three
O's (0011). See Appendix for treatment of non
nume ric binary codes.

I REVISION' SECTION:

v
DATE: PAGE:

July 1, 1962 26

3. For single-word operands, all possible
cases of i and i' are:

if i is 8, i' may be 4, 2 or L
if i is 4, i' may be 2 or 1.
if i is 3, i' may be 1 onJy.

may not be 1.

4. Multi-word usage is restricted to Arithmetic
Register 12. The sum will always appear
in Arithmetic Register 3. Bits 11-14 of
the instruction word in this case should be all
l's.

5. Indirect addressing and field selection may be
employed.

6. Additional considerations if the operand is
multi-word, or if field selection is to be em
ployed, are discussed in the Multi-Word Operands,
an d Fie IdS e Ie c t ion Sec ti 0 n s •

7. See Arithmetic Modes for a discussion of re
complementation and determination of signs.

Illustration

Add FIELDD (0585) to AR8 and place the sum in
AR2.

DAH 10,

~
A

X OP Code. AR

0 0000 22 1010

DECIlVlAL SUBTRACT

Operation:
OP Code:
Cycles:

(ARi) - (m'~ARi
21
2

FIELDD

m

0585

DS

Description: Algebraically subtract in decimal the
operand (subtrahend) in the indexed memory loca
tion(s) from the value (minuend) in the designated
arithmetic register(s), placing the result in the
same arithmetic register(s).

I
X OP Code AR / m

A

25 24 21 20 15 14 11 10 1

UNIVAC m UTMOST

[fA

x

AR

m

Notes

Indirect addressing/field selection
option

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

Unindexed address of the subtrahend

1. Pure binary O's (0000) in either the subtra
hend or minuend will be treated as decimal
excess-three O's (0011). See Appendix for
treatment of non-numeric binary codes.

2. Indirect addressing, field selection and multi
word operands may be employed.

3. Additional considerations if the operand is
multioword, or if field selection is to be em
ployed, are discussed in Multi-Word Operands,
and Field Selection Sections.

4. See Arithmetic Modes for a discussion of re
complementation and determination of signs.

Illustration

Subtract FIELDA (0565) from ARI.

DS 1, FIELOA

I

~ X OP Code AR m

a 0000 21 0001 0565

DECIlVIAL SUBTRACT HIGHER DSH

Operation:
OP CGde:
Cycles:

(ARi) - (m')~ARi', where i' <i
23
2

Description: Algebraically subtract in decimal the
operand (subtrahend) in the indexed memory loca
tion(s) from the value (minuend) in the designated
arithmetic register(s), placing the result in a higher
designated arithmetic register(s).

~I X
A

25 24

I/A

x

AR

m

Notes

REVISION: SECTION:

v
DATE: PAt;E:

21

July 1, 1962 27

I OP Code I AR I m

20 15 14 11 10 1

Indirect addressing/field selection
option

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

Unindexed address of the subtrahend

1. The minuend will be undisturbed.

2. Pure binary O's (0000) in either the subtrahend
or minuend will be treated as decimal excess
three O's (0011). See Appendix for treatment of
non-numeric binary codes.

3. For single-word operands, all possible
cases of i and i' are:

if i is 8, i' may be 4, 2 or 1.
if is 4, i' may be 2 or 1.
if is 2, i' may be 1 only.

may not be 1.

4. Multi-word usage is restricted to Arithmetic
Register 12. The difference will always
appear in Arithmetic Register 3. Bits
11-14 of the instruction word in this case
should be alll's.

5. Indirect addressing, and field selection may be
employed.

6. Additional considerations if the operand is
multi-word, or if field selection is to be em
ployed, are discussed in Multi-Word Operands,
and Fie IdS e Ie c t ion Sec t ion s •

7. See Arithmetic Modes for a discussion of re-
complementation apd determination of signs.

Illustration

Subtract FIELDS (0782) from AR4 placing the
difference in AR2.

DSH 6, FIELDS
~

I
/ X OP Code AR m
A

a 0000 23 0110 0782

UNIVAC m UTMOST

DECIMAL MULTIPLY DM

Operation:
OP Code:
Cycles:

(m') x (AR8)~AR4 and AR2
30
12 to 31 Depending on multiplier
digits.

Des c rip t ion: Algebraically multiply the contents
of the indexed memory location (multiplicand) by
the contents of Arithmetic Register 8 (multiplier),
placing the six most significant digits of the pro
duct in Arithmetic Register 4 and the six least
significant digits in Arithmetic Register 2.

I
/
A

25

I/A

X

AR

m

24

Notes

X

21

OP Code AR m

20 15 14 1110 1

Indirect addressing option

Binary address of index register, 0
to 15

Will designate AR14
(1110)

Unindexed address of the multiplicand

1. The multiplier and the multiplicand will not be
disturbed.

2. All D's in the multiplier (AR8) and the multi
plicand (m) must be excess-three (0011).

3. Indirect addressing but not field selection may

be employed.

4. Multi-word operands may not be used, but note
that a 12-digit product is produced.

5. See Arithmetic Modes for determination of signs
and Appendix for timing.

Illustration

Multiply the contents of AR8 by FieldB (0538).

DM FIELDB

} X OP Code AR m
A

0 0000 30 1110 0538

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 28

DECIMAL DIVIDE

Operation: (AR12) -:- (m')~AR4(quotient)
L..AR8(remainder)

OP Code:
Cycles:

31
17-36 Depending upon quotient
digits

Description: Algebraically divide the contents of
Arithmetic Register '12 (dividend) by the con
tents of the indexed memory location (divisor)
placing the 6-digit quotient in Arithmetic Register
4 and the 6-digit remainder in Arithmetic Regis
ter8.

I
/
A

~5 24

I/A

X

X

21

OP Code AR m

20 15 14 11 10 1

Indirect addressing option

Binary address of index register,~

to 15

AR Will designate AR12 (1100)

m Unindexed address of the divisor

Notes

1. Decimal D's in the divisor (m) and the divi-
dend AR12 must be excess-three (0011).

2. If the absolute magnitude of the divisor (m) is
less than or equal to that of AR8, the Overflow
Indicator will be set and a Contingency Inter
rupt will occur.

3. The sign of the remainder will be that of the
dividend.

4. Indirect addressing but not field selection may
be employed.

5. See Arithmetic Modes for determination of
signs and timing.

Illustration
Divide the contents of AR12 by FIELDD
(0685) .

~:'

DD FIELDD ~

}
r,';

X OP Code AR m
A

0 0000 31 1100 0685 .

UNIVAC m UTMOST

BINARY ADD BA

Operation:
OP Code:
Cycles:

(ARi) + (m')---.ARi
24
2

Des c r i pti 0 n: Algebraically add in binary the oper
and (augend) in the indexed memory location(s)
and the value (addend) in the designated arithme
t'ic register(s) placing the result in the same arith
metic register(s).

I
/ X
A

25 24 21 20

I/A

x

~R

m

Notes

OP Code AR m

15 14 11 10 1

Indirect addressing/field selection
option

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

U nindexed address of the augend

1. Indirect addressing, field selection and multi
word operands may be employed.

2. Additional considerations if the operand is
multi-word, or if field selection is to be em
ployed, are discussed in Multi-Word Operands,
and Fie IdS e Ie c ti 0 n Sec t ion s •

3. See Arithmetic Modes for a discussion of re
complementation and determination of signs.

Illustration

Add in binary, FIELDA (0789) to AR2.

BA 2, FIELDA

I
/ X OP Code AR m
A

a 0000 24 0010 0789

r REVISION: I SECTION:

v
DATE: PAGE:

July 1, 1962 29

BINARY ADO HIGHER BA H

Operation: (ARi) + (m')~ARi' where i' > i
26 OP Code:

Cycles: 2

Description: Algebraically add in binary the oper
and (augend) in the indexed memory location(s) and
the value (addend) in the designated arithmetic
register(s), placing the result in a higher designa
ted arithmetic register(s).

I

~ X

25 24 21

I/A

x

AR

m

Notes

OP Code AR m

20 15 14 11 10 1

Indirect addressing/field selection
option

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

Unindexed address of the augend

1. The addend will be undisturbed.

2. For single-word operands, all possible
cases of i and i' are:

if i is 8, i ' may be 4, 2 or 1-
if i is 4, i' may be 2 or 1.
if i is 2, i' may be 1 only.

i may not be 1.

3. Multi-word usage is restricted to Arithmetic
Register 12. The sum will always appear
in Arithmetic Register 4. Bits 11-14 of
the instruction in this case should be all 1's.

4. Indirect addressing and field selection may be
employed.

5. Additional considerations if the operand is multi
word, or if field selection is to be employed, are
discussed in Multi-Word Operands, and Field
Selection Sections.

6. See A rithmetic Modes for a discussion of re
complementation and determination of signs.

UNIVAC m UTMOST

Illustration:

Add FIELDD (0832) to AR4 and place sum in ARlo

BAH 5, FI ELDD

}
A

X OP Code AR m

0 0000 26 0101 0832

BINARY SUBTRACl BS

Operation:
OP Code:
Cycles:

(ARi) - (m')~ARi
25
2

Description: Algebraically subtract in binary the
operand (subtrahend) in the indexed memory loca
tion(s) from the value (minuend) in the designated
arithmetic reg is ter(s), placing the result in the
same arithmetic register(s).

I

~ X

25 24 21 20

I/A

x

AR

m

Notes

OP Code AR m

15 14 11 10 1

Indirect addressing/field selection
option

Binary address of index register, 0
to 15

Positional designator of arithmetic
register(s)

Unindexed address of the subtrahend

1. Indirect addressing/field selection and multi
word operands may be employed.

2. Additional considerations if the operand is
multi-word, or if field selection is to be em
ployed, are discussed in Multi-Word Operands,
and Fie IdS e Ie c t ion Sec ti 0 n s •

3. See Arithmetic Modes for a discussion of re
complementation and determination of signs.

REVISION: SECTION:

DATE: PAGE:

July 1, 1962

Illustration

Subtract in binary FIELDD (0823) from AR2.

BS 2, FIELDD

I

~ X OP Code AR m

0 0000 25 0010 0823

BINARY SUBTRACT HIGHER BSH

Operation:
OP Code:
Cycles:

(ARi) - (m')~ARi' where i' > i.
27
2

v

30

Des c r i pt ion: Algebraically subtract in binary the
operand (subtrahend) in the indexed memory loca
tion(s) from the value (minuend) in the designated
arithmetic regi sterr s), p lacing the resu lt in a
lower des ignated arithmetic regis ter(s).

~ X
A

25 24 21 20

I/A

x

AR

m

Note s

OP Code AR m

15 14 11 10 1

Indirect addressing/field selection
option

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

Unindexed address of the subtrahend

1. The minuend will be undisturbed.

2. For single-word operands, all possible
cases of i and i' are:

if i is 8, i' may be 4, 2 or 1-
if i is 4, i' may be 2 or L
if i is 2, i' may be 1 only.

i may not be 1.

3. Multi-word usage is restricted to Arithmetic
Register 12. The result will always
appear in Arithmetic Register 3. Bits
11-14 of the instruction in this case should be
all 1 's.

UNIVAC m UTMOST

4. Indirect addressing and field selection may be
employed.

s. Additional considerations if the operand is
multi-word, or if field selection is to be em
ployed, are discussed in Multi-Word Operands,
and Fie Id Se lection Sections.

6. See Arithmetic Modes for a discussion of re
complementation and determination of signs.

Illustration

Subtract in binary FIELDD (0930) from ARB plac
ing the difference in AR4.

BSH 12 FIELDD

I
/ X OP Code AR m
A

I

0 0000 27 1100 0930

SHIFT INSTRUCTIONS

The contents of the arithmetic registers may be
altered by the shift instructions. Three distinct
methods of shifting, a separate method for each
of the three types of data format, may be designa
ted.

DECIMAL SHIFT RIGHT DSR

OP Code:
Cycles:

40
4

Description: Shift the contents of the arithmetic
register(s) designated right the number of decimal
digit positions specified in bit positions 1-10 of
the instruction.

I
/
A

25 24

I/A

X

X

21 20

OP Code AR Shift Count

15 14 111 10 1

Indirect addressing option

Binary address of index register, 0
to 15

I REVISION: I SECTION:

v
DATE: PAGE:

July 1, 1962 31

AR Positional designation of arithmetic
register(s)

Shift
Count

Unindexed number of places to be
shifted expressed in pure binary

Notes

1. Digits shifted to the right of the least signifi
cant digit position of the operand are lost, and
decimal D's (0011) are inserted in the vacated
most significant decimal digit positions.

2. The sign bit(s) are not shifted.

3. A maximum of a 2-word operand, in adjacent
or non-adjacent arithmetic registers may be
shifted. The results in either case will always
appear in the same registers, leaving the other
registers undisturbed.

4. Two-word operands cannot be snifted right from
one register into another with a higher numerical
designation, for example, shifting right AR 1
and AR4.

s. A shift count greater than that of the operand
size will result in an error, for example,
shifting a I-word operand nine places. The
shift will occur with Modulo 3 check error
which causes a processor error interrupt.

6. Indirect addressing, but not field selection,
may be employed.

Illustration

Shift the contents of
places right.

DSR

~ X OP Code
A

0 0000 40

AR6

6,

AR

0110

DECIMAL SHIFT LEFT

o P Code: 41
Cycles: 3

four decimal

4

I
Shift Count

j

I 0004

DSL

Description: Shift the contents of the arithmetic
register(s) designated left the number of decimal
digit positions specified in bit positions 1-10 of
the instruction.

UNIVAC m UTMOST

I
/
A

2524

I/A

X

AR

X

Shift
Count

Notes

21 20

OP Code AR Sh itt Count

15 14 11 10 1

Indirect addressing option

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

Unindexed number of places to be
shifted expressed in pure binary

1. Digits shifted to the left of the most significant

I REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 32

ALPHABETIC SHIFT RIGHT ASR -o P Code: 42
Cycles: 4

Description: Shift the contents of the arithmetic
register(s) designated right the number of alpha
numeric character positions specified in bit posi
tions 1-10 of the instruction.

I

~ X OP Code AR Shift Count

25 24 21 20 1~ 14 11 10 1

digit position of the operand a"re lost and deci- 1/ A Indirect addressing option
malO's (0011) are inserted in the vacated least
significant decimal digit positions of the oper- X Binary address of index register, 0

to 15 and.

2. The sign bit(s) are not shifted. AR Positional designation of arithmetic
register(s)

3. A maximum of a 2-word operand in adjacent or
non-adjacent arithmetic registers may be shift- Shift U nindexed number of place~ to be

shifted expressed in pure binary ted. The results in either case will always ap- Count
pear in the same registers leaving the other
registers undisturbed. Note s

4. Two-word operands cannot be shifted left from
a register into another with a higher numerical
designation, for example, shifting left AR4 and
ARlo

5. A shift count greater than that of the operand
size will result in an error, for example,
shifting a l-word operand nine digits. The
shift will occur, causing a modulo 3 (parity)
error and a processor error interrupt.

6. Indirect addressing, but not field selection, may
be employed.

Illustration

Shift the contents of AR4 three decimal positions
left.

DSL 4, 3

I
I ~ X OP Code AR Shift Count
I
I

0 0000 41 0100 I 0003

1. Characters shifted to the right of the least
significan t character position are lost and
binary O's (000000) are inserted in the vacated
most significant character positions of the
operand.

2. The sign bit(s) are not shifted.

3. A maximum of a 2-word operand in adjacent
or non-adjacent arithmetic registers, may be
shifted. The results in either case will always
appear in the same registers, leaving the other
registers undisturbed.

4. Two-word operand cannot be shifted right from a
register into another with a lower numerical
designation, for example, shifting right ARI
and AR4.

5. A shift count greater than the operand size will
result in an error, for example, shifting a

l-word operand nine character positions. The
shift will occur~ causing a modulo 3 (parity)
error and a processor error interrupt.

UNIVAC m UTMOST

6. Indirect addressing, but not field selection
may be employed.

Illustration

Shift the contents of AR8 two character positions
right.

ASR 8, 2

I
/ X OP Code AR Shift Count
A

a 0000 42 1000 0002

ALPHABETIC SHIFT LEFT ASL

OP Code:
Cycles:

43
3

Description: Shift the contents of the arithmetic
register(s) designated left the number of alpha
numeric character positions specified in bit posi
tions 1-10 of the instruction.

I
X /

A
25 24

IIA

x

AR

Shift
Count

Nates

21 20

OP Code AR Shift Count

15 14 11 10 1

Indirect addressing option

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

Unindexed number of places to be
shifted expressed in pure binary

REVISION: SECTION:

v
DATE: ! PAI3E:

July 1, 1962 33

3. A maximum of a 2-word operand, in adjacent
or non-adjacent arithmetic registers, may be
shifted. The results in either case will always
appear in the same registers leaving the other
registers undisturbed.

4. Two-word operands cannot be shifted left from
a register into another with a lower numerical
designation, for example, shifting left AR4 and
ARlo

5. A shift count greater than the operand size will
not result in any error, for example, shifting a

I-word operand nine character positions. The
shift will occur, causing a modulo 3 (parity)
error and a processor error interrupt.

6. Indirect addressing, but not field selection may
be employed.

Illustration

Shift the contents of AR2 ~wo character positions
left.

ASL 2, 2

I
I

~ X OP Code AR Shift Count

a 0000 43 0010 0002

BINARY ROTATE RIGHT BRR

o P Code: 44
Cycles: 4

Description: Shift circularly the contents of the
arithmetic register designated right the number of
bit positions specified in bit positions1-10 of the
instruction.

~I I

I

I
X OP Code I AR Shift Count

1

25124 21)20 15/14 ll)lO

1. Characters shifted to the left of the most signi- II A Indirect addressing option
ficant character position of the operand are
lost. Binary O's (000000) are inserted in the X
vacated least significant character positions
of the operand.

AR
2. The sign bits are not shifted.

Binary address of index register, 0
to 15

Positional designation of arithmetic
register

UNIVAC m UTMOST

Shift
Count

Unindexed number of places to be
shifted expressed in pure binary

Note s

1. B its shifted beyond the least significant bit
pos ition re-enter in the mos t significant bit
positions of the same register so that no bits are
lost.

2. The sign bit is shifted.

3. The maximum size of the operand is one word.

4. A shift count greater than 25 will
an error.

result in

5. Indirect addressing, but not field selection, may
be employed.

Illustration

Shift the contents of AR8 twenty bit positions right.

BRR 8, 020

I
/
A

X OP Code AR Shift Count

a 0000 44 1000 0020

COMPARISON INSTRUCTIONS

These instructions perform four distinct types of
comparisons. In eacp. case the contents of the arith
metic register is com pared to the contents of the
indexed address. Each of these instructions sets
one of the com parison indicators reflecting the re
lationship of the contents of the arithmetic regis
teres) to those of the indexed memory location.
The setting of the individual indicators may later
be tested and a logical branch operation executed
as a result. If Field Selection is employed, only
the selected bits are compared.

COMPAR E MAGNITUDE

Operation:
OP Code:
Cycles:

I (AR i) I : I (m') I
55
2

CM

Description: Compare the absolute magnitude of
the arithmetic register(s) designated with the ab
solute magnitude of an operand in memory. Set the

I REVISION' SECTION:

v
DATE: PAGE:

July 1, 1962 34

appropriate comparison indicator according to the
following:

if I (ARi) \ > \ (m ') \, set Greater Comparison Indicator
if \ (ARi) \ < \ (m') I, set LessComparison Indicator
if \ (ARi) I = \ (m') \, set Equal Comparison Indicator

~ X
A

25 24 21

I/A

x

AR

m

Notes

OP Code AR m

20 15 14 11 10 1

Indirect addressing/field selection
option

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

Unindexed address of the operand

1. Prior to the setting of the appropriate indicator
all comparison indicators are automatically reset.

2. The operands are not altered.

3. Comparison is based on the binary value of the
operands regardless of word format.

See Figure 2-1.

4. Indirect addressing, field selection and multi
word operands may be employed.

Illustration

Compare the absolute magnitude of AR.2 with the
absolute magnitude of FIELD A (0732).

eM 2, F IELDA.,

I X OP Code AR / m
A

a 0000 55 0010 0732

COMPARE ALGEBRAIC

Operation:
OP Code:
Cycles:

(ARi) : (m ')

54
2

C

UNIVAC m UTMOST

Description: AlgebraicaIly compare the contents of
the arithmetic register(s) designated with an operand
in memory. Set the appropriate comparison indicator
according to the following:

REVISION: SECTION:

DATE: PAGE:

July 1, 1962

COMPARE PRODDCT WrrH i
A REGISTER !

Operation:
OP Code:

(ARi) I-bits: (m') I-bits
57

v

35

cpA

If (ARi) > (m'), set .Greater Comparison Indicator Cycles: 2
If (ARi) < (m' J, set LeSf{;omparison Indicator

If (ARiJ = (m'J, set Equal Comparison Indicator Description: Compare the I-bits of the arithmetic

I
/ X
A

25 24 21

I/A

x

AR

m

Notes

OP Code AR m

20 15 14 11 10 1

Indirect addressing/field selection
option

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

Unindexed address of the operand

1. Prior to the setting of the appropriate indicator,
all comparison indicators are automatically reset.

2. Plus 0 will compare greater than a minus O.

3. The operands are not altered.

4. Comparison is based on the binary value of the
operands regardless of word format.

See Figure 2-1.

5. Only the sign of the least significant word of a
multi-word operand is considered. AIl other signs
are ignored.

6. Indirect addressing, field selection and multi
word operands may be employed.

Illustration

Compare algebraically the contents of AR 1 with
FIELDA (0835).

c 1, FIELDA

I

~ X OP Code AR m

0 0000 54 0001 0835

register(s) designated with the I-bits of the oper
and in memory. If the latter contains a I-bit in
every bit position in which the arithmeticregister(s)
contains a I-bit, set the Equal Comparison Indica ..
tor; otherwise set the High Comparison Indicator.

I
X ~

25 24 21

I/A

x

AR

m

Notes

OP Code AR m

20 15 14 11 10 1

Indirect addressing/field selection
option

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

U nindexed address of the operand

1. Sign bits are included in the comparison.

2. Before setting the appropriate indicator all com
parison indicators are automatically reset.

3. The operands are unaltered.

4. Indirect addressing, field selection and multi
word operands may be employed.

Illustration

Compare the I-bits of AR4 with the I-bits of
FIELDD (0823).

CPA 4 FIELOD,

I

~ X OP Code AR m

0 0000 57 0100 0823

UNIVAC m UTMOST

COMPARE PRODUCT WITH ZERO I CP7

Operation: (ARi) l-bits : (m') O-bits
o P Code: 56
Cycles: 2

Description: Compare the l-bits of the arithmetic
register(s)designated with the O-bits of the operand
in memory. If the latter contains a O-bit in every
bit position in which the arithmetic register(s)
contains a l-bit, set the Equal Comparison Indicator;
otherwise set the High Comparison Indicator.

I

~ X OP Code AR m

2~ 24 21 20 15 14 11 10 1

I/A

x

AR

m

Note s

Indirect addressing/field selection
option

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

Unindexed address of the operand

1. Sign bits are included in the comparison.

2. Before setting of the appropriate indicator all
comparisons indicators are reset.

3~ The operands are unaltered.

4. Indirect addressing, field selection and multi
word operands may be employed.

Illustration

Compare the l-bits of AR2 with the O-bits of
FIELDD (0834).

CPZ 2 FIELoD
I I I

/ X OP Code
I

AR m
A

01 0000 56 I 0010 0834 I
i I

REVISION: SECTION:

v
DATE: PAI3E:

July 1, 1962 36

LOGICAL BRANCHING INSTRUCTIONS

The sequence of execution of instructions may be
altered depending upon the state (set or reset) of
the indicators affected by previous instructions.
Thus a branch in the program or a conditional trans
fer of control may be accomplished. If the indicator
tested is reset, the next instruction in sequence
will be accessed and executed. If the indicator is
set, control will be transferred to any point in the
program desired. Control may also be transferred un
conditionally.

JUMP IF EQUAL JE

Operation:

OP Code:
Cycles:

Test Indicator:
If set, m'--...CC.
If reset, (CC) + l--..CC
60
1 if set; 2 if reset

Description: Test the Equal Comparison indicator.
If set, transfer control to the indexed memory ad.J
dress. Otherwise, access the next instruction in
sequence.

I

~ X

2524 21 20

I/A

x

OP Code Indicator m

15 14 11 10 1

Indirect address ing option

Binary address of index register, 0
to 15

Indicator 0110

m

Notes

Unindexed address of the next instruc
tion to be accessed if indicator is set

1. The condition of the indicator will not be affec
ted by the test.

2. The state of this indicator may also be affecte4
by addition and subtraction instructions. If.l:
zero result is produced, it will be set. It will
be reset if a non-zero result is produced.

3. Indirect addressing may be employed.

UNIVAC m UTMOST

Illustration

Transfer control to Loce (0932) if the Equal Com
parison Indicator is set.

JE Loee

~ X OP Code Indicator m

0 0000 60 0110 0932

JUMP IF H IG H JG

Ope ration: Test Indicator:
If set, m'---.CC
If reset, (CC) + l~CC

OP Code: 60
Cycles: 1 if set; 2 if reset

Description: Test the Greater Comparison Indic.
If set, transfer control to the indexed meII10ry ad
dress. Otherwise, access the next instruction in
sequence.

I

~ X

25 24 21

I/A

x

Indicator

m

Notes

OP Code Indicator m

20 15 14 11 10 1

Indirect addressing option

Binary address of index register, 0
to 15

0111

Unindexed address of the next instruc
tion to be accessed if indicator is set

1. The condition of the indicator will not be af
fected by the test.

2. Indirect addressing may be employed.

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 37

Illustration

Transfer control to LOCD (0839) if the Greater Com
parison Indicator is set.

JG LOCD

It,!
AI X OP Code I Indicator I m

0 0000 60 I 0111 I 0839

JUMP IF LESS JL

Operation: Test Indicator:
If set, m'---.. CC
If reset (CC) + l---..CC

OP Code: 60
Cycles: 1 if set; 2 if reset

Description: Test theLess Comparison Indicator.
If set, transfer control to the indexed memory ad
dress. Otherwise access the next instruction in
sequence.

I

~ X

~5 24 21

I/A

x

Indicator

m

Note s

OP Code Indicator m

20 15 14 11 10 1

Indirect addressing option

Binary address of index register, 0
to 15

0101

Unindexed address of the next instruc
tion to be accessed if indicator is set

1. The state of the indicator will not be affected
by the test.

2. Indirect addressing may be employed.

UNIVAC m UTMOST

Illustration

Transfer control to LOCB (0938) if the LeSSCom
parison Indicator is set.

JL LoeB
I
/ x
A

OP Code Indicator m

0 0000 60 0101 0938

JUMP IF POSITIVE JP

Operation:

OP Code:
Cycles:

Test Indicator:
If set, m'---. CC
If reset, (CC) + l CC
60
1 if set; 2 if reset

Description: Test the Sign Indicator of the arithme
tic register addressed. If set, transfer control to the
indexed address. Otherwise, access the next in
struction in sequence.

}
A

25 24

I/A

X

X

21

Indicator

m

Note s

20

OP Code Indicator m

15 14 11 10 1

Indirect addressing option

Binary address of index register, 0
to 15

Designation (See below.)

Unindexed address of the next instruc
tion to be accessed if indicator is set

1. Each Sign Indicator will be set or reset depend
ing on the sign of the word currently in the re
spective arithmetic register. If the sign is posi
tive the indicator will be set, if negative it will
be reset.

2. The designations of the Sign Indicators are:

AR8
AR4
AR2
ARI

0001
0010
0011
0100

1
2
3
4

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 38

3. Indirect addressing may be employed.

Illustration

Transfer control to LOCD (0659) if the sign of AR 2
is positive.

TPOS 3, LOCD,

? X OP Code Indicator m
A

0 0000 60 0011 0659

JUMP J

Operation:
OP Code;
Cycles:

m'~CC

06
1

Description: Replace the contents of the Control
Counter with the indexed address of the instruction.

~ X

~5 24 21

I/A

X

AR

m

Notes

OP Code AR m

20 15 14 11 10 1

Indirect address option

Binary address of index register, 0
to 15

Not relevant

Unindexed address of the next instruc
tion to be accessed

1. Indirect addressing but not field selection may

be employed.

Illustration

Transfer control to LOCe (0783).

J Loce

? X OP Code AR I m
A I
0 0000 I 06 0000 I 0783

UNIVAC m UTMOST

STonE LOCATION AND JIJ~tP
STORE CHANNEL AND JUMP

Operation:

OP Code:
Cycles:

(CC) + 1~ m'
and

m'+ 1 ~ CC
07
3

SLJ
SCJ

Des c rip ti 0 n: Transfer the contents of the Control
Counter, incremented by 1 (or if specified the MAC
incremented by 1) into bit positions 1-15 of the in
dexed memory location and replace the contents of
the Control Counter with the indexed memory ad
dress incremented by 1.

~ X I OP Code CC/MAC m

I
25 24 21

1
20 15 14 11 10 1

I/A Indirect addressing option

x Binary address of index register, 0
to 15

CC/MAC Normally 0001 (See note 2 below.)

m U ninde xed address minus 1 of the
next instruction to be accessed

Note s

1. Bit positions 16-25 of the indexed location will
be binary O's.

2. If a Memory Address Counter plus 1 is desired,
the designations are:

UNlSERVO II! Basic Write 0011 3
UNISERVO III Basic Read 0100 4
General Purpose It 1 0101 5
General Purpose It 2 0110 6
General Purpose # 3 0111 7
General Purpose It 4 1000 8
General Purpose It 5 1001 9
General Purpose It 6 1010 10
General Purpose It 7 1011 11
General Purpose It 8 1100 12
Compatible Tape Read-Write 1101 13
UNlSERVO III Additional Write 1110 14
v.v [SERVO III Additional Read 1111 15

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 39

3. The contents of the Memory Address Register
(15 bits) plus 1 may also be transferred to memory by
placement of 0010 in bit positions 11-14 of the
instruction.

4. Indirect addressing but not field selection may
be employed.

Illustration

Store the contents of the Control Counter incremen
ted by 1 in LOCB (0839) and transfer control to
0840.

SLJ LOCB

~I X OP Code CC/MAC m

01 0000 07 0001 0839

SENSE INDICATOR INSTRUCTIONS

The following instructions refer to eight indicators
that may be used for program control. Each may be
set, or reset and tested, with branching occurring
if the indicator is set.

SET SENSE INDICATOR

OP Code:
Cycles:

62
2

SS

Description: Set the Sense Indicator (1-8) speci
fied in bits 11-14 of the instruction.

III! X
A

I/A

X

Indicator

m

I I I
I OP Code I Indicator I

Not relevant

Not relevant

Designation

Not relevant

m

UNIVAC m UTMOST

Notes

1. The designations of the Sense Indicators are:

Sense Indicator 111 1000 8
Sense Indicator 112 1001 9
Sense Indicator 113 1010 10
Sense Indicator 114 1011 11
Sense Indicator 115 1100 12
Sense Indicator 116 1101 13
Sense Indicator 117 1110 14
Sense Indicator 118 1111 15

2. Indirect addressing, field selection and multi
word operands are not applicable.

Illustration

Set Sense Indicator -it 8.

SS , 15,

~ X OP Code looicator m

I
0 0000 62 1111 0000

RESET SENSE INDICATOR

OP Code: 61
Cycles: 2

Description: Reset the Sense Indicator 0-8) speci
fied in bits 11-14 of the instruction.

I
/
A

25 24

I/A

X

X

21

Indicator

m

OP Code 100 i cat or

20 15 14

Not relevant

Not relevant

Designation

Not relevant

11

m

10 1

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 40

2. Indirect addressing, field selection and multi
word operands not applicable.

Illustration

Reset Sense Indicator -it 4.

RS , 11,

I

~ X OP Code Indicator rn

0 0000 61 1011 0000

JUMP IF SE NSE
INDICATOR SET

JS

Operation:

OP Code:
Cycles:

Test Indicator:
If set, m'--.... CC
If reset,(CC) + l--'-CC
60
1 if set; 2 if reset

Description: Test the Sense Indicator designated.
If set, transfer control to the indexed address.
Otherwise access the next instruction in sequence.

I

~ X

25 24 21

I/A

X

Indicator

m

Notes

OP Code Indicator m

20 15 14 1110 1

Indirect addressing option

Binary address of index register, 0
to 15

Designation

Unindexed address of the next instruc
tion

1. The condition of the indicator is not affected
by the test.

Notes 2. See Note 1 above for sense indicator designa-
tions (bits 11-14).

1. See Note 1 above lor Sense Indicator designa-
tions (bits 11-14). 3. Indirect addressing may be employed.

UNIVAC m UTMOST

Illustration

Transfer control to LOCC (0832) if Sense Indica-
tor It 3 is set.

JS, 10, LOCC,

I
/ X OP Code Indicator m
A

0 0000 60 1010 0832

CONVERSION INSTRUCTIONS

These instructions provide the facility to convert
data in decimal format to alpha-numeric format or
data in alpha-numeric format to decimal format, and
to convert non-significant characters to non-printing
codes. Such instructions may be used to prepare in
put data for processing and/or output.

LOAD A CONVERTING TO DECIMAL
LAD

Operation:
OP Code:
Cycles:

(m' - 2, m' -1, m') ARi - 1, ARi
72
7

Description: Transfer the contents of three con
secutive memory locations of alpha-numeric for
mat into two adjacent arithmetic registers in decimal
format by removing the zone bits.

1 X
A

25 24 21

I/A

x

AR

m

Notes

OP Code AR m

20 15 14 11 10 1

Indirect addressing option

Binary address of index register, 0
to 15
Positional designation of arithmetic
reg is ter(s)

Unindexed address of the operand
in alpha-numeric format

1. A 3-word alpha-numeric operand in memory is
Hcompressed" into a 2-word decimal operand
in the arithmetic registers.

2. It is assumed that the operand In memory is a
numeric (in 6-bit code) rather than alphabetic

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 41

representation. There lS no check for the pre
sence of zone bits.

3. The signs of the result in the arithmetic regis
ters will be that of the least significant word of
the operand in memory.

4. The operand in memory will not be altered.

Illustration

Convert FIELDB (0830-0832) from alpha-
numeric
result

format to decimal format and locate the
in AR12.

LAD, 12, FIELDB + 2,

I

~ X OP Code AR m

0 0000 72 1100 0832

STORE A CONVERTING TO
ALPHA-NUMERIC

SAA

Operation:
OP Code:
Cycles:

(ARi -1, ARj) m' - 2, m'-I, m'

71
8

Description: Transfer the contents of two adjacent
arithmetic registers of decimal format into three
consecutive indexed memory locations in alpha
numeric format by inserting zero zone bits.

I
/ X
A

25 24 21 20

I/A

x

.4R

m

Note s

OP Code AR m

15 14 11 10 1

Indirect addressing option

BInary address of index register, 0
to 15

Positional designation of arithmetic
register(~)

Unindexed address of the operand in
alpha-numeric iormat

1. A 2-word decimal operand In the arithmetic
registers is "expanded" to a 3-word alpha
numeric operand in memory.

UNIVAC m UTMOST

2. The signs of the result in memory will be that
of the least significant word of the operand in
the arithmetic registers.

3. The contents of the arithmetic registers are not
altered.

4. Indirect addressing, but not field selection may
be employed.

Illustration

Convert to alpha-numeric format a decimal operand
located in AR12, storing it in FIELDB
(0681-0683).

SAA
I

FIELoB + 2 12,

I
/ X I OP Code AR m
A

I
0 0000

1
71 1100 0683

ZERO SUPPRESS LAE

OP Code: 73
Cycles: 2

Description: Transfer the contents of the indexed
memory location(s) to the arithmetic registers de
signated replacing alpha-numeric O's (00 0011) and
commas (11 0010) to the left of the first significant
non-zero character with non-printing space codes
(00 0000).

/1 X
A

25 24 21 20

I/A

x

AR

m

Nates

OP Code AR m

15 14 11 10 1

Indirect addressing option

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

Unindexed address of the operand
(See #3 below.)

1. The operand in memory is unaltered.

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 42

2. The original sign(s) are retained.

3. A multi-word operand must be located in con
secutive memory locations, but the suppressed
result may be in non-adjacent arithmetic regis
ters.

4. When the operand is multi-word, the indexed
memory location must be the address of its most
significant word.

5. Indirect addressing, but not field selection may
employed.

Illustration

Zero suppress FIELDB (0689-0690) placing the
result in AR12.

LA& 12, FIE LOB

I
/ X
A

OP Code AR m

0 0000 73 1100 0689

LOGICAL INSTRUCTIONS

These instructions allow bit manipulation in the
UNIVAC III System. The operation table which ap
plies to each affected bit of the arithmetic regis
ter(s) has the following form:

ARi
m (AR i) before execution

(m') (ARi) after execution

OR

Operation:
OP Code:
Cycles:

(m') ~ARi
15 I-bzts

2

OR

Description: Transmit all I-bits in the indexed
memory location(s) to the corresponding bit posi
tions in the arithmetic register(s) designated.

I !

I / X OP Code I AR m
A I

i
i

25 24 21 20 15\14 11 10 1

UNIVAC m UTMOST

I/A

x

AR

m

Note s

Indirect addressing/field selection
option

Binary address of index register, 0
to 15

Positional designation of arithmetic
reg ister(s)

Un indexed address of the operand

1. Bit positions in the arithmetic register(s) that
correspond to O-bits in the operand are not al
tered.

2. The operand in memory is not altered.

3. A logical "or" operation is performed on the
entire operands, including sign bits. The truth
table is:

m

o

1

o 1

o 1

1 1

4. Indirect addressing, field selection and multi
word operands may be employed.

Illustration

LOGICAL "OR'FIELDB (0823)with AR2

I

~ X

a 0000

AND

Operation:

OP Code:
Cycles:

OR, 2, FIELDB

OP Code AR

15 0010

(m')------ARi
O-bits

16
2

m

0823

AND

Description: Transmit all O-bits in the indexed
memor~' location(s) to the corresponding bit posi
tions in the arithmetic register(s) designated.

I~I
125124

X

I/A

x

AR

m

REVISION:

DATE:

July 1, 1962

I OP Code 1 AR I

21120 15114 11110

SECTION:

PAGE:

m

v

I
d

Indirect addressing/field selection
option

Binary address of index register, 0
to 15

Positional designation of arithmetic
register(s)

Unindexed address of the operand

Note s

1. Bit positions in the arithmetic regi sterr s) that
correspond to 1-bits in the operand are not al
tered.

2. The operand in memory is not altered.

3. A logical "and" operation is performed on the
entire operand, including sign bits, for which
the truth table is:

AR
m o 1

o 0 0

1 o 1

4. Indirect addressing, field selection and mu lti
word operands may be employed.

Illustration

LOGICAL "AND" FIELDE (0832) with ABI

AND 1, FIELDE

I

I ~ X OP Code AR m

I

0 0000 16 1 0001 0832

INDEX REGISTER INSTRUCTIONS

The following instructions provide for the loading,
storing, incrementing and comparing of index regis
ter contents used for the indexing of all instructions.

UNIVAC m UTMOST

LOAD INDEX REGISTER

Operation:

OP Code:

(m')~XOi

bits 1-15
51

Cycles: 3

LX

Description: Transfer bits 1-15 of the indexed
memory location to the index register designated in
bit positions 11-14 of the instruction.

I

~ X OP Code XO m

25 24 21 20 15 14 11 10 1

IIA Indirect addressing option

x Binary address of index register,

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 44

Des c r i pt ion: Transfer the contents of the index re

gister designated in bit positions 11-14 of the in
struction to bit positions 1-15 of the indexed
memory location.

I
X /

A

25 24 21

IIA

x

XO

m

OP Code XO m

20 15 14 11 10 1

Indirect addressing option

Binary address to index register, 0
to 15

Binary address of index register (1 to
15) operand

Unindexed address of storage location

to 15 Notes

XO Binary address of index register (1 to 1. Bit positions 16-25 of the indexed memory loca-
lS) operand tion will be binary O's.

m Unindexed address of value to be load- 2. If XO is 0000, bit positions 1-25 of m' will con-
ed tain binary O's.

Note s

1. Indirect addressing may be employed. Field
selection and multi-word operands do not apply.

Illustration

Load index register 12 with the value found in AMTA
(0389).

LX 12,

I
/ X OP Code XO
A

0 0000 51 1100

STORE INDEX REGISTER

Operation:
OP Code:
Cycles:

(XOi)~m'

50
3

AMTA

m

0389

sx

3. Indirect addressing may be employed. Field
selection and multi-word operands do not apply.

Illustration

Store Index Register 10 in AMTB (0834).

SX, 10, AMTB

I
/ X
A

OP Code XO m

0 0000 50 1010 0834

INCREMENT INDEX REGISTER

Ope ration:

OP Codes:
Cycles:

(X 0i) + (m') • X 0i

52
3

bitsl-9

IX

Description: Algebraically add in binary bit posi
tions 1-9 (augend) of the indexed memory location
to the index register designated (addend) in bits
11-14 of the instruction.

IIA

x

XO

m

Notes

UNIVAC m UTMOST

I OP Code I XO I
iii

m

21120 15114 11110 1

Indirect addressing option

Binary address to index register, 0
to 15

Binary address of index register (1 to
15) operand

Unindexed address of increment

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962

index register designated in bits 11-14 ot the in
struction. Compare in absolute the new contents of
the index register with bit positions 10-24 (com
parison amount) ot the lCW and set the appropri
ate comparison indicator according to the following:

if \ (XOi) \ > \ (m') \ bits 10-24, set Greater Com
parison Indicator.

if \ (XOi) \ < \ (m') I bits 10-24, set Less Compar
ison Indicator.

if \ (XOi) \ = \ (m') \ bits 10-24, set Equal Comparison
Indicator

I
X OP Code XO ~ m

25 24 21 20 15 14 11 10 1

1. If the sign of the indexed memory location is
negative, the addition to the index register is in II A
effect a decrementation.

Indirect addressing option

2. Any carry beyond the most significant bit posi
tion of the index register is ignored.

3. Indirect addressing may be employed. Field
selection and multi-word operands do not apply.

Illustration

Increment Index Register 12 by the value in AM TB
(0772).

IX 12, AMTB

I

~ X OP Code XO m

0 0000 52 1100 0772

INCREMENT INDEX REGISTER AND
COMPARE

Operation:

OP Code:
Cycles:

(XOi) + (m') • XOi
bits 1-9

\(XOiJl :\(111')1 .
53 bIts 10-24

4

IXC

Description: Algebraically add in binary bit posi
t.ions 1-9 (increment amount) of the indexed Incre
ment a:K1 Compare word (ICW) to the

x

XO

m

Notes

1. The
lCW

II
fll

25124

Binary address of index register, 0
to 15

Binary address of index register (1 to
15) operand

Unindexed address ot XMOD

is in the following format:

Comparison Amount Increrrent Amount

10 9 1

2. If the sign bit (25) of the lCW is one, the in
crement amount is added as a negative value, In

effect decrementintJ the index register.

3. Any carry beyond the most significant bit posi
tion of the index register is ignored.

4. Prior to the setting of the appropriate indicator,
all comparison indicators are reset.

5. Indirect addressing may be employed. Field
selection and multi-word operands do not apply.

UNIVAC m UTMOST

Illustration

Increment Index Register 5 by 3 and compare the
contents to the value 45. The ICW is located in
INCR (0489).

~ X

a 0000

(0489)
INCR

S
i
g
n
a

5 INCR

OP Code XO m

53 0101 0489

ICW 45,3,

Comparison Amount Increrrent Amount

45 3

PROCESSOR INTERRUPT INSTRUCTIONS

The cause of two classes of automatic program in
terrupt, Processor Error and Contingency, may be
determined by these instructions. When the condi
tion is rectified, the affected indicator may then be
reset, and normal processing may continue.

TEST CONTINGENCY INDICATOR TC

Operation:

OP Code:
Cycles:

Test Indicator:
If set, (CC) + I~CC
If reset, (CC) + 2 ~ CC
64
2

Des c rip ti 0 n: Test the contingency indicator(s) speci
fied in bit positions 1-10. If one or more is set,
access the next instruction in sequence. Otherwise,
skip the next instruction in sequence.

}
A

25

1/A

X

X

24 21

OP Code Class Indicator

20 15 14 11 10 1

Indirect address option

Binary address of index registers, 0
to 15

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 46

Class 0010

Indicator(s) Positional designation of specific
indicator(s)

Note s

1. Any number of indicators may be tested by place
ment of I-bits in bit positions 1-10. If an in
dicator is set, the next instruction in sequence
will be accessed, (CC) + 1~ CC.

2. The condition of the indicator(s) will not be
affected by the test.

3. Indicators are designated by I-bits in the follow
ing bit positions. (B it positions 7-10 should be
O's.)

ADDRESSES

Overflow 000001 01
Invalid OP Code 000010 02
Console Typewriter Interrupt 000100 04
Keyboard Request 001000 010
Keyboard Release 010000 020
Contingency Stop 100000 040

4. The location immediately following the instruc
tion will normally be an unconditional transfer.

5. Indirect addressing may be employed.

Illustration

Test the Contingency Stop Indicator.

TC 040

}
A

X OP Code Class Indicator

a 0000 64 0010 0000100000

RESET CONTINGENCY INDICATORS RCI

OP Code: 65
Cycles: 2

De sc r i pt ion: Reset the Contingency Indicator(s)
specified in bit positions 1-10 of the instruction.

UNIVAC m UTMOST

I I I

I X I OP Code I Class I Ind icator I~I
12~24 21120 15114 11110 11

I/A Indirect addressing option

X Binary address of index register, 0
to 15

Class 0010

Indicator(s) Positional designation of specific
indicator(s)

Note s

1. Any number of indicators may be reset. The in
clusion of several I-bits will result in the re
setting of all indicators designated.

2. Indicators are designated in the same way as for
Test Contingency Indicator

Note 3

3. Any attempt to reset an indicator in a reset con
dition will not result in an error.

4. Resetting of any indicator will automatically
reset the Contingency Interrupt Mode Indicator
and inhibit all interrupts until after execution
of the following instruction.

5. Indirect addressing may be employed.

Illustration

Reset the Overflow Indicator.

RC

}
A

X OP Code Class Ind icator

0 0000 65 0010 0000000001

TEST PROCESSOR ERROR
INDICATOR(S)

Operation:

OP C:Je:
CYClES.

T est Indicator:
If set, (CC) + 1 ~ CC
If reset, (CC) + 2 -.- CC
64
2

TPE

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 47

Description: Test the Process error indicator(s)
specified in bit positions 1-10. If one or more is
set, access the next instruction in sequence. Other
wise, skip the next instruction in sequence.

} X OP Code Class Indicator
A

?5 24 21 20 15 14 11 10 1
, J

I/A Indirect address option

X Binary ,address of index register, 0
to 15

Class 0001

Indicator(s) Positional designation of specific
indicator(s)

Note s

1. Any number of indicators may be tested by
placement of I-bits in bit positions 1-10. If
an indicator is set, the next instruction in sequ
ence will be accessed; (CC) + 1 ~ CC.

2. The condition of the indicator(s) is not affected
by the test.

3. Indicators are designated by the following
address:

UTMOST

Memory Address Error during:

Instruction Access
Operand Access
Synchronizer Access by:

UNISERVO III Basic Write
UNISERVO III Basic Read
General Purpose Itl
General Purpose 1t2
General Purpose 1t3
General Purpose 1t4
Gener-61 Purpose itS
General Purpose 1t6
General Purpose 1t7
General Purpose 1t8
Compatible Tape
UN/SERVO III Additional Write
UNISERVO III Additional Read

Modulo 3 Check on Instruction
Modulo 3 Check on Operand

Adder Error Check

1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
32
64

UNIVAC m UTMOST

4. The location immediately foIIowing the instruction
wiII normaIIy be an unconditional transfer.

5. Indirect addressing may be employed.

Illustration

Test the Modulo 3 Check On Instruction Indicator.

TPE

} X OP Code Class
A

0 0000 64 0001

RESET PROCESSOR ERROR
INDICATOR(S)

OP Code: 65
Cycles: 2

16,

Ind icator

0000010000

RPE

Description: Reset the Processor Error Indicator(s)
specified in bit positions 1-10 of the instruction.

}
A X

25 24 21 20

[/A

x

OP Code Class Indicator

15 14 11 10 1

Indirect addressing option

Binary address of index register 0 to
15

Class 0001

Indicator(s) Positional designation of specific in
dicator(s)

Notes

1. Any number of indicators may be reset. The in
clusion of several I-bits will result in the re
setting of all the indicators designated.

2. Indicators are designated in the same way as
for Test Processor Error Indicators) Note 3

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 48

3. Any attempt to reset an indicator already in a
reset condition wil1 not result in an error.

4. Resettin.g of any indicator wiII automaticaIIy
reset the Processor Error Interrupt Mode Indi
cator and inhibit all interrupts until after execu
tion of the following instruction.

5. Indirect addressing may be employed.

Illustration

Reset the Adder Error Check Indicator.

RPE 64

}
A

X OP Code Group Indicator

0 0000 65 0001 0001000000

INPUT-OUTPUT INTERRUPT INSTRUCTIONS

The third class of automatic program interrupt, I~'
put-Output, is handled by these instructions. Thl
channel synchronizer originating the interrupt and
the specific cause of it may be determined. Normal
processing will be resumed when the affected in
dicators are reset.

TEST INPUT-OUTPUT INDICATORS TIO

Ope ration:

OP Code;
Cycles:

Test Indicator:
If set, (CC) + I~CC
If reset, (CC) + 2 CC
64
2

Description: Test the Input-Output Indicator(s)
specified in bit positions 1-10 for the channel
specified in bit positions 11-14. If one or more is
set, access the next instruction in sequence. Other
wise, skip the next instruction in sequence.

}
A

X

25 24 21

I/A

x

OP Code Channel Indicator

20 15 14 11 10 1

Indirect addressing/field selection'
option

Binary address of index register, 0 to
15

UNIVAC m UTMOST

Channel Designator (See below.)

Indicator Positional designation of specific
indicator

Notes

1. Any number of indicators may be tested by place
ment of 1-bits in positions 1-10. If an indicator
is set, the next instruction in sequence wi 11 be
accessed; (CC) + 1 ~ CC.

2. The condition of the indicator(s) will not be
affected by the test.

3. The location immediately following this instruc
should normally contain an unconditional trans
fer.

4. Any attempt to reset an undefined indicator for
a given channel or an indicator already in a reset
condition will not result in an error.

5. Indirect addressing may be etnployed.

6. Channel designations (bits 11-14) areas follows:

UNISERVO III Basic Write 0011 3
UNISERVO III Basic Read 0100 4
General Purpose Itl 0101 !)

General Purpose 1t2 0110 6
General Purpose 1t3 0111 7
General Purpose 1t4 1000 g
General Purpose itS 1001 9
Genera I Purpose 1t6 1010 10
General Purpose 1t7 1011 11
General Purpose 1t8 1100 12
Compatible Tape ReadWrite 1101 13
UNISERVO III Additional

Write 1110 14
UNISERVO III Additional Read 1111 15

7. Indicators are designated by 1-bits in the foHow
ing bit positions (bits 8-10 should be 0):

Bit
Positions

Stand-by Location Interlock 1
Indicator

Completion/Initiation
Interrupt 2

REVISION:

DATE:

July 1, 1962

Error A (UNISERVO Units
Only)

SECTION:

PAGE:

Bit
Positions

3

Busy (UNISERVO Units Only) 4

Error B 5.

Error for General Purpose
Channels 5

End of File (727 Tape) 5

End of Tape (UNISERVO III
Unit Only) 6

Out-of-paper (High-Speed
Printer) 6

Wired Stop Character (Paper
Tape) 6

Fault 7

Low on Paper (Paper Tape) 2 and 6

Bad Line Printed 5and7

Illustration

v

49

Test the Stand-by Location Interlock Indicator for
UNISERVO III Basic Write Channel.

TIO 3,

I

~ X OP Code Channel
...

0 0000 64 0011

RESET INPUT-OUTPUT
INDICATOR(S)

o P Code: 65
Cycles: 2

Indicator

0000000001

RIO

Des c rip ti 0 n : Reset the input-output indicator(s)
specified in bit positions 1-10 for the channel
specified in bit positions 11-14.

}
A

X OP Code Channel Indicator

~5 24 21 20 15 14 11 10 1

UNIVAC m UTMOST

I/A Indirect address option

x Binary address of index register, 0 to
15

Channel Designator (See below.)

Indicator(s) Positional designation of specific
ind icator(s)

Notes

1. Any number of indicators may be reset. The in
clusion of several 1-bits will result in the re
setting of all indicators designated.

2. For channel designations (bits 11-14) see Note 6
of preceding instruction.

3. Indicators are designated by 1-bits as speci

fied in Note 7 of the preceding instruction.

4. Any attempt to reset an undefined indicator for
a given channel or an indicator already in a reset
condition will not result in an error.

5. Resetting of any indicator will automatically
reset the Input-Output Interrupt Mode Indicator
and inhibit all interrupts until after execution of
the following instruction.

6. Indirect addressing may be employed.

Illustration

Reset the Stand-by Location Interlock Indicator for
UNISERVO III Basic ReadChannel.

RIO 4,

} X OP Code Channel
A

0 0000 65 0100

PREVENT INPUT-OUTPUT
INTERRUPT

OP Code:
Cycles:

62
2

Indicator

0000000001

PI

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 50

Description: Set the Inhibit Input-Output Interrupt
Indicator thereby preventing all subsequent Input
Output Interrupts from occurring.

}
A

X OP Code 100 icator m

25 24 21 20 15 14 11 10 1

I/A Should be 0

x Not relevant

Indicator Should be 0000

m Not relevant

Notes

1. Storage of the Control Counter reading and trans
fer of control to location 0020 will be blocked
as long as the indicator is set.

2. The setting of the indicator will not affect any
subsequent setting or resetting of the Input
Output Indicators.

3. Indirect addressing and field selection are not
applicable.

Illustration

Inhibit all Input-Output Interrupts from occurring.

PI

} X OP Code Indicator
A

0 0000 62 0000

ALLOW INPUT-OUTPUT
INTERRUPT

OP Code:
eye Ie:

61
2

o

m

0000

Al

Description: Reset the Inhibit Input-Output Interrupt
Indicator thereby allowing the occurrence of all
subsequent input-output interrupts.

I/A

X

UNIVAC m UTMOST

I OP Code I Indicator I

21120 15114 11110

x m

Should be 0

Not relevant

Indicator Should be 0000

m Not relevant

Notes

I
11

1. An Input-Output Interrupt or Input-Output Error
Indicators may be set during the time Input-Out
put Interrupts are inhibited. A normal Input-Output
Interrupt wiII occur when this indicator is reset.

2. Indirect addressing and field selection are not
applicable.

Illustration

Allow input-output interrupts to occur.

AI o

} X OP Code Indicator m
A

0 0000 61 0000 0000

JUMP IF INPUT-OUTPUT
INTERRUPT PREVENTED

Operation:

OP Code:
Cycles:

Test Indicator:
If set, m'~CC
If reset, (CC) + 1 ~ CC
60
1 if set; 2 if reset

JJP

Description: Test the Inhibit Input-Output Indicator.
If set, transfer control to the indexed address.
Otherwise access the next instruction in sequence.

I

~ X OP Code Indicator m

25 24 21 20 15 14 11 10 1

I/A Indirect addressing option

REVISION: SECTION:

v
DATE: PAC3E:

X

Indicator

m

Note s

July 1, 1962 51

Binary address of index register, 0 to
15

Should be 0000

Unindexed address of the next in
struction to be accessed if indicator is
set

1. The condition of the indicator is not affected by
the test.

2. Indirect addressing may be employed.

Illustration

Transfer control to LOCE (0839) if input-output
interrupt is inhibited.

JIP LOCE

} X OP Code Indicator m
A

0 0000 60 0000 0839

INITIATE INPUT-OUTPUT INSTRUCTION

Input-output function specifications, denoting the
particular input-output operations to he performed,
are not decoded and executed in the Central Proces
sor. Execution of Initiate Input-Output Instruction
makes the input-output function specification avail
a hIe to the appropriate channel synchronizer which
executes it.

LOAD CHANNEL STANDY

Operation:

OF ewe:

REGISTER

(m')~SLi and set appropriate
Stand-by Location Interlock Indicator
7&

Cycles: 3

Description: Transfer the function specification
from the indexed memory location to the fixed
stand-by location in memory associated with the
channel designated in bit positions 11-14 and set
the respective Stand-by Location Indicator.

UNIVAC m UTMOST

} X
A

25 24 21 20

If A

x

Channel

OP Code Channel m

15 14 11 10 1

Indirect addressing option

Binary address of index register, 0
to 15

Channel designator

m Unindexed address of the function
specification

Notes

1. Input-output operations, except those pertaining
to the Console Typewriter, are executed by
means of two instructions - the initiate input
output instruction and a function spec ification
(FS). The latter serves to direct the peripheral
unit to perform a specific function - read a card,
read a block, print a line, and so on. Function
specifications have the following formats.

T APE FUNCTIONS

0 Servo Function I L-Addr.
Number Code

~5 24 21 20 17 16 15 1

HIGH-SPEED PRINTER FUNCTIONS

Number of t III

0 Lines Paper U 0 I L-Addr. z 0

Advance :l U
\.L.

2524 19 ~817 16 15 1

HIGH-SPEED CARD READER AND CARD-PUNCH
FUNCTIONS

00000 Function I
Code L-Addr.

25 21 20 17 ,,6 15

PAPER-TAPE READER AND PUNCH
FUNCTIONS

:-111

o No. of Words
1-0

I L-Addr. U o
~u
\.L.

~5 24 19 181; 16 15

1

1

REVISION: SECTION:

V

I DAT;~1Y 1. 1962
I PAG",

52

The initiate input-output function places the FS
in the memory location associated with the
channel so that it may be picked up by the
channels control circuitry, decoded, and execut
ed. To inform the channel circuitry that a FS is
available, the Stand-by Location Indicator is set.

Operation of the initiate input-output function
and the input-output function specification is as
follows:

Execution of the initiate input-output func
tion places an input-output function speci
fication into the stand-by location for the
synchronizer designated and sets the cor
responding Stand-by Location Indicator.

When the related synchronizer successfully
completes the execution of a previous in
struction, the synchronizer requests access
to its stand-by location if its Stand-by
Location Interlock Indicator is set. When
the Memory Priority Circuits grant the Syn
chronizer the requested access, and the
contents of the stand-by location are trans
ferred to the Channel Control Circuitry where
the function is defined. During the transfer,
bit functions 1-15 are loaded into the syn
chronizer's Memory Address Counter. The
Stand-by Location Interlock Indicator will be
reset when the operation is successfully
initiated and the instruction execution begins
(when the instruction applies to the tape
units and to the Printer.)

If the Stand-by Location Interlock Indicator
is set, and an initiate input-output function
is executed, the associated, input-output
function specification will replace the one
in the stand-by location. In normal use the
indicator should be tested and found reset
prior to the execution of an initiate input
output function. If the Indicator is found
set, and the initiate I -C command is
executed, there is the possibility that
the instruction already in the stand-by
location will not be executed while the
new one is being entered. Resetting of
the Indicator may be accomplished by
the RIO instruction.

Whenever input-output functions can-
not be successfully completed because
of error or abnormal conditions, the
stand-by location Interlock Indicator for
the appropriate synchror izer remains
reset. The instruction in its stand-by
location will therefore not be transfe~red
for execution.

UNIVAC m UTMOST

2. The address of the memory locations associated
wi th the channel is the binary value of the
channel designator.

3. Indirect addressing but not field selection may
be employed.

4. See Note 2 of for channel addresses.

Illustration

Initiate a tape operation for the Basic Read Channel.
The function specification is located in LOCB
(0839).

LC 4 ,

}
A

X OP Code Channel

0 0000 70 0100

MISCELLANEOUS INSTRUCTIONS

NO OPERATION

Operation:
OP Code:
Cycles:

(CC) + l~CC
00
2

LOCB

m

0839

NOP

Description: No operation is performed. Access the
next instruction in sequence.

}
A

25

I/A

X

X

24

OP Code

AR

m

Notes

21

OP Code AR m

20 15 14 11 10 1

o

Not Relevant

00

Not Relevant

Not Relevant

1. Memory, arithmetic registers and indicators
are not affected.

I REVISION:

DATE:

July 1, 1962

STORE LOCATION
STORE CHANNE L

Operation:
OP Code:
Cycles:

(MACi) ~ m'
04
3

SECTION:

PAGE:

SL
SC

v

53

Description: Transfer the contents of the Memory
Address Counter (MAC) for the channel specified in
bit positions 11-14 (or the Control Counter if speci
fied) into bit positions 1-15 of the indexed memory
location.

} X
A

25 24 21

I/A

X

OP Code PMC/CC m

20 15 14 11 10 1

Indirect addressing option

Binary address of index register, 0
to 15

MAC/CC Normally channel designator (See
below.)

m U ninde xed address

Notes

1. Bit positions 16-25 of the indexed location will
be binary O's.

2. If the Control Counter is desired, bit positions
11-14 should be 0001 (SL) If a Memory
Address Counter is desired, the channel designa
tions are:

UNISERVO III Basic Write 0011
UNISERVO III Basic Read 0100
General Purpose Itl
General Purpose 1t2
General Purpose 1t3
Genera.l Purpose 1'4"
General Purpose 1t5
General Purpose 1t6
General Purpose 1t7
Gfmeral Purpose 1t8
Compatible Tape Read-Write
UNISERVO III Additional Write
UNISERVO III Additional Read

0101

0110
0111
f()()()

1001
1010
1011
1100
1101
1110
1111

UNIVAC m UTMOST

3. The Memory Address Counter for the channel
designated at the time of transfer will contain:

UNISERVOlIl Unit - Address of the Tape Con-
Scatter Read trol Word current ly effec-

or tive in the UNISERVO III
Gather Write Read or Write Synchronizer.

Compatible Servos
or UNISERVO III
Unit Read W /0
Control Word

- Address to or from which
the last data word trans
fer took place.

High-Speed Printer - Address of last word
transferred to the Printer
Synchronizer Buffer.

Card-Punch Unit - Address of the last word
transferred from Punch
Synchronizer.

High-Speed Reader - Address of the last word
transferred from High
Speed Reader Synchronizer.

4. The contents of the Memory Address Register
(15 bits) may also be transferred to memory by
placement of 0010 in bit positions
11-14 of the instruction.

5. Indirect addressing but not field selection may
be employed.

Illustration

Store the MAC for the Basic Read Channel in LOCB
(0839).

sc 4~ LOCB

} X OP Code Channel m
A

0 0000 04 0100 0839

STORE TAPE CONTROL REGISTER

Operation:
OP Code:
C yC'les:

(TCRi) --... m'
05
3

ST

Description: Transfer the contents of the Tape Con
trol Word Register (TCWR) for the UNISERVO III
synchronizer channel specified in bits 11-14 to

the indexed memory location.

I

~ X

25 24

I/A

x

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 54

OP Code Channel m

21 20 15 14 11 10 1

Indirect addressing option

Binary address of index register, 0
to 15

Channel For channel designation, see Note 2
below.

m Unindexed memory location

Notes

1. The indexed memory location will contain the
following information:

Bits 1-15 Binary address of the last word
transferred to or from the synchro
nizer channel

Bits 16-24 Original count as contained in th).:.,,"
Scatter Read/Gather Write Contro~

Word, decremented by one for each i

word transferred

Bit 25 Sign; Positive

2. The UNISERVO III Read or Write Channel Syn
chronizer Designations

Basic Write
Basic Read
Additional Read
Additional Write

BITS 11-14

1000
0100
0010
0001

Note: The above designations apply to this m

struction only.

3. Indirect addressing, but not field selection may
be employed.

Illustration

Store the TCWR of the Basic Write Synchronizer
Channel in FIELDD (0832).

ST 4, FIELDD

}
~

X OP Code Channel m
A

0 0000 05 1000 I 0832

UNIVAC m UTMOST

HALT AND JUMP HJ

Operation:

OP Code:

m/~CC and
Stop Arithmetic and Control Unit
77

Cycles: 2

Description: Replace the contents of the Control
Counter with the indexed address of the instruc
tion and s top the arithmetic and control unit.

}
A X OP Code AR m

25 24 21 20 15 14 11 10 1

I/A

x

AR

m

Notes

Indirect address option

Binary address of index register, 0
to 15

Not relevant

Unindexed address of the next instruc
tion to be accessed

1. When the Start Key on the console is depressed,
the program is resumed at the location specified
by the Control Counter reading.

2. The arithmetic and control unit ceases to request
memory access. All peripheral operations in
progress continue to request memory until they
are completed. Any function specifications in
stand-by locations will be accessed and execu
ted.

3. Indirect addressing but not field selection, may
be employed.

Illustrations

Stop the arithmetic and control unit. Then resume
the· pt"9gcam with the instruction l<JCated in LOeB
(0839).

HJ LoeB
} X
A

OP Code AR m

0 0000 77 0000 0839

REVISION:

DATE:

July 1, 1962

READ CLOCK

Operation:
OP Code:
Cycles:

(Clock)~ARi

76
2

SECTION:

v
PAGE:

55

RCK

Des c r i pt ion: Transfer the reading of the clock to
the arithmetic register designated.

}
A

X

25 24 21

I/A

x

AR

m

Notes

OP Code AR m

20 15 14 11 10 1

Should be a

Should be a

Positional designation of arithmetic
register

Should be a's

1. If the clock is cycling, one-half second every
six seconds, an invalid time is transferred to
ARi and the next instruction in sequence is
accessed; (CC) + 1 ~ CC.

2. If the clock is not cycling, a valid time is trans
ferred to bit positions 1-20 of ARi with 21-25
binary O's and the next instruction in sequ
ence is skipped; (CC) + 2 CC.

3. The valid time is expressed in five 4-bit ex

cess-three digits in the follow ing format:

00000 I
I
i

25 20 20 17 16 13
1
12

-
Hour

I
I

918 5 4
~

Minute

1
'V

Tenth
of

Minute

4. If more than one arithmetic register is designat
ed, the clock reading will be transferred to the
highest arithmetic register designated.

5. If the UNIVAC III System does not include the
clock and the instruction is executed, ARi will
receive binary O's and the next instruction in
sequence will be accessed.

UNIVAC m UTMOST

6. The clock, modulo 24 hours, is located inside
the Console and is not normally visible to the
operator. Knobs are provided on the clock hous
ing to set the hour and minute hands. Power is
supplied directly from a 115-volt AC, 60-cyc1e line.

7. If the power to the clock was disrupted, any
Load Time instructions executed will set the
Ov~rf1ow Indicator resulting in a Contingency
Interrupt. The operator must reset the clock to
prevent further Contingency Interrupts when
accessing the clock. This is accomplished by
depression of a button located on the clock
housing.

8. Indirect addressing, field selection and multi
word operands are not applicable.

Illustration

Store the clock reading in ARl,

RCK L

I

~ X OP Code AR

0 0000 76 0001

WRITE DISPLAY

Operation:
OP Code:
Cycles:

(m')~Display

03
2

o

m

0000

WD

REVISION: SECTION:

v

DATE: PAGE:

July 1, 1962 56

Description: Transfer the 27-bits of the indexed
memory location to the visual display on the Main
tenance Panel.

I
{

25

I/A

X

AR

m

24

Note s

X

21

OP Code AR m

20 15 14 11 10 1

o

Binary address of index register, 0
to 15

Not relevant

Unindexed address of operand

1. The Display sw itch on the panel must be set to
position O.

Illustration

Display the contents of LOCB (0839).

~ LOeB

}
A X OP Code AR m

0 0000 03 0000 0839

UNIVAC m UTMOST

The UNIVAC III Operator's Console contains, in
addition to the Console Typewriter and Keyboard
and its controls, buttons and lights to control the
Central Processor and monitor the peripheral
equipment.

AC On.Off Button-Light

Depression of this button when in the off
state, will supply power to the system. If
this button is depressed when in the on-state,
power will be lost. Use of this button is
controlled by a key lock located under the
Console apron.

Ready Light

When lit, it indicates that power has been
supplied and the Central Processor is ready
to operate. There will normally be some lag
in its lighting after power has been supplied.

General Clear Button

Depression of the General Clear Button causes
the following indicators to be reset:

Processor Error Interrupt Indicators

Contingency Interrupt Indicator

Input-Output Interrupt Indicators

Interrupt Mode Indicators

Inhibit Input-Output Interrupt Indicator

Sense Indicators

Depression of the General Clear Button also
causes the following registers to be cleared to
binary O's:

Control Counter

Index Registers

Memory Address Counters

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 57

5. Operator's Console

Load Button

Depression of this button causes logical
UNISERVO III 0'000 to read forward one block
without control word. The starting address
of the transfer is determined by the Memory
Address Counter of the UNISERVO III Read
Synchronizer. The Stop Light must be lit for
the button to be effective.

Rewind Button

Depression of this button causes the logical
UNISERVO III 0000 to rewind without inter
lock. The button will only be effective if the
Stop Light is lit.

Program Run Button-Light

Depression of this button causes the Central
Processor to begin execution of instructions
the location of which is specified by the
Control Counter. The light is lit only during
the execution of instructions.

P roces sor Error Stop/P rog ram Stop

This is a two-section button-light. When the
top section, Processor Error Stop, is lit, it
indicates that a second Processor Error oc
curred while in a Processor Error Interrupt
Mode causing a stop condition. When the
lower section is lit, it indicates that the stop
resulted from the execution of a Halt Ir,struction.
\'lhen this button is depressed. the Contin
gency Stop Indicator will be set causing a
Contingency Interrupt.

Prevent I/O Interrupt

This light is lit when the Inhibit I/O Interrupt
Indicator is set.

UNIVAC m UTMOST

Mon itor Pane I

Eight pairs of lights, indicate the line status
of the general purpose channels (lit if off-line)
and whether an abnormal (fau It) condition
exists in any unit requiring operator inter
vention. Two additional pairs of lights in
dicate the same conditions for the servo power
supplies and the Central Processor.

If an abnormal condition such as no airflow,
overheat, power supply failure, and so on,
occurs, the appropriate light w ill be lighted
and sound a buzzer. The buzzer may be turned
off by depressing the Buzzer Override Button
which is on the panel. The indicator light is
extinguished when the abnormal condition is
corrected. (This panel is not illustrated.)

CONSOLE TYPEWRITER

The UNIVAC III Operator's Console contains in
addition to lights and buttons for the operation
of the Central Processor, a Console Typewriter

and Keyboard.

The typewriter and keyboard are used for the
following purposes:

• Typin g out data or the contents of the address
able registers, for control purposes under pro
gram control.

• Changing the contents of memory location ad
dressable registers by program controlled
type-ins.

• Manual typing independent of program control
when in an off-line condition.

Specification s:

CHARACTERS

Fifty-one printing alpha-numeric (6-bit)
characters as programmed input or output
(Figure 5-2).

FORMA T C ONTR OL

Programmed typewriter actions are controlled
by 6-bit non-printing characters. They are:

• Tab Stop (advance carriage to next tab
stop).

• Return carriage and space one or two lines.
• Form Feed will advance paper to the pre-set

first printing line of the next 5V2" or 11" form.

• Dell Ring.

REVISION: I SECTION,

v
DATE: PAGE:

July 1, 1962 58

SPEED

Ten characters printed per second.

SPACING

Ten characters per inch horizontal spacing
and six lines per inch vertical spacing.

FORM FEED

Sprocket Fed

PAPER WIDTH

Eight and one-half inches including sprocket
holes.

NUMBER OF COPIES

Up to five copies plus the original may be
produced.

MODES

u -
D::
W
~
:l
z

On-line typewriter functions under program
control. Off-line functions as a conventional
electric desk typewriter.

ZONE

00 01 10 11

0000 ~ &

0001) : * %

0010 - $ I

CARRIAGE RETURN RING
0011 0 AND LINE FEED BELL +

0100 1 A J /

0101 2 B K S

0110 3 C L T

0111 4 0 M U

1000 5 E N V

1001 6 F 0 W

1010 7 G P X

1011 8 H Q y

1100 9 I R Z

1101 , It

HOPIZONTAL FORM
1110 ; TAB FEED

1111 (

Figure 5-2. UNIVAC III Console Typewriter Code

UNIVAC m UTMOST

On-Line Mode of Operation

Input from the keyboard and output to be printed
is accomplished character-by-character through
the 6-bit Typewriter Buffer Register (TBR).

Execution of a Write Typewriter Character (WT)
will transfer from memory one 6-bit printable or
non-printing typewriter character and initiate a
typewriter cycle. Once this is accomplished the
Central Processor accesses the next instruction.
The character is then printed or the non-printing
function executed. At this time, the Console
Typewriter Interrupt Indicator is set, causing a
Contengency Interrupt.

In order to use the keyboard for input, the Acti
Typewriter (AT) instruction must be exe
cuted, before depressing a character key. De
pressing a character key will enter in the TBR
the proper 6-bit code and set the Console Type
writer Interrupt Indicator causing a Contingency
Interrupt. Execution of a Read Typewriter Char
acter (RT) instruction will then transfer the
character to the arithmetic register designated.
Depression of a character key will not result in
a printing or typewriter controlled function.

Typewriter Control Buttons and Associated

Indicators

In addition to the keyboard with its printing
and non-printing character keys, the following
buttons and testable indicators are associated
with the Console Typewriter:

KEYBOARD REQUEST BUTTON

Depression will set the Keyboard Request
Indicator and cause a Contingency Interrupt
to occur. The indicator is tested and reset by
programming.

This button is inactive when the typewriter
is off-line.

KEY80ARD RELEASE B-tlTTo-N

Depression will set the Keyboard Release In
dicator and a Contingency Interrupt will occur.
The indicator is tested and reset by pro
gramming.

This button is inactive when the typewriter is
off-line.

REVISION:

~
SECTION:

V

DATE: PAGE:
I

July 1, 1962 59

KEYBOARD ACTIVE LIGHT

Lit by the execution of an Activate Typewriter
(AT) instruction. It is extinguished when
either a key or the Keyboard Release Button
is depressed. There is no associated program
testable indicator.

TYPEWRITER ON.OFF LINE BUTTON.LIGHTS

Indicates the status of the typewriter by the
section lit. If on-line, the typewriter is under
the direct control of the program. Depression

of the button when on-line will put it off-line.
The typewriter may then be used manually
with printing or non-printing functions occurring
when a key is depressed. Depression of the
On-Off Line button-light when off-line will put
the typewriter on-line.

CONSOLE TYPEWRITER INTERRUPT

tNDtC A TOR

This indicator is set when the typewriter is
on-line by the depression of a character key
or the execution of a printing or non-printing
function initiated by a WT instruction.

There is no light indicating the status of this
indicator; it is testable and resettable by
program only.

Console Typewriter In struction 5

The UNIVAC III Console Typewriter will function
under program control utilizing these instructions.

WRITE TYPEWRITER CHARACTER I WT

Ope r ati 0 n: If Typewriter on-line: (m') -----?> T B R
one character

Then print and(CC) + 2 --7 CC
If Typewriter off-line: (CC) + 1-:;.- CC

o P Code: 02
Cycles: 2

Description: If the Console Typewriter is on
line, trans fer the a lpha-numeric character or
function code specified in bit positions 11-14 of
the instruction from the indexed memory location
to the Typewriter Buffer Register (TBR), initiate
a Typewriter Print Cycle, and skip the next
instruction in sequence.

UNIVAC m UTMOST

I
/ X
A

25 24 21 20

I/A

x

Character

OP Code Character m

15 14 11 10 1

Indirect addressing option

Binary address of index register,
o to 15

Designation of character position to

I
/
A

25 24

I/A

X

AR

X

REVISION:

DATE:

July 1, 1962

OP Code AR

21 20 15 14

Should be 0

Should be O's

Should be O's

I
SECTION:

V

PAGE:

60

m

11 10 1

be printed, 0000-0011. See Note 1. m Should be O's

m Unindexed Address of character to
be printed

Notes

1. The character to be transferred and printed is
designated in bits11-12as shown below. Bits
13-14 are not examined and' therefore may be
1 or O.

CHAR. 4 3 2 1

BITS 24 19 18 13 12 7 6 1

A.R -TtT- To T To BITS 1 1 1 0 o 1 o 0

SA.L T 3 2 1 0

2. When the character is printed or function per
formed, the Typewriter Interrupt Indicator IS

set causing Contingency Interrupt.

3. If the Typewriter is off-line the instruction is
aborted and the next instruction (normally an
unconditional transfer) is accessed.

Illustration:

Print character 4 from FIE LDB (0683).

WT 3, FIELDB

I
/ X OP Code Character m
A

0 0000 02 0011 0683

ACT IV AT E TYPEWRITER AT

QP Code: 66
Cycles: 2

Description: Allow one alpha-numeric character
to be typed in the Typewriter Buffer Register.

Notes

1. The Keyboard Activate Light on the Console
will be turned on when the instruction is ex
ecuted. When a character key is depressed, the
light will be extinguished and the Typewriter
Interrupt Indicator wi 11 be set causing a

Contingency Interrupt.

2. Depression of a character key will not result
in the character being printed.

3. The Central Processor wi 11 not be interlocked
while the character is being typed.

4. Indirect addressing, field selection and multi
word operands are not applicable.

Illustration

Activate the Console Typewriter.

AT 0

I
/ X OP Code AR m
A

0 0000 66 0000 0000

READ TYPEWRITER CHARACTER RT

Operation: (ARi)+ (TBR)~ ARi

ope ode: 01
Cycles: 2

Description: Add the alpha-numeric character
in the Typewriter Buffer Register (TBR) to bit
positions 1-6 of the des ignated A rithme tic Re
g ister.

UNIVAC m UTMOST

I
/
A
~5 24

If A

X

AR

m

Notes

X

21

OP Code AR m

20 15 14 11 10 1

Should be 0

Should be O's

Positional designation of arith
metic register

Should be O's

1. Bits 7-25 of the designated arithmetic re
gister will not be affected.

2. Indirect addressing, field selection and multi
word operands are not applicable.

I REVISION: SECTION:

I DATE"--

I July 1, 1962

v
PAGE:

61

3. The rules for binary addition apply for bit
positions 1-5. For bit position 6, the rules
are:

• If a carry from bit position 5 exists, the
result in bit position 6 is a 1.

• if a carry from bit position 5 does not
exist, the rules for binary addition apply
to bit position 6.

• In any case, no carry from bit position 6
is propagated to bit position 7.

Illustration

Unload the Typewriter Buffer Register into AR2.

RT 2, o
I

I / X OP Code AR M A

0 0000 01 0010 0000

UNIVAC m UTMOST

The purpose of this section is to explain briefly
the operation of each arithmetic process so that
details of the individual instructions may be more
fully appreciated.

All arithmetic operations exclusive of those
relative t-o the control unit are accomplished
by the arithmetic unit which consists of the
adder, arithmetic registers, Central Processor
register, and their related circuitry. Each of the
fi ve registers involved performs a unique function
during all of the arithmetic processes as shown
in Figure 6-1.

ADDITION

Signs Equal - True Addition

In either a binary or decimal add with like signs,
the operands are transferred to the adder four bits
in parallel, the augend from memory and the ad
dend from the arithmetic register(s) specified.
The addition is actually binary with any carries
resulting from a 4-bit group retained and added to
the next higher 4-bit group entering the adder.
If a binary add were specified, the result of the
addition would be read into the arithmetic register
designated. A decimal addition will require the
binary sum produced to be corrected prior to its
being read in the designated arithmetic registers.
This adjustment, requiring no additional time, is
the addition of correction factors to each 4-bit
group and the ignoring of decimal carries, since
the decimal values expressed were in excess
three.

ADDITION* SUBTRACTION*

ARl ADDEND MINUEND AND
AND SUM DIFFERENCE

AR2 ADDEND MINUEND AND
AND SUM DIFFERENCE

AR3 ADDEND MINUEND AND
AND SUM DIFFERENCE

AR4 ADDEND MINUEND AND
AND SUM DIFFERENCE

CPR AUGEND SUBTRAHEND

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 62

6. Arithmetic Modes

Unequal Signs - Addition with Complementation

Addition with complementation takes place if the
signs of both quantities are unequal. In an addition
with unequal signs, the data word from memory
entering the adder is automatically converted to
its 10's complement.** A normal addition then
takes place.

The result will take the sign of the input with
the greater absolute value. If it is a decimal add,
the result would have been corrected for excess
three notation.

Addition with Complementatio;l :

AR (addend)
m (augend)

+ 226385
- 214360

-226385
+ 214360

Effective Addend (AR)
Complemented Augend (m)

226385 226385
785640 785640

••

+1 012025 -1 012025

'- the carry is igno~

In complementin~, a 0 remains a 0, a 1 becomes a 9, a 2
becomes an 8, a 3 becomes a 7, and 80 on. For all di~its
aiter the first least 8i~nificant non-zero di~it the 9's
complement is used. Therefore in complementjn~ 214360
the iollowi n~ takes place: 9 9 9 9 10

214360

10's complement 7 8 5 6 4 0

MUL TIPLICATION DIVISION

MUL TIPLIER 6 MSD OF DIVIDEND
AND REMAINDER

6 MSD OF PRODUCT 6 LSD OF DIVIDEND
AND QUOTIENT

6 LSD OF PRODUCT NEVER INVOLVED

NEVER INVOLVED NEVER INVOLVED

MUL TIPLICAND DIVISOR

·Only those AR's specified in the instruction will be involved.

Figure 6.1. Functions or Arithmetic Registers in Arithmetic Processes

UNIVAC m UTMOST

Addition with complementation ignores the carry
from the most significant digit position and takes
the sign of the input with the greater absolute
value. Although complementation will occur in an
addition with unequal signs, no additional exe
cution time will be expended.

Addition with Recoillplementation

In an addition with unequal signs recompiementa
tion will be necessary if the result will change
the sign of the addend. Recomplementation will
be necessary if the absolute value of the quantity
in the AR is less than the absolute value of the
quantity from memory. This relationship will
necessitate a change in the sign of the ARCs)
with recomplementation automatically taking
place.

Addition with Recomplementation:

AR (addend)
m (augend)

+ 218684
-221896

-218684
+ 221896

Effective Addend (AR)
Complemented Augend (m)

218684
778104

218684
778104

996788 996788

This is the 10's complement of the
correct result and must be recom
pfemented to

-003212 taking + 003212
the sign
of the input
with the greater
absolute value.

In these examples, the result of the addition with
complementation alone is, in reality, the 10's
complement of the true result. This complemented
result will be sent through the adder and be re
complemented. Because recomplementation is
necessary, a minimum of one additional cycle time
will be needed to complete the execution of the
instruction. In addition, one cycle time must be
added for each word of the result to berecomc

plemented.

Recomplementation will therefore take place in
an addition with unequal signs, if the absolute
value of the contents of the AR(s) are less than
the absolute value of the contents of the data
word from memory.

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 63

The three factors which affect the sign and the
result of an addition are:

The sign of the AR
The sign of the data word from memory
The absolute value of the operands

AR

+ -
'"

WITH
+

SIGN OF THE
EQUAL GREATER IN
SIGNS ABSOLUTE VALU E"''''

m +

•

••

'" WITH SIGN OF THE
UNEQUAL GREATER IN -

SIGNS ABSOLUTE VALUE"''''
-

So 10n~ as the si~ns are equal, the result is a sum even
if the si~ns are both ne~ative.

Althou~h the command is for addition, the presence of
unequal signs makes the operation effectively a sub
traction. The result is, in reality, a difference.

Note: If a zero result is developed, its sign is
always positive and the Equal Comparison In
dicator is set. If the result is not zero, the in
dicator will be reset.

SUBTRACTION

The Game rules which apply to addition apply
to subtraction. However, because subtraction
affects the sign of the subtrahend (m), the rules
are the converse of those for addition.

In a subtraction the sign of the operand from
memory is reversed and an addition is performed.
If the signs were originally equal, the sign of the
subtrahend would change and an algebraic addition
occurs. This addition would then involve two
quantities with unequal signs. The rules govern
ing complementation and recomplementation take
effect if the sign of the AR will change because
of the absolute values of the input. In this case,
recomplementation automatically occurs.

UNIVAC m UTMOST

The factors which will affect the sign and the
result of a subtraction are:

•

m

The sign of quantity in the AR
The sign of the quantity from memory
The absolute values of the operands

AR

+ -

SIGN OF THE

+ GREATER IN + ABSOLUTE VALUE·*

•

I
SIGN OF THE

- - GREATER IN
ABSOLUTE VALU E

*

The result of this subtraction Is, In reality, a sum be
caUBe the Bubtrac tion operation chan~e. the Bign of the
subtrahend (m) before the execution of the operation. A
true addition would then talee place without com
plementation. .. .
The result of this operation is a difference. The reversing
of the si~n of the subtrahend would malee this operation
an addition with unequal e/gn.. This type of operation
necesBitates complementation. Recomplementatlon would
be neceBsary if the abeolute value of the quantity in the
AR were less than the absolute value of the quantity
from memory because the relatlonBhlp would Jorce a
change in the sign 01 the AR(B).

Note: If a zero result is developed, its sign is
always positive.

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 64

MUL TIPLICATION

Multiplication is accomplished by repeated ad
ditions of multiples of either the multiplicand
or its tens complement to AR4 (initially cleared
to binary O's.) The selection of the value and
number of times it is to be used is governed by
the value of each multiplier digit as determined
by the value of the multiplier digit to its im
mediate right. A 12-digit product is produced;
the six most significant digits in AR:4 and the
six leas t significant digits in AR2.

MUL TIPLIER

+ -

+ + w - J:t-
t-u

MUL TIPLICAND u..::l
0 0
11)0

+ zek: - - ~Q..
II)

During the execution of a multiplication, no
accesses to memory are required since the multi
plier is held in the Central Processor Register
and the multiplicand digits in AR4 during the
process.

REVISION: I SECTION:

UNIVAC m UTMOST
v

DATE: PAGE:

July 1, 1962 65

7. Automatic Program Interrupt

Automatic program interrupt in the UNIVAC III
Data-Processing System causes, upon automatic
recognition of special conditions in the system,
the automatic interruption of the program in pro
gress. Depending on the cause of the interrupt,
the contents of the Control Counter will be stored
in a specific location and control transferred to
the succeeding location where the reason for the
interruption may be investigated and suitable ac
tion taken. Return to the point in the program at
which the interrupt occurred may be accomplished
by use of the stored Control Counter reading.

The three main causes or classes of interrupt in
decending order of priority are Process Error,
Contingency and Input-Output.

When a condition which calls for interrupt arises,
the following occurs within the Central Processor:

• A program testable indicator, or group of in
dicators, is set to specifically identify the
cause of the interrupt. The special indicators
set will generally belong to the same class of
interrupt.

• For each of the three classes of interrupt there
is an Interrupt Mode Indicator. These indicators
cannot be program set, reset or tested; their
functions are automatically controlled. If one is
seJ,. interrupts .. of its re.sp-e.c.tive .clas.s_.oLc;)LaD.l'
class of a lower priority are inhibited; those of
a higher class are not.

The setting of any Mode Indicator; will not in
hibit the setting of any specific indicator when
the appropriate conditions arise.

In general, when an ending pulse is generated
at the end of the execution of each instruction
in the Central Processor, the indicators are
automatically probed in groups according to the
class of interrupt in decending order of priority.
In the case of certain Processor Errors, the
respective indicators are examined every 4
microseconds. If any specific indicator is found
to be set, and if the interrupt Mode Indicator
for its class or for classes of higher priority is
not set, interrupt w ill take place. At this time
the appropriate Interrupt Mode Indicator is auto
matically set.

• Depending on the class of interrupt to which the
specific indicator found set belongs the current
contents of the Control Counter is stored in one
of three addressable fixed memory locations;
bit positions 1-15 containing the Control Coun
ter reading and bit positions 16-25 containing
binary O's. Control is then transferred to one of
three fixed memory locations depending on the
class of interrupt.

The specific locations associated with each
class of interrupt is as follows:

ProcessOt ---Error
Contingency
Input-Output

Storage Location
of

Control Counter

oots·
0018
0020

Transfer of
Control to

0017
0019
0021

Transfer in thus effected to one of three loca
tions where JUMP to a program may be ini
tiated to determine the exact nature of the
interrupt. This

UNIVAC m UTMOST

determination is made by testing the condition
of the specific indicators related to the class
of interrupt. During this time the specific in
dicators are probed as above. When it is known,
appropriate action may then be taken, and the
specific indicators reset. The reset instruction
(RIO, RPE or RC) will automatically reset the
Interrupt Mode Indicator for the class of inter
rupt involved. Interrupts of all classes will then
be inhibited, provided all the specific indicators
are reset, until the completion of the instruction
following the reset instruction.

• After the execution of the J instruction, and
before the next instruction is accessed, the
specific indicators for the class of interrupt
just effective, as well as those of a lower class,
are" again automatically tested for a set condi
tion. If any is found set, the appropriate Inter
rupt Mode Indicator is set and the Control Coun
ter, containing the return address of the pre
vious interrupt, is stored in the fixed location
associated with the class of interrupt of higher
priority for which a specific indicator was found
set. Control is then transferred to the location
associated with the class of interrupt.

• During the course of operation within an Inter
rupt Mode, that is, an Interrupt Mode Indicator
is set, occurrence of an interrupt of a higher
priority is always possible and cannot be pre
vented. Interrupts for all classes will be in
hibited until the instruction following the in
terrupt reset instruction has been executed.

PROCESSOR ERROR INTERRUPT

At the completion of every instruction, regardless
of whether any Mode Indicator is set, the Pro
cessor Error Indicators are probed for a set condi
tion. If any is set, and the Processor Error Inter
rupt Mode Indicator (PE IMI) is not set, a Processor
Error Interrupt will always result immediately
without regard to the condition of the lower pri
ority Interrupt Mode Indicators. The PEIMI will be
set, the Control Counter reading stored in memory
location 0016 and control transferred to memory
location 0017. If any other Processor Error
Indicator is set when the PEIMI is set, the
-Central Processor will stop. The Control
Counter will contain the address plus one of
the instructions which caused the error.

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 66

During the time the PE IMI is set, the setting of
specific indicators for the same or lower priority
interrupts will not be inhibited. Their action,
though, will not be effective until the instruction
following the instruction resetting the specific
Processor Error Indicator has been executed.

If a Processor Error Indicator is set during the
time when either (or both) of the lower priority
Interrupt Mode Indicators is set, a Processor
Interrupt will occur.

The conditions causing a Processor Interrupt and
the special indicator addresses in bit positions
1-10 of the Test (TPE) and Reset (RPE) instruc
tions are listed below.

Memory Address Check

Incorrect memory addressing of internal and ex
ternal instructions or operands by the Central Pro
cessor (accessed in current instruction cycle) or
channel synchronizer (accessed during previous
instruction cycle). If the error occurs during a
synchronizer access a specific Input-Output Inter
rupt is set after the Processor Error Interrupt Mode
Indicator has been reset •

Depending on when the error occurred, the follow
ing designation in bit position 1-4 will test or
reset this indicator:

During access of an internal instruction 0001

During access of an internal operand 0010

During access of an input-output data 0011 to 1111
word or function specification by
the channel addresses specified
(See descriptions of RPE and TPE.)

Modulo 3 Check On Instruction

The instruction or function specification failed the
modulo 3 check when accessed from memory. This
error is detected after the instruction execution
begins.

The indicator is designated by a I-bit in bit posi
tion 5 of the T P E and R P E ins tructions.

Modulo 3 Check On Operand

The operand or input-output data word failed the
modulo 3 check when transferred to or from memory.

UNIVAC m UTMOST

The instruction will be partially executed before
the error is detected. An ending pulse is then
generated and an interrupt will occur. This error
cannot occur on instructions in which a transfer
of control is involved.

The indicator is designated by a I-bit in bit posi
tion 6 of the TPE and RPE instructions.

Adder Error Check

The results of certain instructions failed the mod
ulo 3 check. The check bits of the operand are
used to determine the check bits of the result
which, in turn, are compared with check bits gener
ated from the bits of the res ult. If the two pair of
check bits are not equal, an error will result. The
instructions checked are all Add and Subtracts,
Load and Compare, and Compare Absolute.

The indicator is designated by a I-bit in bit posi
tion 7 of the TPE and RPE instructions.

CONTINGENCY INTERRUPT

The Contingency Interrupt Indicators are probed
on the completion of the execution of an internal
instruction when an ending pulse is produced. If
any is set and neither the Processor Error Inter
rupt Mode Indicator nor Contingency Interrupt Mode
Indicator (CIMI) is set, a Contingency Interrupt
w ill res ult without regard to the state of the Input
Output Interrupt Mode Indicator. The CIMI will be
set, the Control Counter reading stored in memory
location 0018 and control transferred to memory
location 0019.

Any specific indicators for the same or lower
priority set s ubseq uent to the setting of the C IMI
and prior to it being reset, will not effect another
interrupt, on this or a lower class. If a Processor
Error Indicator is set during this time a Processor
Error Interrupt will occur.

The conditions resulting in a Contingency Inter
rupt and the specific indicator addresses in bit
positions 1-10 of the test (TC) and reset (RC J
instructions are listed below.

Overflow

A carry beyond the most significant bit or digit
was detected in an add or subtract operation, or in
a division, when the absolute magnitude of the

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 67

divisor in memory is less than that of the most
significant half of the dividend in AR8 or it is
equal to O.

This indicator will also be set if power to the
Program Clock has been dropped at any time prior
to the execution of a Load Time instruction with
out subsequently resetting the clock.

The indicator is designated by a I-bit in bit posi
tion 1 of the TC and RC instructions.

Inval id Op Code

Attempted execution of an instruction whose oper
ation code is not part of the repertoire immediately
producing an ending pulse. No registers or memory
locations will be affected by this condition.

The indicator is designated by a I-bit in bit posi
tion 2 of the TC and RC instructions.

Console Typewriter

The release of a character key on the Console
Typewriter Keyboard or a character printed by the
Console Typewriter will set the indicator.

The indicator is designated by a I-bit in bit posi
tion 3 of the TC and RC instructions.

Keyboard Request

This indicator will be set when the Keyboard Re
quest Button is depressed.

The indicator is designated by a I-bit in bit posi
tion 4 of the TC and RC instructions.

Keyboard Release

This indicator will be set when the Keyboard Re
lease Button is depressed.

The indicator is designated by a I-bit in bit posi
tion 5 of the TC and RC instructions.

Contingency Stop

Depression of the Stop Button will res ult in this
indicator being set.

The indicator is designated by a I-bit in bit posi
tion 6 of the TC and RC instructions.

UNIVAC m UTMOST

INPUT-OUTPUT INTERRUPT

The Input-Output Interrupt Indicators for all chan
nels are probed by an ending pulse produced by
the completion of an internal operation. If any is
set, and the Processor Error Interrupt Mode In
dicator, Contingency Interrupt Mode Indicator and
inhibit Input-Output Indicator are reset an Input
Output Interrupt will occur. The Input-Output In
terrupt Mode Indicator will be set, the Control
Counter reading stored in memory location 0020
and control transferred to memory location 0021.

Since this is the lowest priority interrupt any
specific indicators of a higher priority interrupt
set while the Input-Output Interrupt Mode Indicator
is set will immediately result in another interrupt,
of the higher class.

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 68

The subsequent setting of specific indicators for
other channels will not be affected during the time
that the Input-Output Interrupt Mode Indicator is set.

Input-Output Interrupt will occur as a res ult of the
following conditions:

• Successful completion or initiation of an input
output operation if called for in the function
specification.

• Occurrence of an error or some condition requir
ing manual instruction when the synchronizer
attempts to perform an operation.

See the appropriate bulletin for the specific causes
of interrupt and indicators effected.

UNIVAC m UTMOST

The following shift instructions

Decimal Shift Right

Decimal Shift Left

Alphabetic Shift Right

Alphabetic Shift Left

DSR

DSL

ASR

ASL

will cause a stall when executed if more than
two AR's are specified.

The following instructions

Decimal Add Higher

Decimal Subtract Higher 1

Binary Add Higher

Binary Subtract Higher

DAB

DSH

:8AH

BSH

will cause a stall when executed, if one or
three ARts are specified.

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 69

8. SPECIAL CONSIDERATIONS

The conversion instructions

Load A Converting to Decimal LAD

Store A Converting to Alphanumeric SAA

will cause a stall when executed if one, three
or four AR's are specified.

Reference to arithmetic register zero can
result in a processor error. It should not be
used.

Multiplication involving zero generates as a
result a properly signed zero.

A store memory address counter instruction
specifying the control counter will store the
current value rather than the current value
plus one.

UNIVAC m UTMOST

TIMING OF MUL TIPLICATION

Terminology

The multiplier is the factor in Arithmetic Reg
ister 8. Each digit is a number from 0 through 9,
represented as n. Each digit has a position with
in the multiplier, from 1 through 6, represented as
a subscript i to the number n. The value of the
number varies according to the value of the digit
on its right, except for the number in position 1,
and this digit on the right is represented by the
subscript i-l. The final value of the number for
timing of multiplication purposes is represented
by n'. The following formulae state the method
of computing n', and the following table gives the
number of 4-microsecond cycles required for
multiplication according to the value of n' .

Fori=I,n'i=nI·

For i> I, n'i = ni if n'i-l < 5.

For i> I, n'i = nj +1 ifn'i_l~ 5; but if nj + 1 = 10,

, , 1
n i = 0, and n i + 1 = n j + 1 + .

The n7 is a constructive digit posit!on created to

allow for the "righthand" value ofn 6'

",' 7 = 0 if n' 6 < 5

n' 7 = 1 if n' 6 ~ 5

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 70

7

Execution time in 4 f1 cycles = 5 +i~lTi where Ti
is found in the following table: '

I.

n I

o
I, 2

3, 4

5

6, 7

8, 9

T

2

2

3

4

3

2

Thus, for example, if the multiplier is 945270, the
execution time is determined as follows:

n· I
I

T n .
I

1 0 0 2

2 7 7 3
3 2 3 3
4 5 5 4

5 4 5 4

6 9 0 1

7 0 1 2

~ T· I 19

Multiplication time = 5 + 19 = 24 cycles.

Note: If n'i :? 5, the ten)s complement of the
multiplicand is used.

UNIVAC m UTMOST

TIMING OF DIVISION

Terminology

Timing of division is computed in a fashion anal
ogous to timing of multiplication. Each digit is a
number from 0 through 9, represented as n , but
the time for execution of di vision depends entirely
upon the digits of the quotient. Each digit has a
position within the quotient, from 1 through 6,
represented as a subscript i to the number n; but
the value of the number varies according to the
value of the digit on its left, except for the
num ber in position 6. The di gi t on the left is rep
resented by the subscript i + 1. The final value
of the number for timing of division purposes is
represented by n. The following formulae state
the method of computing n, and the following
table gives t he number of 4 f1 cycles required for
division according to the value of n

F . 6 ' or I = ,n i = n6'

For i < 6, n'i = ni IF n'i + 1 is ODD.

For i < 6 n'· - 9 - n· IF n'· 1 is EVEN , I - I 1+ .

6
Execution time in 4 f1 cycles = 5 + LT· where

i = 1 l'
T i is found in the following table:

,
T n 1

0, 1 2

2, 3 3

4, 5 4

6, 7,8, 9 5

Thus, for example, if the quotient is 806491, the
execution time is determined as follows:

,
T n· n .

I I

6 8 8 5
5 0 9 5

4 6 ~ ~

3 4 5 4

2 9 9 5

2

I T· I 26

Division Time = 5 + 26 = 31 cycles

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 71

MODULO 3 CHECKING IN UNIVAC III SYSTEM

The Parity Bits

The UNIVAC III fixed word consists of twenty
seven bits, two of which are parity bits. These
parity bits can be used for two purposes:

1. Checking the transm ission of the word to
determine if any bits were lost, picked up,
or transposed as a result of this process.

2. Checking the result of arithmetic operations
without the necessity for programmed checks
or duplicated circuitry.

Casting Out of Elevens'

The casting out of elevens used to check arith
metic is analogous to modulo 3 congruence
arithmetic.

The modulo 11 check value for any number is its
remainder when it is divided by 11. As a result
of this division, the greatest number of 11's are
«cas t out" (the quotient) leaving a value less
than 11 to be used as the check value. We deter
mine the modulo 11 check value for the following
numbers thus:

251

11)2762 1 = check value

2762
3438 312

11)3438 6 = check
value

Another way the check value may be determined
is to subtract the sum of the even numbered
digits from the sum of the odd numbered digits.*
The units digit is considered odd; the tens digit,
even and so on, to the left.

•

Sum of Odd Sum of Even
Numbered Digits Numbered Digits Check Va lue

2762 2 + 7 = 9 6 + 2 = 8 9 - 8 = 1
3438 8 + 4 = 12 3 + 3 = 6 12 - 6 = 6

We may determine whether the sum of two quantities
is correct by adding the modulo 11 check values
of the operands and comparing it to the check
value oLth_e$_llm..

2762
+ 3438,

6200

Check Va lue

1 *
+6

7

If the sum of the even numbered di15its is greater than the

sum of the odd numbered digits, a multiple of 11 is added

to the latter. When the difference is obtained, the largest
multiple of 11 is subtracted.

UNIVAC m UTMOST

From the above computation it can be seen that
the sum arrived at is correct. The above relation
ship is always valid no matter how many digits
there are in the operands or how many operands
there are.

The same theory can also be used for other arith
metic processes. In the case of multiplication,
for example, instead of adding the check values
of the two operands, we would multiply them and
compare it to the check value of the product.
They should be equal when the multiplication is
corr~ct.

When numbers are copied, digits may often be
dropped or inverted. For example, if we were to
read the num ber 2762 and record it, it might be
recorded as 2726. Without the original number
with which to compare the copy we would never
know that the unit and ten digits were transposed.
However, if we determine a modulo 11 check
value and carry it with the number, any trans
position of the original number as 2726 would
indicate an error in "transm ission."

check check
value

1 2762
value

9 2726 ~ check value incorrect,
therefore transmission
incorrect.

In conclusion, the check value determined by
congruence arithmetic, in the above case modulo
11, can be used to check arithmetic functions
and transcriptions of numbers.

Modulo 3 Checking

Using the principles outlined above, we may
examine a binary number and develop a method of
checking its transmission and arithmetic functions.

Two bits are used in the UNIVAC III System for
checking. These two bits may represent values:
00, 01, 10 and 11, or 0, 1, 2, and 3. Since a
modulo 3 check is used, the value 3 (11) is not
possible.

Let us determine the parity or check value,
modulo 3, for the following binary configuration:

111101

REVISION: I SECTION,

v
DATE: PAGE:

July 1, 1962 72

The decimal value is 61. Since a modulo 3 check
value is desired, the quantity is divided by 3,
and its remainder becomes its modulo 3 check
value.

20

3)61
60

1 = check value
01 = binary check value

The modulo 3 check value may also be determined
by subtracting the total number of the even num
bered bits from the total number of the odd num
bered bits.

Number of Odd
Numbered Bits

3

Number of Even
Numbered Bits

2 = 1

As a result of this subtraction, the parity would
be 01.

The binary configuration would carry its modulo 3
check value and would appear as:

Modulo 3
Parity

01

Value

111101

In any transmission, a bit which is lost or trans
posed, would be revealed by the modulo 3 check.

Just as the modulo 11 check value was used to
check the results of a decimal addition, so the
modulo 3 parity bits may also be used to check a
binary addition. For example:

Modulo 3
Parity Value

01 011 001 = 25
+ 10 001110 = 14

11 100111 = 39
or
00

UNIVAC m UTMOST

AcJvantages of Modulo 3 Checking

1. The loss of an odd num ber of bits will be
detected.

2. The loss of an even number of non-con
secutive bits will be detected.

3. The check bits can be "crossfooted" in
addition and subtraction giving a reliable
check through the adder.

RESULTS OF DECIMAL ARITHMETIC WITH
NON·NUMERIC OPERANDS

A procedure follows for determining the results
of decimal add which involves non-numerics (sum
with like signs, difference with unlike signs).

A 1. Calculate the results of a binary add,
retaining carry information from bits 4 to
5, 8 to 9, 12 to 13, 16 to 17, 20 to 21 and
24 to overflow.

A2. Group the result accordi ng to decimal for
mat (1-4, 5-8, ... 21-24) ..

A3. Note each 4-bit group with a carry from
its most significant bit of the same group.

A4. Convert the 4-bit result according to
the following table:

Decimal Character

4-bit
Group No Carry Carry

0000 a 0101 2 0011 a
0001 b 01103 0100 1
0010 c 0111 4 0101 2
0011 0 0000 a 0110 3
0100 1 0001 b 0111 4
0101 2 0010 c 1000 5
01103 0011 0 1001 6
0111 4 0100 1 1010 7
1000 5 0101 2 1011 8
1001 6 01103 1100 9
1010 7 0111 4 1101 f
1011 8 1000 5 1110 g
1100 9 1001 6 1111 h
Inn~ r foro] 1000 5
1110 g 1011 8 1001 6
llllh 1100 9 1010 7

AS. The result is the final result of an add.
Overflow will cause a Contingency In
terrupt.

REVISION: SECTION:

v
DATE: PAGE:

July 1, 1962 73

The following procedure is to be followed for
subtract (add unlike signs, subtract like signs):

Sl. Complement the contents of ARi, and
binary add 00 ... 001 to(m'), Use the results
as the contents of ARi and m' foe the next
step.

S2. Follow add steps Al through A4.

S3. If overflow results, the answer has been
obtained, and will be negative.

S4. If no overflow results, the answer will be
posi tive and must be recomplemented.
Repeat subtract step 1 and add steps 1-2
with the contents of m' assumed to be
binary D's.

SS. This result is the answer.

The following example will illustrate:

Decimal add +f37b28 =(ARi)
-a 1 f 3 6 h = (m')

Step S1. (ARi) = a 1101 0110 1010 0001 0101 1011

Complement (ARI) = 0 0010 1001 0101 1110 1010 0100

(m') = 1 0000 0100 1101 0110 1001 1111

Binary add 1

Step S2. A1.

Binary add.

Step S2. A2.

o 0000 0000 0000 0000 0000 0001

0000 0100 11 01 011 0 1010 0000

0010 1001 0101 1110 1010 0100

0000 0100 1101 0110 10lD 0000

0010 1110 0011 0101 0100 0100

Step S2. A3. carry 0 o o
Step S2. A4. 0111 1011 0110 1000 0111 0001

Step S3. No carry, therefore S4 applies

Step S4. (ARi) = 0 0111 1011 0110 1000 0111 0001

(-m
1 r == tt ·0000 ·00000000- -0000 0tl00 0000

Complement (ARi) --= 1000 0100 1001 0111 1000 1110

Add to (m') 0000 0000 0000 0000 0000 0001

Step S4. Al. A2. 1000 0100 1001 0111 1000 1111

Step SS. (ARi) = + 5 1 6 4 5 h.

UNIVAC m UTMOST

I REVISION:

I
I SECTION:

I

I PAGE:

Notes

I REVISION: SECTION:

UNIVAC m UTMOST VI

DATE: PAGE:

July 1, 1962 1

Communications with the executive system (BOSS III) will be specified later.

I
I REVISION: I SECTION'

UNIVAC m UTMOST i I Notes

I

DATE:

: July 1, 1962

REVISION: SECTION:

UNIVAC m UTMOST
VII

DATE: PAGE:

July 1, 1962
1

MNEMONIC INSTRUCTIONS

Instruction is type 0 unless an A value is listed

Octal
OP A

Code Field Instructions' Function Timing

61 00 AI Allow Interrupt 2

16 AND AND 2

43 ASL Alphabetic Shift Left 3

42 ASR Alphabetic Shift Right 4

66 00 AT Activate Typewriter 2

24 BA Binary Add 2

26 BAH Binary Add Higher 2

44 BRR Binary Rotate Right 4

25 BS Binary Subtract 2

27 BSH Binary Subtract Higher 2

54 C Compare 2

55 CM Compare Magnitude 2

57 CPA Compare Product with A 2

56 CPZ Compare Product with Zero 2

20 DA Decimal Add 2

22 DAH Decimal Add Higher 2

31 14 DD Decimal Divide 17-36

30 16 DM Decimal Multiply 12-31

21 DS Decimal Subtract 2

23 DSH Decimal Subtract Higher 2

41 DSL Decimal Shift Left 3

40 DSR Decimal Shift Right 4

77 00 HJ Halt and Jump 2

REVISION: SECTION:

VII
UNIVAC m UTMOST

OATE: PAGE:

July 1, 1962 3

Octal
OP A

Code Field Instructions' Function Timing

65 03 RW Reset Write 2

10 SA Store A 2

71 SAA Store A in Alphanumeric 8

11 SAN Store A Negatively 2

04 SC Store Channel 3

07 SCJ Store Channel and Jump 3

04 01 SL Store Location 3

07 01 SLJ Store Location and Jump 3

04 04 SRC Store Read Channel 3

05 04 SRT store Read Tape control 3

62 SS Set Sense 2

05 ST Store Tape control 3

04 03 SWC Store Write Channel 3

05 10 SWT store Write Tape control 3

50 SX Store indeX 3

50 00 SZ store Zero 3

64 02 TC Test Contingency 2

64 TIO Test Input-Output 2

64 01 TPE Test Processor Error 2

64 04 TR Test Read 2

64 03 TW Test Write 2

03 00 WD Write Display 2

02 WT Wriie Typewriter character 2

UNIVAC m UTMOST

I REVISION:

I
\ SECTION:

l Notes

I PAGE,

UNIVAC
DIVISION OF SPERRY RAND CORPORATION

PRINTED IN U.S.A. U-3520

	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	5-001
	5-002
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	6-01
	6-02
	7-01
	7-02
	7-03
	7-04
	xBack

