
COPYRIGHT 1953 BY ReMINGTON RAND INC.
ECKERT.MAUCHLY DIVISION

PROGRAMMING

FOR THE

UNIVAC FAC-TRONIC SYSTEM

January 1953

PRICE $18.50

PREFACE

A solution to a mathematical or industrial problem re
sulting from an application of the UNIVAC Fac-tronic System
is evolved through four broad stages, namely:

(1) Problem analysis

(2) Programming or encoding

(3) Running the problem on the computer

(4) Interpretation and proper use of results

This manual is primarily concerned with the processes
of programming and such other concepts which are necessary
to a coordinated study of this subject. Hence, the chapters
which follow will include some references to analysis, plan
ning and actual computer operation.

Although the material herein presented is basic and com
plete, it should be clear that this manual is not intended
to be a comprehensive study of the subject. It should be
especially evident that no attempt has been made to include
a discussion of elect;ronics which would lead to an understand
ing of the design of UNIVAC and to an understanding of a
complete logical functioning of its component parts. How
ever, for those who are interested in, and prepared to com
prehend the fundamental operation of UNIVAC, Chapter 9 offers
opportunity for an elementary understanding of these con
cepts. Chapter 9 is independent of the other chapters of
the Manual and may be read concurrently with them. It is
planned that a later treatise, Manual 2, will develop these
notions further and will also include many of the more
advanced techniques of programming and analysis essential to
the student requiring a total understanding of the subject.

This text is a first revision of the Programming Manual
dated March 23, 1951, and an attempt has been made to con
struct, as nearly as possible, a self-study treatise. To
this end a number of accepted pedagogical techniques have
been introduced. For example, many well graded illustrative
problems will be found throughout the text followed by prac
tice exercises for the reader. In addition, some review

practice exercises are included in the Appendix. The device
of providing abundant repetition of basic concepts has been
deliberate in an attempt to foster good learning. The pre
liminary discussions found in the first sections of most
chapters will serve to coordinate the material in previous
chapters with current developments.

Particular emphasis has been placed in the instructions
to the UNIVAC. In addi tion to "blocking in" these instructions
for emphasis, they are

(1) discussed in the body of the text

(2) assembled and repeated in the Appendix with additional
pertinent information.

(3) summarized on one page and located, for convenience,
in a pocket in the back of the manual.

Finally, two charts will also be found in the pocket
located in the back of the manual. These charts are to be
used in connection with the discussion of Chapter 9 and it
will be useful to follow the descriptions in this chapter
with the "loose" charts available for reference.

January 1953

Ch ap ter

1

2

3

4

5

6

7

8

9

10

11

Programming
fo r the

UNIVAC FAC-TRONIC SYSTEM

CON TEN T8

Introduction to the UNIVAC FAC-TRONIC
SYSTEM

Representation of Information

Registers

Fundamental Arithmetic Operations

Arrangement of Information

Transfer of Control

Overflow

Input, Output

Elementary Description of the
Operation of a Computer

Flow Cbarts - An Aid to Programming. -

Appendix

Index

Page

1

15

28

39

57

71

83

96

115

176

221

245

Chapter I

Introduction to the UNIVAC Fac-tronic System

Section Topic Page

1 Historical Development 1

2 Component Parts of UNIVAC 5

3 Some Applications of the 10
UNIVAC System

4 Responsibilities of the Pro- 12
grammer

Chapter 1 Introduction

SEC. I. HISTORICAL DEVELOPMENT

Around the clock, day after day, UNIVAC Fac- tronic Systems
are now being used to process information and carry out bil
lions of complex operations. New standards of reliability
and accuracy have been set by the self-checking UNIVAC equip
ment, and users have confirmed that their overall costs for
'obtaining these dependable results are significantly lower
than those which would have been incurred by use of alterna
ti ve devices. The UNIVAC Systems already in operation have been
tried out on an increasing variety of problems, demonstrating
anew for each different problem that the equipment deserves
the name, Universal Automatic Computer, from which the word
UNIVAC was formed. Examples range from the most complicated
mathematical equations to systems of accounting and inventory
control, with automatic writing of purchase orders when
stocks are low. As a comprehensive tool, its ability to
handle and process information efficiently and at low cost can
be demonstrated both for involved scientific calculations and
for all of the manifold tasks which any large business enter
prise finds necessary to its operation and administration.

As the application of the UNIVAC System to all of these
diverse problems continues to grow, the need for personnel
trained in the use of computers grows rapidly. Large busi
ness organizations have long had methods departments or
specialists in business systems whose task it was to survey
their operations and investigate possible improvements. The
advent of the UNIVAC System has now created a new profess ion,
that of translating the analysis of a business system into a
practical scheme for automatically producing the desired re
sults frow the available raw input information. This sig
nificant development has its counterpart in the Scientific
world as well. A new kind of mathematics is being born; no
longer are we content with crude approximations which were
once accepted because "the more exact equations are too
difficult to solve". Both design engineers and theoretical
physicists are finding ways to compute the numbers they want
to the accuracy they want, and in doing so they are building
a new kind of mathematics--which will ultimately have as
profound an influence on the Queen of the Sciences as did the

Page 1

Chapter 1 Introduction

invention of the calculus.

This programming manual is but a first step toward making
available the basic information needed by those who wish to
learn how to control the UNIVAC System and make it do their
bidding. This manual is concerned only with the nature and
use of the UNIVAC Instruction Code and the general method
of using "flow charts" to symbolize and analyze any systematic
sequence of operations. The examples have been chosen to
illustrate common techniques. This is an introduction, not
an exhaustive treatise or complete handbook. Although this
manual has already been revised several times, it is to be
expected that some readers will be able to suggest other modes
of presentation which they believe more effective. It is hoped
that we may have the benefit of such suggestions for the im
provement of future editions.

Before describing the main components of the UNIVAC
System, the historical background of computer development
will be sketched. Over one hundred years ago Charles Babbage,
an English mathematician, worked hard and long over his
"computing engine" which, using mechanical parts, embodied all
of the versatility and generality to make it a truly general
purpose computer. His ideas were excellent, butthe materials
and techniques available in his day were not suited to the
translation of his ideas into an operating mechanism. Even
had the mechanism been possible, it would not have been able
to justify its cost, for its operating rate would have been
slow.

Babbage's invention was forgotten until Professor Howard
Aiken at Harvard University designed Mark I, the first large
scale automatic computer ever to be put in operation. This
device, first put in operation in 1944 was constructed by
I.B.M. using many of their standard punched card electro
magnetic components. It has been operated 364 days per year
ever since. Subsequently, Professor Aiken designed and built
Mark II and Mark III for the Naval Ordnance Proving Ground at
Dahlgren, Virginia, where these two machines are now operat ing.
Mark II uses relays, and punched paper tapes; Mark III has a
large storage capacity magnetic drums, electronic and mag
netic arithmetic circuits, and paper magnetic tape for input-

Page 2

Chapter 1 In trod uc tion

output. Mark I and Mark II contain no electronic circuits,
but vacuum tubes were used in Mark III.

The development of electronic large-scale computers has
a quite separate and independent history. In attempting to
carry out statistical calculations on large volumes of
weather data, Dr. John W. Mauchly became convinced that the
ultimate solution would be to adapt electronic techniques
to high-speed automatic computation. His initial experiments
in this direction were on a small scale, but in 1943, the
war-time requirements of Army Ordnance brought about a computer
deve lopmen t contract between the Government and the Uni versi ty
o f Pen n s y I van i a , bas e don a 1 9 4 2 pro pas a I by 0 r . ~1 a u chI y .
At this time, Mr. J. Presper Eckert, Jr. became Chief Project
Engineer, and he and Dr. Mauchly together outlined a general
purpose high-speed digital computer which (except for input
output facilities) was entirely electronic. This computer,
completed in December 1945 and announced early in 1946, was
known as the ENIAC (Electronic Numerical Integrator and Com
puter). With a staff of only 12 engineers assisting them,
Dr. Mauchly and Mr. Eckert were able in the short span of
two and one-half years to convert their pencil-and-paper
ideas into a working ensemble of almost 20,000 vacuum tubes.
The ENIAC, subsequently moved to Aberdeen Proving Ground, is
today operating around the clock with high efficiency and
dependability.

Before the completion of the ENIAC, Dr. Mauchly and Mr.
Eckert were ready with plans for a more powerful computer
which, by the use of newly invented principles, could be
made with far fewer tubes. Their plans were described in a
classified report to Army Ordnance in September 1945, by
which time the new design was known as the EDVAC (Electronic
Discrete Variable Computer). Characteristic of the new
design was the use of sound waves in tubes of mercury for
the storage of large numbers of digits in immediate readiness
for computer use. A further innovation was the decision to
store all computer control instructions in these same mer
cury tanks, so that operations on the instructions were
just as easy as operations on the data. The use of magnetic
tapes for reading in the instructions and data, and for
recording intermediate or final results, was also proposed.

Page 3

Chapter 1 Introduction

At that time, digital recording on magnetic tapes was a
novelty, and even the now-familiar recording of sound on
magnetic tapes was in its infancy. One further major dif
ference between the EDVAC and the ENIAC may be noted: ENIAC
did many operations in parallel, while EDVAC was to be
strictly a serial computer, doing only one operation at a
time, but achieving its speed by stepping up the basic "pulse
rate" from 100,000 per second in the ENIAC to at least one
million per second in the EDVAC.

In 1946, Mr. Eckert and Dr. Mauchly resigned from the
University and set up their own company, which began as a
partnership under the name "Electronic Control Company".
With a staff of only a few engineers they began, under con
tract with the National Bureau of Standards, to develop the
components and logical plans for anelectronic computer which
would handle alphabetic as well as numeric data, and which
would have a versatility and flexibility far beyond that
usually implied by the term "computer". Although perfection
of the mercury tank method of storing information was by no
means easy, probably the most difficult but at the same time
most necessary development effort was that required to
achieve a workable and dependable high-speed magnetic tape
unit for input-output use. Their success in so doing is now
a matter of record, and the ready access which the UNIVAC
System provides to an exceedingly large amount of information
on tape is an important factor contributing to the versatile
performance of that system.

Page 4

Chapter 1 Introduction

SEC. 2. THE COMPONENT PARTS OF UNIVAC

The name "UNIVAC" refers to an assemblage of equipment
which includes a computing unit and several auxiliary devices
to provide a communication train between the computer and
the human inquirer. Information is represented in the cen
tral computer by a train of electrical or acoustic pulses.
Three auxiliary devices, UNITYPER, UNISERVOs, and UNIPRINTER
are used to translate information between the printed page
and the computer's language medium.

Page 5

Chapter 1 Introduction

The UNITYPER, which contains a keyboard similar to a
typewriter keyboard, converts data to apredetermined pattern
of pulses impressed on magnetic tape. Each keystroke
records the pulse pattern corresponding to that character on
magnetic tape. Typing errors which the typist has sensed can
be corrected by backspacing and retyping~ The tape is auto
matically erased as new information is impressed over the
erroneous characters.

The UNISERVOs contain magnetic reading and recording
heads and a mechanism to manipulate the tapes. The UNISERVOs
are controlled by the Central Computer. A read instruction
directs the proper UNISERVO to connect its magnetic head
to the read circuits and to move the tape past the magnetic
head. Each pulse recorded on the magnetic tape generates an
electrical pulse in the read circuits as the tape sweeps by
the magnetic head. The information which was recorded on
tape as a pattern of pulses appears in the read circuits as
a train of electrical pulses corresponding to the pattern
of pulses on the tape. The train of electrical pulses is
delivered to an auxiliary memory in the input circuits with
out delaying the Central Computer. When desired, the data
is transferred from the input storage to the high-speed
memory. Information can be read from tape in either the for
ward or backward direction.

A write instruction directs the proper UNISERVO to con
nect its write circuit to the recording head and to move the
tape past the recording head. The tape is automatically
erased before any information is recorded on it. A train
of electrical pulses representing the information to be
written is delivered to an auxiliary memory in the output
c i r cui t s , and as the C en t r a 1 Co mp ute r con tin u esc 0 mp uta t ion,
the information is delivered to the write circuits of the
UNISERVO from the output circuits of the Central Computer.
A magnetic pulse is impressed on the tape whenever an elec
trical pulse appears in the write circuits. Information is
written on tape in only the forward direction.

Page 6

Chapter 1 Introduction

The UNIPRINTER translates information recorded on tape
into a typewritten copy. The UNIPRINTER contains a standard
electric typewriter. The typewriter keys are actuated in
accordance with the pulse patterns on the tape. All keys,
including upper and lower cases of the alphabet, punctuation
marks, spaces, tabs, and carriage returns operate auto
matically. However, margin and tab stops are set by hand.
A tape "edited" by the Central Computer for printing is
complete in all details. Both the UNITYPER and the UNIPRINTER
operate independently of the Central Computer.

Since much information is already recorded in punch
card files, a Card-to-Tape Converter has been designed.
This device reads the holes photo-electrically and converts
the information into pulse patterns on magnetic tape.

The tape is metallic and will not corrode. It is plated
with a magnetic material. InformaLion recorded on it may be
stored permanently. A tape may be erased and reused when
the information stored on it is of no further value. The
tape is a few thousandths of an inch thick, one half inch
wide, and of high tensile strength. Unityped tapes and tapes
prepared by UNIVAC for printing on the UNIPRINTER are tran
scribed at a density of twenty characters to the inch. Tapes
prepared by the Card-to-Tape Converter and tapes prepared by
the Central Computer to be reused in computer operations are
transcribed at a density of one hundred characters to the
inch. One reel of tape, eight inches in diameter, contains
approximately 1,500,000 characters at a densi ty of one hundred
to the inch.

The CENTRAL COMPUTER, the core of the UNIVAC System,
performs the logical and arithmetic operations necessary to
the solution of a problem. The Central Computer contains
input and output circuits, a memory, arithmetic and logical
circuits, and circuits to control the sequence of operations.
The tape drives of the UNISERVOs are not synchronized with
the internal operating circuits of the Central Computer. In
format i on read from tape is rece i ved in the input c ircui ts and
auxiliary memory in readiness for the operations which are
to be performed. Results are stored inthe memory as they are

Page 7

Chapter 1 Introduction

produced and are delivered to the auxiliary memory in the
output circuits when they are to be recorded on tape.

The arithmetic and logical circuits perform basic oper
ations at high speed.. Essentially, these operations may be
reduced to addition, subtraction, multiplication, division,
comparison, and the selection and assemblage of data.

The control circuits link the instructions and the
arithmetic units. They automatically sequence the operations
of the computer as directed by the instructions.

A significant characteristic of UNIVAC is that it can
read, write and compute simultaneously.

The UNIVAC is self-checking and the Central Computer con
tains two types of error detecting devices, companion checkers
and odd-even checkers. The arithmetic circuits and most of
the control circuits are duplicated, and the information in
duplicate units is continuously compared. If a discrepancy
occurs, the error circuits stop the computer and light aneon
to indicate the unit inwhich the error occurred. Information
is coded for the UNIVAC in such a way that the pulse pattern
for each character must always contain an odd number of pulses.
There are numerous odd-even checkers throughout the central
Computer. If a pulse pattern is detected which does not con
tain an odd number of pulses, the error circuits stop the com
puter and light a neon to indicate where the error was detected.

The Supervisory Control is an auxiliary device associ ated
with the central Computer. It contains the switches and
signal lights for operating and servicing the computer. The
error neons are located on the Supervisory Control panel. A
printing unit and a keyboard similar to that of the UNITYPER
are provided in the Supervisory Control. The operator main
tains direct communication wi th the UNIVAC through the Super
visory Control. The operator can examine the contents of any
part of the memory and every arithmetic register on anoscil
loscope at the Supervisory Control. He can type in entries
or corrections to the data in the computer, check intermediate
results on the Supervisory Control Printer, andhe can search
for the origin of detected errors. The UNIVAC is designed to

Page 8

Chapter 1 Introduction

operate automatically. The Supervisory Control provides the
operator with an intimate contact with the computer so that
he can follow in detail the operations performed in the
computer and can interfere with the sequence of events if he
deems this desirable.

Page 9

Chapter 1 Introduction

SEC. 3. SOME APPLICATIONS OF THE UNIVAC SYSTEM

The UNIVAC System has proven its capabilities in the
course of more than three UNIVAC-years of normal operation.
It has solved numerous problems in each of four basic cat
egories. These categories classify problem-solving according
to the quantity of data processed and the amount of process
ing required for each unit of data.

Category I includes problems processing little input
output data and requiring little computation. Such problems,
rarely repeated, demand more attention from the programmer than
from the Central Computer and UNISERVOs. Exemplifying this
type of problem is the calculation of the radiation pattern
from a shaped antenna. This involved the evaluation of a
definite integral by which the relative power radiated at each
of a group of angles was computed from a system consisting of
a feed horn working into a reflector "disk".

Problems involving little data but a large amount of
processing fall into Category II. Here the heavy load is
placed on the Central Computer, and little on the UNISERVOs.
A Fourier summation was performed to produce tables for use
in connection with an examination of the crystal structure of
Banfield's and Kenyon's free radicals.

The third category puts heavy pressure on the operation
of the UNISERVOs, but requires little effort on the part of
the Central Computer. The selection of policies from a
master file of an insurance company, for various types of
processing, was so programmed that about 70,000 items could
be examined each hour. From the master file arranged inorder
of district-policy number, those requiring premium notices
were entered on one tape, those requiring either dividend
or commission-processing on another, while a third tape re
ceived entries requiring special notifications. Control totals
were maintained for checking purposes.

Category IV includes those problems which, requiring
large quantities of input and output data, also require a
large amount of processing. In general, such problems would
not be attempted without the aid of a large computer.

Page 10

Chapter 1 Introduction

outstanding in this class are the operations of matrix algebra.
Programs have been prepared and applied for the mul tiplication,
for the inversion, and for editing the results of these oper
ations, formatrices of orders up to 300 by 300. The matrices
are partitioned into submatrices of order ten by ten or less.
One set of programs (low-level) performs the multiplication
and inversion of the submatrices; another set (high-level)
treats the submatrices as elements of the large matrix by
directing the application of the low-level routines. The
elements are treated in floating-decimal form. The elimination
method with successive iterations to improve the error matrix
gives an inversion time of 50 hours for a 200 by 200 matrix
(See references XVIII and XIX in the bibliography).

The examples cited represent problems from engineering
design, scientific research, commerce, and mathematics, and
testify to the flexibility and universality of the UNIVAC
System.

Page 11

Chapter 1 Introduction

SEC. ~. RESPONSIBILITIES OF THE PROGRAMMER

The types of problems that a programmer will be called
upon to solve using a high-speed ~omputer are multitudinous.
Nevertheless, the task of the programmer can be conveniently
broken down into four major parts--varying slightly from
problem to problem. The first part includes the problem
analysis. The second part involves constructing a detailed
logical outline of the solution of the problem and its trans
lation into explicit instructions to the computer. The third
part involves submitting the solution to the computer and
obtaining the results. The fourth part is administrative
including preparation of the report. These phases may occur
in any chronological order, and one or more of these parts
may be involved simultaneously in the handling of a pro
blem; e.g., problem-analysis may very well continue from the
start through the time that final results are obtained by
the computer.

A more complete discussion of these four phases, which
are the concern of a programmer, is included below as part
of the introduction although much of the detail may be lost
to a beginner. It is recommended, therefore, that at the
conclusion of the first reading of the manual this section
be studied again.

Problem-Analysis
Problem-analysis, first and foremost, requires that the

problem be clearly defined. The programmer must be adamant
in requiring a complete description of the problem, of the
input data, of the form and volume of the desired output
data, as well as of the computational or processing steps
to be performed. In many cases a model, illustrating the
problem, with sample input and output can be helpful. The
problem analysis will include the study necessary to determine
whether the current method of solution is to be accepted intact,
or a new procedure better adapted to the computer is to be
developed. Thus, the programmer determines what operations
must be performed, and in what order they must be carried out.

Page 12

Chapter 1 Introduction

Flow Charts and Coding
Proper analysis will enable the programmer to construct

flow charts in sufficient detail to indicate the essential
operations, logical as well as arithmetic, to be performed
by the computer to achieve the solution to the problem. The
flow-charts must contain enough detail to indicate clearly
logical omissions, unnecessary operations, or errors in the
contemplated "solution". The programmer must carefully
review his flow-charts, for, if the flow-charts are correct,
the problem might well be considered "solved".

However, this solution of the problem. in the form of
flow-charts, is still meaningless to the computer. The
operations indicated in the flow-ch~rts must be translated
into explicit instructions in the computer code.

After the coding is completed, it must be checked
preferably by someone other than the original coder. The
checking process cannot be overemphasized. It is imperative
that the checker be thorough; not only must the coding itself
be checked for errors, but the flow-charts must be examined
for logical errors. Careful checking will save hours of
grief in trying to run the problem on the computer. If the
problem is mathematical in nature, a wise checker will run a
numerical example on a desk calculator, following step-by-step
each instruction in the coding. After the coding has been
completed, the programmer must take a time-estimate for the
problem - how long will it take to run on the computer?

Running the Problem on the Computer
After the coding has been completed and checked, it remains

necessary to translate the written instructions from paper
to the magnetic input tape of the computer. The instructions
are transferred on the UNITYPER to tape and transcribed by a
UNIPRINTER for proof-reading. It is essential that the pro
grammer be satisfied beyond doubt that the correct information
has been entered on the tape. If a problem involves a large
amount of input data, it is wise to make arrangements to start
the preparation of the input data well in advance of the
expected date on which the problem isto be run. All reels of
tape must be proper ly 1 abe led. ident i fying the contents of the
tapes. Space must be obta ined for the f i 1 ing of fut ure tapes.

Page 13

Chapter 1 Introduction

Well in advance, the programmer should determine the number
of tapes required for each problem-run.

Before the problem is run on the computer, the pro
grammer must compile a set of operating instructions. The
responsibility of operat~ng the computer is great. The
operator runs problems not for a single programmer, but for
many programmers and he cannot know intui tively the character
istics of each problem. The operating instructions should
indicate explicitly and clearly all the information that the
operator requires to run the problem. What tapes are mounted
on which UNISERVOs and when? What special settings are
initially required on the Supervisory Control? What "type
ins" are necessary and when? All of these questions and more
must be answered in the operating instructions.

It is important for the programmer to realize from the
beginning that it is the operator who actually runs the pro
blem on the computer, performing all the physical operations
at the Supervisory Control panel. The operator is a highly
skilled and experienced man who is expert in the handling of
the computer during a problem-run. The wise programmer will
depend upon this knowledge and skill to run the problem effi
ciently with a minimum waste of valuable computer-time.

The programmer's chief role during a problem-run, es
pecially during the initial run, is that of an observer, who
satisfies himself that the problem is progressing properly.
In the event that a programming error should arise, he should
have some idea of where to begin looking for the error, and
unless the error is almost immediately ascertained, the pro
grammer may waste valuable computer time. Throughout a pro
blem-run, a log of the operation is kept ... a record of past
errors aids in avoiding the same pitfalls in the future.

After the computer run has been completed, and the
results have been obtained on tape, the output tape must be
filed for future references, the results must be printed, a
complete report must be written. It is desirable to have the
report of the problem, include coding, flow-charts, operating
instructions, running times, discussions of new coding tech
niques, suggestions for improvement of the routine, and ideas
for research. When all of this has been accomplished, the
programmer may feel reasonably certain that his mission has
been accomplished.

Page 14

Section

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Chapter 2

Representation of Information

Topic

Preliminary Discussion

Decimal and Binary Systems of Notation

The Binary Excess-Three System

Practice Exercises

Excess-Three Complements

Practice Exercises

Excess-Three Additions

Practice Exercises

Excess-Three Subtractions

Practice Exercises

Advantages of Binary Excess-Three System

Seven-Pulse Code

Internal Memory

A Computer "Word"

Digital Positions

Practice Exercises

Chart of UNIVAC Pulse Code

Page

15

16

17

18

19

20

20

22

22

22

23

23

24

24

25

25

27

Chapter 2 Representation of Information

SEC. I. PRELIMINARY DISCUSSION

In order for UNIVAC to perform the operations necessary
to the solution of a problem, the computer must receive pro
per information. This information consists of certain de
fined arrangements of electronic pulses representing numeric,
alphabetic and other typewriter symbols.

When a key of the UNITYPER is depressed, seven electric
channels are acti vated and the resul ting impul ses erea te mag
netic spots across the tape in accordance wi th the particular
character involved.

It is the purpose of this chapter to present the rela
tionships between the pulse patterns which UNIVAC accepts
and the typewriter characters in which information is repre
sented. To represent the variety of characters needed, UNI
VAC uses the binary system of notation which is a primary
characteristic fundamental to most digital computers. For
introductory purposes it is sufficient to state that the
absence of an electrical pulse is represented by zero and
the presence of a pulse is represented by one.

The relationship between typewriter characters and pulse
combinations is shown in the table on the last page of this
chapter. Reference to this table will show, for example,
that

o is represented 1 00 0011
5 is represented 0 00 1000
M is represented 1 10 0111

The first pulse position contains the check pulse and is not
shown in the table. A discussion of this pulse position may
be found in Section 12 of this Chapter. The next two pulse
positions are known as the "zone indicators" and it will be
noticed that both are zero for numeric characters.

Page 15

Chapter 2 Representation of Information

SEC. 2. DECIMAL AND BINARY SYSTEMS OF NOTATION

For a better understanding of the defined pulse com
binations for numeric quantities employed by the UNIVAC
system, it is advisable to discuss, more fully, the binary
system of notation and its relation to the decimal system
of notation. In the discussion to follow, numeric charac
ters will be represented with only four pulse positions; the
check pulse and "zone indicators" will be omitted. It must
be remembered, however, that in the UNIVAC system all char
acters require seven pulse positions for representation.

In the Decimal Notation, the quanti ty three hundred
fifty-nine is written in the decimal system, 359; i. e.,

(3 xl 0 2) + (5 xl 0 1) + (9 xl 0 0) = 30 0 +50 + 9 359 (1)

where 10 2 100, 10 1 = 10, 10° 1

The left hand side of the equality (1) shows the basic com
posi tion 0 f the decimal, or "base ten" system. Each digi t
of (1) counting from right to left, is multiplied by suc
cessively higher powers of ten.

The binary system of notation uses two symbols (or
digits) "0" and "1" as compared with the ten digits (0
through 9) used in the decimal system. For example, the
decimal quantity nine, expressed in the binary system,
appears as 1001. This is equivalent to stating that

where

2 3 = 8, 22 = 4, 2 1 = 2, 2° = 1.

The left-hand side of the equality shows the basic
composition of the binary or "base two" system. Each digit
of (2), counting from right to left, is multiplied by suc
c e s s i vel y high e r po we r s 0 f two. Hen c e , the dec i m a I qua n t i -
ties and their binary equivalents are as shown in the follow
ing table.

Page 16

Chapter 2 Represen tation of Info rmation

Table of Decimal and Binary Equivalents

Decimal Bin a ry

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

SEC. 3. THE BINARY EXCESS-THREE SYSTEM

UNIVAC uses a modified binary code, called the excess
three system. Each decimal digit is represented, in binary,
by its 0 rig ina 1 va 1 u e p 1 u s t h r e e. Rea son s , jus t i f yin g the
use of the "excess-three" system rather than the pure binary
system, are given below in Section 11. In later discussions
the symbols U O"and 6'l"used in the excess-three system will be
referred to as binary zero and binary 1.

Table of Decimal and Excess-Three Equivalents

Decimal

o
1
2
3
4
5
6
7
8
9

Decimal
Excess

Th ree

3
4
5
6
7
8
9

10
11
12

Page 17

Bin a ry
Excess

Th ree

0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

Chapter 2 Representation of Information

Thus, 724 = 1010 0101 0111

where 7 1010
2 = 0101
4 = 0111

It should be clear that the UNIVAC system considers each
digit of a quantity in binary excess-three notation which is
somewhat different from the usual binary notation. For ex
ample the number 25 in the usual binary notations equals

But in digital binary (excess-three) notation

2 5

25 = 0101 1000

SEC.~. PRACTICE EXERCISES ON EXCESS-THREE REPRESENTATION

Represent the following quantities in binary excess
three notation. (Ignore zone indicators and check pulse).

1. 23

2. 407

3. 5891

What would be the 6-pulse code representation of the
following quantities. (Ignore the check pulse).

4. B 100

5. T2 325

6. A- 000

Page 18

Chapter 2 Representation of Information

SEC. 5. EXCESS- TH RE E COMPL EMEN T8

If two positive quantities when added together, produce
a power of ten, one is said to be the ten's complement of
the other. For example, the ten's complement of 724 is 276,
sin c e 7 24 + 276 :II 1 0 00; the ten' s com pIe men t 0 f '5 1 i s 49 ,
for 5 1 + 49 = 1 0 O. Sub t r act ion i s per form e d by add i n g the
complement of the subtrahend to the minuend. Carry result
ing from the sum of the most significant digits is ignored.
For exampl e,

using complements,

892 - 724 = 168,

892 + 276 = 168.

In the excess-three system, compl ements on nine are ob
tained by substi tuting zeros for ones and ones fO"r zeros.
Hence, complements on ten. would be obtained by increasing by
one the least signifiC'i'Dt decimal digit of the nine's com
plemen t

thus

4 = 0111

5 = 1000 = nine's complement of four

6 = 1001 =- ten's compl emen t 0 f fou r

also

724 = 1010 0101 0111

275 = 0101 1010 1000:11 nine's complement of 724

276 = 0101 1010 1001 = ten's complement of 724

Page 19

Chapter 2 Representation of Information

Decimal

o
1
2
3
4
5
6
7
8
9

Excess-Three

0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

Excess-Three
Nine's Complement

1100
1011
1010
1001
1000
0111
0110
0101
0100
0011

It will be understood that when complements are refer
red to in succeeding exercises and discussions, tens' com
plements are implied.

SEC. 6. PRACTICE EXERCISES

Represent the complements of the following in excess
three notation (ignore zone indicators and check pulse)

1. 42

2. 436

3. 510

4. 7777

SEC. 7. EXCESS-THREE ADDI liONS

When two decimal digits are added which do not produce
a ten's carry, the corresponding binary addi tion of their
excess-three representations will exceed the correct sum by
an excess-three; i. e., the sum is too great by an excess
three correction:

Decimal

1
l.
4

Excess-Three

0100
0110
1010 = 7

Page 20

Decimal

4
.Q..
9

Excess-lh ree

0111
1000
1111 - 12

Chapter 2 Representation of Information

Hence, if no carry occurs when two digits are added, an
excess-three must be subtracted (complement of excess-three,
1101, added) from that digit to produce the correct sum. In
performing excess-three corrections, no carry is executed
from decimal digit to decimal digit.

When two decimal digits are added to produce a ten's
carry, the corresponding binary addi tion of their excess
three rep resentations will produce a carry from the fourth
binary digi t posi tion. Thus, the excess-three correction is
missing from the sum digi t; i. e., the sum is deficient by an
excess-three correction:

Decimal

8
7

Sum 5

Carry

1

Excess-Three

1

1011
1010
0101 2

1

Decimal

9
9
8

Exces s-Th ree

1

1100
1100
1000 5

Hence, if a carry occurs when two digits are added, an
excess-three must be added to that digit to produce the
correct sum.

Example 1. Add 592 and 257.

592 1000 1100 0101
257 0101 1000 1010

1101 0100 1111
1 carry

1110 0100 1111
0011 correction if carry, + XS3

1101 110 1 cor rec tion if no carry, -XS3
849 1011 0111 110 a

Page 21

Chapter 2 Representation of Information

SEC. 8. PRACTICE EXERCISES

Per fo rm the followin g addi tion s by means of the binary
exces s- th re e method.

1. Add 3 and 4.

2. Add 9 and 5.

3. Add 25 and 40.

4. Add 18 and 46.

5. Add 478 and 903.

SEC. 9 • EX C E S S - T H R E E SU B T R ACT ION

Excess-three differences are obtained by adding the
complement of the quantity, smallerin absolute magnitude,
to the larger, and appending the sign of the larger.

Example 1: 72 - 34 2 38, using complements 72 + 66 = 38.
In the excess-three system,

72 1010 0101
34 = 0110 0111

complement of 34 1001 1001.
Hence, 72 1010 0101
complement of 34 = 1001 1001

0011 1110
1 carry

0011 correction if carry, + XS3
1101 correction if no carry, -XS3

38 0110 1011

SEC. 10. PRAl!TI CE EXERCI SES

Perform the following subtractions by means of the
excess-three method. Add the complement of the smaller
quantity to the larger quantity and append the sign of the
larger.

Page 22

Chapter 2 Representation of Information

1. 8 - 2

2. 82 - 55

3. 100 - 17

4. 325 - 109

5. 109 - 325

SEC. II. ADVANTAGES OF BINARY EXCESS-THREE SYSTEM

Two of the advantages in using the binary excess
three system are:

(a) It is electronically easy to represent comple
ments on ten in this system.

(b) A "carry" in the decimal system will produce a
"carry" in the binary excess-three system, (e. g.) the addi
tion of 6 and 5 in the three systems are:

Decimal

carry 1

6
5
T

no carry

Bin a ry

0110
0101
1011

carry 1

Bin a ry
Excess

Th ree

1001
1000
0001

SEC. 12. SEVEN-PULSE CODE

The seventh pulse position which is added will contain
a "check-pul se" designed to detect the gain or loss of a
binary pulse. The check pulse is present, or absent, accord
ing as it is, or is not, necessary to make the number of
pul ses represen tin g any characte r 0 dd.

Page 23

Chapter 2 Representation of Information

For example, A = 01 0100 requires a check pulse in order
t hat an 0 d d n u m be r 0 f p u I s e s be pre sen t, A = 1 a 1 a 100; so
also 6 = 00 1001 becomes 6 = 1 00 1001. On the other hand,
no check pulse is required by C = 01 0110 which becomes C =

o 01 0110. Frequent checks are made throughout the computer
circuits to insure that each character is represented by an
odd number of pulses.

SEC. 13. IN TERNA L M Et>10 RY

The internal memory of the UNIVAC consists of acoustic
delay lines. It contains 100 channels, each storing ten
words. The "memory locations" of the 1000 words are number
ed from 000 to 999. Every five seconds the entire content
of the memory is automatically checked to insure the con
tinued correctness of the stored information.

Transfer of data into a memory location automatically
erases any information previously stored in that location.
However, reading from a memory location does not destroy its
contents. The symbol, (), is used to mean "the contents
of"; i. e., (m) = the contents of memory location m in the
computer, m being any number from 000 to 999.

SEC. 14. A COMPUTER "WORD"

Each memory location holds one "word" of information
consistin g 0 f twel ve characters. A "word" of information
can be coded to take one 0 f two forms:

(a) It may consist of twelve characters, representing
a numeric quantity or other data to be processed. When it
is a numeric quantity, the twelve characters in the word are
the algebraic sign, followed by eleven decimal digits. A
"zero" in the sign position represents a plus sign. The
computer in performing multiplication and division, con
siders the decimal point to lie immediately to the right of
the sign position. Thus, all quantities X, are treated as
falling in the range -1 < X < +1. It will be seen later how
quantities outside this range are handled.

Page 24

Chapter 2 Representation of Information

(b) 0 r i t m ay t a k e the form 0 f two " ins t r u c t ion s" to
the computer (e.g.)

BOO 120 C00185

Each instruction consists of six computer digits. The
first two characters in each instruction designate the oper
ation to be performed (and will be defined in succeeding
chapters) and the fourth, fifth and sixth digits in each in
struction designate a memory location. The third digi t
(underlined and usually not written) is not decoded.

The computer performs the two instructions serially;
the right instruction is executed after the left instruction
has been accomplished.

SEC. 15. DI GI TAL POSI TIONS

In later discussions, reference will be made to dig
ital positions and, hence, some comment on this terminology
is in order. Consider the twelve digital positions of a
computer word,

1 2 3 4 5 6 7 8 9 10 11 12

The location labeled_1 is the first digit position and con
tains the sign of a numeric quantity. The location labeled
~ is referred to as the most significant digit (MSD) posi
tion and location 12. the least significant digit (LSD)
position. When disctlssing non-numeric words, it is usually
better to refer to the digital positions 1 to 12.

SEC. 16. PRACTICE EXERCISES

Using the seven-pulse code, in exercises 1 to 4, rep
resent the quantities:

1. A 425

2. R 310 U 100

3. I.

4. A decimal zero.

Page 25

Chapter 2 Representation of Information

Represent the following quantities in the seven-pulse
code, perform the operations indicated and represent the re
sult in seven pulses.

5. 5076 + 2438

6. 3247 - 1066.

Page 26

'" P'
oq
C'D

~
~

ZONE

00

a f

f 0

f 1

1
Il

If
t
¥.

SECTION 17 - UNIVAC PULSE CODE

XS3

0000 0001 0010 0011 OtOO 0101 OHO 01 1 1 1000 100 1 1010 1011 1100 t 101 11 10 1 t 1 f

1 II - 0 t 2 3 4 5 6 7 8 9

~ t ; A B C 0 E F G H I

t X / J K L M N 0 P Q R It JJ

P Til + S T U V W x y Z ~
~--

L-______ ------ ---- '------- L ____ -- -

: IGNORE Jd : UNSHIFT
: SPACE 9J : ONE SHIFT (SINGLE SHIFT)
: CARRIAGE RETURN P : PRINTER STOP
: TAB if : PRINTER BREAKPOINT STOP
: SHIFT LOCK 181 = NOT AVAILABLE (USED INTERNALLY)

BLANK SQUARES NOT USED.

NOTE - IN GENERAL,UNITYPER HAS A STANDARD KEYBOARD,BUT OTHER TYPEWRITER SYMBOLS CAN BE, AND HAVE BEEN PROVIDED.

Section

1

2

3

4

5

6

7

Chapter 3

Registers

Top i c

Preliminary Discussion

Registers CC and CR

One-Word Registers A,X,L,F

Multi-Word Registers V,Y,I,O

One-Word Transfers Using

Register A
Register X
Register F

Multi-Word Transfers Using

Register V
Register Y
Register I
Register 0

Practice Exercises

Page

28

29

29

30

31
31
32

33
35
36
36

37

Chapter 3 Registers

SEC. I. PRELIMINARY DISCUSSION

In Chapter 2 it was stated that the internal memory of
UNIVAC consists of memory locations capable of storing 1000
words. UNIVAC also employs certain addi tional "storage
facilities" called registers, the functions of which are
quite different from those of memory locations.

When instructions and other data are transferred to the
computer from magnetic tape, they are placed into memory
locations, and retained there until called upon to take part
in the procedures. As these data are required for computation
and other operations, they are processed through the regis
ters. These registers are used, then, to

(a) Transfer data between memory locations.
(b) Perform arithmetic and control operations.

It is the purpose of this chapter to discuss these reg
isters and define the part they play in the processing of
instructions and other data. In Chapter 9, the role 0 f
registers in the total logical pattern will be presented.
It should be noted, first, that a register is said to be
"erased" when it contains binary zeros. A register is said
to be "cleared" when decimal zeros (in the excess-three code)
replace its previous contents.

Several registers are required for temporary storage of
data being processed by the computer. Two of these are one
word registers used for sequencing operations (CC, CR); four
are one-word registers used for arithmetic and logical oper
ations (rA, rX, rL, rF); four are multi-word registers used
to transfer data (rV, rY, rI, rO).

It has been stated that transfer of data into a memory
location automatically erases any information previously
stored in that location. Similarly, a transfer of data
into a register (except rI) erases information previously
stored. However, unlike memory locations, reading from a
register may, depending on the instructions, also clear the
register of its previous contents. The action in rI, under
such conditions, will be discussed in Chapter 8.

Page 28

Chapter 3 Registers

Throughout this manual, the symbol "m" represents a
memory location number.

SEC. 2. REGISTERS CC AND CR

These two registers are concerned with the sequencing
of control operations.

The control counter (CC) stores the number of the mem
ory location containing the next pair of instructions to be
execu ted.

The control register (CR) stores the current pair of
instructions.

Further discussion of these two registers will be de
layed until Chapter 8.

SEC. 3. ONE-WORD REGISTERS

The four registers, rA, rX, rL, and rF, are duplicated
within the computer. The contents of the duplicated regis
ters are continuously compared by checking circuits which
immediately detect any discrepancy between the duplicated
quantities.

Register A is used for:

(a) one-word transfers
(b) storing the addend (minuend) in addition (sub

traction)
(c) retaining a partial or complete algebraic sum
(d) s tor in g the m 0 res i gn i f i can t h a I f 0 fat wen ty - two

digit product or a rounded eleven digit product
after multiplication

(e) storing the dividend at the start of division
(f) storing the rounded quotient after division
(g) retaining a quantity to be shifted right or left,

and performing the shift
(h) assembling extracted quantities

Page 29

Chapter 3 Registers

(i) storing one component of a comparison

Register X is used for:

(a) one-word transfers
(b) storing the augend (subtrahend) in addition

(subtraction)
(c) storing the multiplier during multiplication
(d) storing the less significant half of a twenty

two digit product after multiplication
(e) storing the unrounded quotient after division

Register L is used for:

(a) storing the multiplicand during multiplication
(b) storing the divisor during division
(c) storing one component of a comparison

Register F is used for:

(a) one-word transfers
(b) storing the extractor
(c) storing three times the absolute magnitude

of the multiplicand during multiplication.

SEC. ij. MULTI-WORD REGI STERS

Register V is used for two-word transfers

Register Y is used for ten-word transfers

Register I is used to assemble "one block", 60 words,
read from tape for transfer into the memory.

Register 0 is used to store one block from the memory
until written on tape.

Page 30

Chapter 3 Registers

SEC. 5. ONE-WORD TRANSFERS

Register A

Instructions

Bm Erase rA and rX; transfer (m) to rA and rX.

Cm Transfer (rA) to m; clear rA to decimal zeros

Hm Transfer (rA) to m; do not alter rA

Km Transfer (rA) to rL clear rA; ignore m.

A complete one-word transfer using rA involves two
instructions; (a) transferring a quantity from the memory
to rA, and (b) transferring the quantity from rA to the
memo rYe

Example 1: (0"50) :: a. Transfer "a" to 051 and 052.

Mem.
Loc.

020

021

Instruc tion

B 050
H 051

C 052

Register X

Remarks

a --> rA and rX
(rA) :: a --> 051;
(rA) :: a --> 052;

(rA) =. a
o - - > rA

Instructions

Bm Erase rA and rX; transfer (m) to rA and rX.

Lm Erase rL and rX; transfer (m) to rL and rX.

Jm Transfer (rX) to m; do not erase rX.

Page 31

Chapter 3 Registers

A complete one-word transfer using rX involves two
instructions; (a) transferring a quantity from the memory
to rX, and (b) transferring the quantity from rX to the
memory.

Example 1: (050) = a. Transfer "a" to 051 and 052.

Mem.
Loc.

020

021

Instruction Remarks

8 050

J 052

a --> rA and rX
C 051 (rA)· a --> 051; 0 --> rA

(rX) • a --> 052; (rX) = a.

Example 2: (050) = a. Transfer "a" to 051 without disturb
ing (rA)

Mem.
Loc.

020

Register F

Instruction Remarks

L 050 a - - > rL an d rX
J 051 (rX) = a --> 051; (rX) = a.

Instructions

Fm Erase rF; transfer (m) to rF.

Gm Transfer (rF) to m; do not erase rF.

A complete one-word transfer using rF involves two in
structions; (a) transferring a quantity from the memory to
rF, and (b) transferring the quantity from rF to the memory.

Page 32

Chapter 3 Registers

Example 1: (050) = a. Transfer "a" to 051, without dis-
turbing (rA) or(rL).

Mem.
Loc.

020

Instruction

F 050
G 051

Remarks

a --> rF
(rF) = a --> 051; (rF) = a.

Interchange: Two quantities may be interchanged by means
of one- wo rd tran sfers.

Example 1: (050) = a. (0 5 1) = b . I n t e r chan g e " a" an d II b" .

Mem.
Loc.

020

021

Instruction

B 050
L 051

C 051
J 050

Remarks

a - - > rA
b --> rL
(rA) a
(rX) = b

and rX
and rX
--> 051; 0 --> rA
--> 050; (rX) = b.

SEC. 6. MULTI-WORD TRANSFERS

All multi-word transfers erase the registers or memory
locations to which they are directed with the exception of
rIo

Register V

Instructions

Vm Erase rV; transfer two consecut i ve words, start
ing with m, to rV; m is usually a multiple of
two. For other cases see paragraphs to follow.

Wm Transfer (rV) to two consecutive memory locations,
starting with m; do not erase rV; m is usually a
multiple of two. For other cases see paragraphs
to follow.

Page 33

Chapter 3 Registers

A complete two-word transfer using rV involves the two
instructions: (a) transferrin g two successi ve words from the
memory to rV, and (b) transferring the two quantities from
rV to the memory.

Example 1: (050) = a, (051) = b. Transfer "a" and "b"to
096 and 097 respectively.

Mem.
Loc.

020

Instruction Remarks

V 050 a, b - - > rV
W 096 a - - > 096; b - - > 097; (rV) = a, b.

If the m in both the Vm and Wm instructions is odd and
the least significant digit is not equal to nine, the in
structions behave as in the following example.

Example 2: (051) = a, (052) = b. Transfer Ha" and "b" to
063 and 064 respectively.

Mem.
Loc.

020

Instruction Remarks

V 051 a, b --> rV
W 063 a--> 063; b --> 064;

(rV) = a, b.

If the m in one instruction is odd (least significant
digi t not equal to nine), and the m of the other instruction
is even, the two wo rds are transfer red in reversed 0 rder.

Example 3: (051) = a, (052) = b. Transfer fib" followed by
.. a" toO 54 an d 0 55 res p e c t i vel y .

Mem.
Loc.

020

Instructions Remarks

V 051 a, b - - > rV
W 054 b --> 054; a --> 055;

(rV) = a, b.

Page 34

Chapter 3 Registers

Example 4: (050) = a, (051) = b. Transfer lib" followed by
"a" to 063 and 064 respecti vely.

Mem.
Loc.

020

Instruction

V 050
W 063

Remark s

a, b - - > rV
b --> 063; a --> 064; (rV)=a, b

If the m in a Vm or Wm instruction has a nine as its
1 east signi fican t di gi t, the in struc tion wi 11 tran sfer from,
or to, the last and first words in the ten-word memory chan
nel.

E x am pIe 5: (0 50) = a, (0 59) = b . Transfer " a " followed by
"b" to 100 an d 10 1.

Mem.
Loc.

020

Instruction

V 059
W 100

Register Y

Remarks

b, a - - > rV
a --> 100; b --> 101; (rV) b, a.

Instructions

Ym Erase rY; transfer ten consecutive words start
in g wit h m, to r Y ; m s h a u 1 d bean in t e g r aIm u 1 t i -
pIe of ten

Zm Transfer (rY) to ten consecutive memory locations
starting wi th m; do not erase rY; m shaul d be an
integral multiple of ten

Page 35

Chapter 3 Registers

A complete ten-word transfer using rY involves two in
structions; (a) transferring ten successive words from the
memory to rY, and (b) transferring the ten quantities from
rY to the memory.

Example 1: (050) = a o ' (051) = at, ... , (059)
"ao '" .,ag " to 100, ... ,109 respectively

a g • Trans fer

Mem.
Loc.

020

Instruction

Y 050
Z 100

Remarks

a o ' ••• , a g - - > rY
ao --> 100, ... ,ag --> 109;

(rY) = a o"'" ag •

When executing a Ym or Zm instruction, the least
significant digit of m is ignored by the computer. The
transfers operate on the integral multiples of ten. Thus,
Y999 is equivalent to Y990, and Z7B4 to Z7BO.

Register I

Register I does not erase upon read in, but only upon
transferral of its contents to the memory. The tape in-
structions reading into rI will be discussed in Chapter B.

Instructions

30m Transfer sixty words stored in rI to sixty
consecutive memory locations, starting with

40m m; m should be an integral multiple of ten;
erase rI.

Regi ster 0

Register 0 holds sixty words during a wri te instruction.
Register 0 cannot be used independently of the tape instruc
tions which will be discussed in Chapter B.

Page 36

Chapter 3 Registers

SEC. 7. PRACTICE EXERCISES

Problems on the transfer of data

Given

(052) x 1

(053) x2

(054) X3

(055) x 4

(056) = Xs

(057) X6

(058) x7

(059) Xs

(060) = Xg

(061) x 10

In each of the following problems write the instructions
to perform the operations indicated; start wi th memory loc-
ation 020. Choose any unused memory locations for working
storage.

1. Transfer quantity x 1 to 050 and 051 using

(a) r.A
(b) rX
(c) rF

2. Transfer quantity x 1 to 050 and 053 and place x 2 in 052.

Page 37

Chapter 3 Registers

3. T ran s fer x I to 0 5 3, X 2 to 0 54, X 3 to 0 5 3 an del ear r A.

4 . T ran s fer x Ito 048 an d 046, X 2 too 49 an d 045 us i n g
the V, W instructions.

5. Move the given 10 quantities up two memory locations
i.e., XI --> 050, x 2 --> 051, X3 --> 052, ... x lO --> 059

Page 38

SECTION

1

2

3

4

5

6

7

8

9

10

11

12

Chapter II

Fundamental Arithmetic Operations

TOPIC

Preliminary Discussion

Addition

Practice Exercises

Subtraction

Practice Exercises

Multiplication

Practice Exercises

Division

Practice Exercises

Review Practice Exercises

Special Consideration in
Arithmetic Computation

Addition and Subtraction
Multiplication and Division

Practice Exercises

PAGE

39

40

42

43

44

45

47

48

49

50

50

50
55

56

Chapter 4 Fundamental Arithmetic Operations

SEC. I. PRELIMINARY DISCUSSION

The purpose of this chapter is to explain UNIVAC in
structions for addition, subtraction, multiplication, divi
sion and to consider certain special problems closely allied
to these operations. Before del ving into these detail s, it
is advisable to review some concepts, previously discussed.

(a) The internal memory of UNIVAC consists of 100
channels, each storing ten words. The "memory locations" of
the 1000 words are numbered from 000 through 999.

(b) A "wo rd" may have the form 0 f two instruction s or
may be information composed of twelve typewriter characters.

(c) The instructions in a "computer word" are executed
serially, first the left instruction followed by the right
instruction.

(d) The symbol (m) represents "the contents of memory
location m."

(e) A transfer into a memory location erases any in
formation previously stored in that location but reading
from a memory location does not destroy its contents.

(f) There are four one-word registers - rA, rX, rL,
rF; the multi-word registers are rV, rY, rI, rOo

(g) A complete transfer involves two instructions -
transferring a quantity from a memory location to a register,
and then, transferring the quantity from the register to a
memory location.

In the performance of arithmetic processes, certain
special conditions may arise and must be recognized. Two of
these problems will be mentioned, briefly, and considered
in more detail in later discussions.

Page 39

Chapter 4 Fundamental Arithmetic Operations

(a) The algebraic addi tion, subtraction or di vision of
numeric quantities, considered as decimals by UNIVAC, may
lead to resul ts greater than plus one or I ess than minus one.
This situation, called "overflow" must be handled by special
techniques which will be described in Chapter 7.

(b) In the study of instructions for arithmetic manip
ulation, the question may arise as to computer responses to
quantities that contain characters, other than numeric. A
discussion of this problem will be found at the end of this
chapter.

Finally, it will be noted that the instructions, pre
viously defined, are restated in this chapter. ,A complete
table of instructions may be found at the back of this man
ual and it is so placed for easy reference.

SEC. 2. ADDITION

Instructions

Am Transfer (m) to rX; add (rX) to rA); deliver
the sum to rA; do not erase rX.

Bm Erase rA and rX; transfer (m) to r,A and rx.

Cm Transfer (rA) to m; clear rAe

Hm Transfer (rA) to m; do not clear rAe

Jm Transfer (rX) to m; do not erase rX.

Km Transfer (rA) to rL; clear rA; ignore m.

Sm Transfer -(m) to rX; add (rX) to (rA); deliver
the difference to rA; do not erase rX.

Xm Add (rX) to (r A); del i ver the sum to rA; do no t
erase rX; ignore m.

Page 40

Chapter 4 Fundamental Arithmetic Operations

A complete addition involves three instructions; (a)
tran sferring the addend to r A, (b) t ran sferring the augend
to rX, adding (rX) to (rA), and del i vering the sum to rA,
and (c) transferring the sum from rA to the memory.

Example 1: (049) = x, (050) = y. Deliver the sum x+y = z to
051.

Mem.
Loc. Instruction

020 B 049

021 C 051
.A 050

Remarks

X --> rA and rX
y --> rX; x+y = z --> rA
(rA) = z --> 051; 0 --> rA.

Exampl e 2: (049) = x, (050) = y. Del i ver the sum p = x+y+y
to 051.

Mem.
Loc. Instruction Remarks

020 B 049 x --> rA and rX
A 050 y --> rX; x+y = Z --> rA; (rX)=y

021 X 000 z+y = P --> rA
C 051 (r.A) = p --> 051; 0 -- > rA.

Example 3: (049) = x, (050) = y, (051) = z. Deliver the sum
x+y = p to 052, and the sum x+y+z = q to 053.

Mem.
Loc. Instruction Remarks

020 B 049 x --> rA and rX
A 050 y --> rX; x+y = p --> rA; (rX)=y

021 H 052 (rA) = p --> 052; (r.A) = p
A 051 Z --> rX; p+z = q --> rA; (rX)=z

022 C 053 (rA) = q --> 053; 0 --> rA.

Page 41

Chapter 4 Fundamental Arithmetic Operations

SEC. 3. PRACTICE EXERCISES ON ADDITION

In the problems to follow:

(049) = x, (050) = y, (051) = Z

use any memory location for working storage. Write the
instructions to:

1. Deliver 3x to 060.

2. Deliver the sum x+2y to 060.

3. Deliver the sum 2x+3y to 060.

4. Deliver the sum 2x+y+3z to 060.

5. Deliver

2x+y to 060

3x+y to 061

2x+2y to 062

6. Deliver

x+y to 060

y+z to 061

z+:r to 062

2(x+y+z) to 062

7. Change (049) to 2x, (050) to 2y, (051) to 2z and send
x, yand z to memory locations 060, 061, 062 respective
ly.

Page 42

Chapter 4 Fundamental Arithmetic Operations

SEC.~. SUBTRACTION

A complete subtraction invol ves three instructions; (a)
transferring the minuend to rA, (b) transferring minus the
subtrahend to rX, adding (rX) to (rA), and delivering the
difference to rA, and (c) transferring the difference from
rA to the memory.

E x amp 1 e 1: (049) x, (050)
x-y = z to 051.

y. Deliver the difference

Mem.
Loc. Instruction

020 B 049

021 C 051
S 050

Remarks

x - - > r A an d r X
-y --> rX; x-y = z --> rA; (rX) =-y
(rA) = z --> 051; 0 --> rA.

Example 2: (049) = x, (050) = y, (051) = z. Deliver the dif
fer en c e p = x - y to 05 2 an d the sum q = x - y + z to
rL.

Mem.
Loc. Instruction

020 B 049
S 050

021 H 052
A 051

022 K 000

Remarks

X --> rA and rX
-y --> rX; x-y = p --> rA; (rX)=-y
(rA) = p -- > 052; (rA) = p
z --> rX; p+z = q --> rA; (rX)=z
(r A) = q - - > rL; 0 - - > r A .

E x am pIe 3: (0 49) b . I tis des ire d too b t a in - b w hen (a)
rA is not cleared or (b) b = O. This should be
used with caution because there is a possibility
of overflow depending on (rA).

Mem.
Loc. Instruction

020 S 049
J 050

Remarks

-b --> rX; (rA) -b --> rA
(rX) = - b - - > 050; (rX) = - b.

Page 43

Chapter 4 Fundamental Arithmetic Operations

SEC. 5. PRACTICE EXERCISES ON SUBTRACTION

In the problems to follow:

(049) = x, (050) = y, (051) = Z

provide the instructions to:

1. Deliver

2. Deliver

3. Deli ver

(a) x-y to 060

(b) y-x to 061

(c) y - z to 0 6 2

(a) -y to 060

(b) 2x-y to 061

(c) 2x-y+z to 062

(a) x-2y to 060

(b) x-2z to 061

and send y to 049, Z to 050, and x to 051.

Page 44

Chapter 4 Fundamental Arithmetic Operations

SEC. 6. MULTIPLICATION

Instructions

Jm Transfer (rX) to m; do not erase rX.

Km Transfer (rA) to rL; clear rA; ignore m.

Lm Transfer (m) to rL and rX.

Mm Transfer (m) to rX; mul tiply (rL) by (rX) = (m);
deli ver the rounded eleven digi t product to rA;
(rL) unal teredo

Nm Transfer - (m) to rX; mul tiply (rL) by (rX)
- (m) ; deliver the rounded eleven digi t product
to rA; (rL) unal teredo

Pm Transfer (m) to rX; mul tiply (rL) by (rX) = (m);
deliver the more significant half of the twen
ty-two digit unrounded product to rA, the less
signi ficant hal f to rX; (rL) unal teredo

The instructions M, N, and P leave three times the ab
solute magnitude of the multiplicand in rF.

The instructions M and N leave the less significant
half of the twenty-two digit product ±50000 000000 in rX.

Register A and rX are erased before the product is de
livered. Hence, products may not be automatically accumu
lated.

Page 45

Chapter 4 Fundamental Arithmetic Operations

The quantity having the fewer non-zero digits should be
selected as the multiplier since multiplication by zeros
consumes less time than multiplication by a non-zero digit.

A complete multiplication requires three instructions;
(a) t ran sf err i n g the m u 1 tip 1 i c an d to rL, (b) t ran s fer r i n g
the multiplier to rX, initiating the multiplication opera
tion, and de:!.ivering the product to rA and rX, and (c)
transferring the product from rA (and rX) to the memory.

Example 1: (049) x, (050) = y. Deliver the eleven digit
rounded product xy = z to 051.

Mem.
Loc. Instruction

020 L 049
M 050

021 C 051

Remarks

x - - > rL, an d rX
y --> rX; xy = z --> rA; (rL)=x
(rA) = z --> 051; 0 --> rA.

Example 2: (rA) x, (050) = y. Deliver the eleven digit
z to 051, leave z in rA. rounded product -xy

Mem.
Loc. Instruction Remark s

020 K 000 (rA) = x --> rL
N 050 -y --> rX; - xy = z - - > rA; (rL)=x

021 H 051 (rA) = z --> 051; (rA) = z.

Example 3: (049) = L (050) = M. Deli ver the twenty-two di
git unrounded product P = LM to 051 and 052.

Mem.
Loc. Instruction Remark s

020 L 050 M --> rL and rX
P 049 L --> rX; LM = P --> rA and rX;

(rL) = M
021 J 052 (rX) less significant half of

p = P --> 052
C 051 (rA) more significaAt half of

p = P
MS

--> 051.

Page 46

Chapter 4 Fundamental Arithmetic Operations

Example 4: (049) = L, (050) = M, (051) = N. Deliver LM =
P 1 toO 52 an d N 1,1 = P ~ too 5 3, e I eve n dig i t un -
rounded products are desired.

Mem.
Loc. Instruction Remarks

020 L 050 M --> rL and rX
P 049 L --> rX; LM = P - - > rA; (rL)=M

021 C 052 (rA) = P 1
--> 052; 0 --> rA

p 051 N --> rX; NM = P --> rA; (rL)=M
--> 053; 0 --> rAe 022 C 053 (rA) = P 2

SEC. 7. PRACTICE EXERCISES ON MULTIPLICATION

(040) = x

(041) y

(042) Z

Write the instructions to deliver eleven digit rounded
products.

1. (a) xy to 050

(b) xz to 051

(c) yz to 052

(d) xyz to 053

Write the instructions to deliver eleven digit rounded
products.

2 . (a) x 2 = 0 50

(b) -X3 051

(c) X4 052

(d) -x 5 053

Page 47

Chapter 4 Fundamental Arithmetic Operations

Write the instructions to deliver eleven digit rounded
products.

3. (a) (X-y)2 to 050 and 051

(b) (x-y) (x-z) to 052 and 053

(c) X(y-Z)2 to 054 and 055.

SEC. 8. DIVISION

Instructions

Jm Transfer (rX) to m; do not

Km Transfer (rA) to rL; clear

Lm Transfer (m) to rL and rX.

Dm Transfer (m) to rA; divide
deliver the eleven digit

erase rX.

rA; ignore m.

(rA) = (m) by (rL) ;
rounded quotien t to

rA, and the eleven digit unrounded quotient to
rX; (rL) unal teredo

Since all quantities, x, in the UNIVAC, must fall in the
range I xl < 1, the absolute value of the di vidend must be
less than the absolute value of the divisor so that a proper
d i vis ion s hall ta k e pI ac e . I f I D d I ? I Dr I, 0 r i f an a t t e m p t
is made to di vide by zero, an overflow will resul t (see Chap
ter 7).

A complete division requires three instructions; (a)
transferring the divisor to rL, (b) transferring the di vidend
to rA and initiating the division operation, and delivering
the quotient to rA and rX, (c) transferring the quotient froin
rA (or rX) to the memory.

Page 48

Chapter 4 Fundamental Arithmetic Operations

Example 1: (049) = A, (0'50) = B. Deliver the eleven digi t
rounded quotient C = AlB to 051.

Mem.
Loc. Instruction Remarks

020 L 050

021 C 051
D 049

B - - > rL an d rX
A --> rA; AlB = C --> rA; (rL)=B
(rA) = C --> 051; 0 --> rAe

Example 2: (049) = A, (050) = B. Deliver the eleven digit
unrounded quotient C AlB to 051.

Mem.
Loc. Instruction Remarks

020 L 050 B - -> rL and rX
D 049 A --> rA; AlB = C - - > rX; (rL) = B

021 J 051 (rX) = C --> 051.

SEC. 9. P~ACTICE EXERCISES ON DIVISION

Assume that overflow will not occur in these exercises.

(050) = x

(051) y

(052) z

Write the routines to send 11 digit rounded quotients .

1. (a) ..! to 060 and 061 y

(b) .! to 062 y

2. (a) llto 060 z

(b) ~ z to 061

In problem 2, also send the unrounded quotients to 062 and
063.

Page 49

Chapter 4 Fundamental Arithmetic Operations

SEC. I O. REV I EW P R ACT ICE EX E R CIS E SON THE A R I T H MET I COP ERA T I 0 H S

(050) x

(051) - y

(052) Z

(053) 1

Assume that adjustments have been made so that overflow
will not occur in these exercises. Wri te the instructions
to send:

1. x2+3y2_2z to 060

2. (X+y)2 to 061

3. 1 + 1 + 1 to 062
x y Z

4. x 2 2z y to 063
y y 4

SEC. II. SPECIAL CONSIDERATION IN ARITHMETIC COMPUTATION
ADDITION AND SUBTRACTION

When two numeric quantities are to be added (or sub
tracted), UNIVAC compares the signs of the quantities in
volved, performs the addition (or subtraction) on the terms
digit by digit and delivers the correct result (including
the sign) to rA. This, of course, presumes that overflow
has not occurred and that decimal points have been properly
aligned. Overflow will be considered, in some detail, in
Chapter 7, and decimal point alignment is handled in Chapter
6. Al so, it should be men tioned that the internal logic
with which a computor performs these ari thmetic operations is
discussed in Chapter 9.

It is important, at this time, to reflect on the re
sponses of the computer to add or subtract orders on "words"

Page 50

Chapter 4 Fundamental Arithmetic Operations

which are not wholly numeric or/and which contain charac
ters, other than 0 (plus) or - (minus), in the sign posi
tion.

Consider, first, the digital positions excluding the
sign. In the addition and subtraction processes, the cir
cuits by-pass alphabetic and typewriter characters and,
hence, these quantities take precedence over numeric digits.
A minus, not in the sign position, is treated as a digit.
This means, for example, when a letter is added to (or sub
tracted from) a numeric digit the letter prevails and is
shown in the result; the numeric character is ignored.

If any two characters, other than numeric, appear in a
given digit the UNIVAC stops and shows an error neon. To
illustrate, in a digit (other than sign) position:

4+3 7

4+B B

4+(-) = 3

R+B = Error stop

Page 51

Chapter 4 Fundamental Arithmetic Operations

Following are two tables showing UNIVAC responses to
add and subtract orders on non-numeric quantities.

ADDITION

AUGEND
ADDEND

o ~ 0 + = 0 - c

- 0
0 ~ 0 or+O

0 0-1 C

+ = 0 0 + - C

- o - 1 - ~ C

C C C C E

SUBTRACTION

MINUEND
SUBTRAHEND

D ~ 0 + = 0 -

D "I- 0 0 -0 -0-1
or+O

+ = 0 D + -1

- D t 1* 1 +

C C C C

D= DIGIT
C = CHARACTER
6.= SPACE

C

C

C

C

E

0= DIGIT
C = CHARAOTER
6,= SPACE
E = ERROR STOP

*If a minus sign is subtracted from a nine the result is a
"ten". Since this pulse code (0 00 1101) does not represent
a character on the UNIPRINTER, it must be properly summed by
adding decimal zero. As illustrated by the following
examples:

Page 52

Chapter 4 Fundamental Arithmetic Operations

Exampl e 1: Subtract 0---- from 09999.

9999 1100 1100 1100 1100
complement ---- 1101 1101 1101 1110

1010 1010 1010 1010
0011 0011 0011 0011 correction if

"10"10"10"10" 1101 1101 1101 1101 carry, + XS3 '
0000 0011 0011 0011 0011

0001 0001 0001 0000
0011 0011 0011 0011 correction if

1110 0100 0100 0100 0011 carry, + XS3

Example 2: Subtract 0---- from 05394.

5394 1000 0110 1100 0111
complement 1101 1101 1101 1110

0110 0100 1010 0101
0011 0011 0011 0011 correction if

64"10"5 1001 0111 1101 1000 carry, + XS3
00 o 0 0011 0011 0011 0011

1100 1011 0000 1011
1101 1101 0011 1101 correction

6'50'5 = 1001 1000 0011 1000

In the sign position, the circuits by-pass all symbols
except a plus (0) or minus sign, and, hence, the symbols
take precedence over the signs. If any combination of sym
bols other than the two signs appears in the sign position,
an error stop results. In the case of subtraction, a digit
or character subtracted from a sign leads to a different
di&it or character in the result. This is occasioned b7 the
precedure, iaherent in UNIVAC design which adds 1 00 0001,

. witbout binary carry, to the character in the sian position
of the subtrahend. To illustrate:

When subtracting a plus quantity o = 1 00 0011
the computer adds 1 00 0001
the result is minus 0 00 0010

When subtracting a negative quan ti ty - 0 00 0010
the computer adds 1 00 0001
the result is plus o ". 0 01 0101

When subtracting B B 0 01 0101
the computer adds 1 00 0001
the resul tis A A 1 01 0100

Page 53

Chapter 4

When subtracting A
the computer adds
The result is B

Fundamental Arithmetic Operations

A = 1 01 0100
1 00 0001

B = 0 01 0101

Therefore, in the sign position

o + 0 = 0

(-) + (-) = (-)

B + 0 = B

B + R - Error stop

o B = A

Below is a table showing, in part, the resul t in the sign
position of subtract and add orders. A more complete rep
resentation of the 8m instruction in the sign column is
shown on page 238 in the Appendix.

ADDEND AUGEND OR MINUEND
OR

SUBTRAHEND D ~ 0 + = 0 - C

o ~ 0 E *0 *D E

+ = 0 D + + C -

- 0 + - C 0= DIGIT
C= CHARACTER

C E *C *C E E. = ERROR STOP

*The effect of subtraction is described in the previous
paragraph.

Page 54

Chapter 4 Fundamental Arithmetic Operations

A negative zero cannot be obtained as a result of an
addition or subtraction except in the cases -0 + (-0) = -0
and -0 - (0) = -0. In all other cases, if two quantities
with opposite signs are equal, the positive, sign is appended
to the difference.

Multiplication and Division

A digit or a character in the sign position of a factor
in mul tip I ica tion 0 r di vis ion is tr'eated as a pI us si gn.

Furthermore, alphabetic characters in the other dig
ital positions of the multiplicand, multiplier, dividend or
divisor do not stop the UNIVAC. Since, in the multiplica
tion and division processes, the zone indicators are ign&r
ed, all characters are treated as numeric digits. The be
havior of such symbols as J and ~ may be determined by
carrying out these operations using the excess-three code.
The following pulse combinations may appear in such a pro
cedure:

Excess-Three Decimal Equivalent

0000 -3 or 13, I. = i gno re
0001 -2 or 14, fj = space
0010 -1 or 15, - minus sign
1101 10
1110 11
1111 12

Table 2, in the Appendix, shows the results of mUl
tiplying digits and characters.

Page 55

Chapter 4 Fundamental Arithmetic Operations

SEC. 12. PRACTICE EXERCISES

1. Subtract 0---- from 03279

2 . Sh 0 w t hat, in the sign po sit ion, an" S" ins t ru c t ion 0 n

2 will give a 1

H will give a G

3. Add where possible to B99325 C00100

4.

(a) 000001 000010

(b) ------ ------

(c) OZZZZZ OZZZZZ

(d) ZZZZZZ ZZZZZZ

From Table 2 in the appendix determine the
multiplying the digits.

(a) E by D (Not in sign position)

(b) 3 by X (Not in si gn position)

(c) X by 3 (Not in sign posi tion)

(d) 0 by B In the si gn position

Page 56

result of

SECTION

1

2

3

4

5

6

7

Chapter 5

Arrangement of Information

TOPIC

Positioning Decimal Points
Preliminary Discussion on
Addition and Subtraction
Multiplication
Division

Use of the "Floating Decimal
Point"

Practice Exercises

Shift Instructions

Practice Exercises

Extract Instructions

Practice Exercises

PAGE

57

57
58
58

59

61

62

65

66

68

Chapter 5 Arrangement of Information

SEC. I. POSITIONING DECIMAL POINTS

Preliminary Discussion

Before presenting the instructions planned for this
chapter, it is advisable to discuss the problem of position
ing the decimal points of numeric quantities. When two
words are acted upon arithmetically, UNIVAC will process the
quan ti ti es by perfo rming addi tion, subt raction, mul tipl i cation
and division in each digital position. It is essential that
the decimal point in the result of each computation be pre
determined and that the quantities be so placed as to pro
duce the desired result after calculation.

First of all, itwill be recalled that UNIVAC recognizes
a decimal point after the si gn posi tion and, therefore, other
decimal points are assumed by the programmer. For example.
if the inspection of a memory location reveals the "word"
000045824000 in storage, representing the quantity 4'58.24,
the programmer would prepare for arithmetic manipulation by
considering the stored quantity to be 0.00045 8 24000. The
decimal point, although not shown in the composition of the
word in storage, is inherent in the computer design, and the
caret is conceived to indicate the location of the actual
decimal po in t.

Decimal Point in Addition and Subtraction

When adding and subtracting two quantities the pro
grammer m!lst be certain that the units, tens and hundreds
digits etc. of one quantity are in the same digital positions
as those of the other. The shift order, described in this
chapter, may be necessary to effect the alignment of digital
posi tions.

Page 57

Chapter 5 Arrangement of Information

POSITIONING OF DECIMAL POINT IN MULTIPLICATION

In order to determine the location of the decimal point
in the product Z= xy, the computer quantities are multiplied
and the digital positions of the digits in the product are
obtained. e.g. If x = 40 and y = 0.003

and x in the computer is 0.00040~00000

and y in the computer is 0.0~0030000000

Then z in the computer will be 0.000000 12000
~

The number of digital places between the "two decimals"
in the product, z, equals the sum of the corresponding digital
places in the multipliers, x and y.

Note further that if

x in the computer is 0.0000000040~0

and y in the computer is 0.000 00300000
~

Then by the "P" instruction, z, the product, would be
delivered as follows,

(rA) = 0.00000000000, (rX) = 0.00 120000000
~

Note that the sign position in rX is ignored in the
decimal point location.

Positioning of Decimal Point in Division

Consider the problem of determining the location of the
decimal in the quotient x = z/Y. Fi rst, it must be under
stood that for proper division the I yl as stored in the
computer must be greater than I zl as stored in the computer.
If this condition does not hold, it will be 'seen later in
this chapter, that the shift instruction can be used to
rectify this. Assuming that the condition here stated is
satisfied, the computer quantityy is divided into the computer

Page 58

Chapter 5 Arrangement of Information

quantity z and the digital positions of the digits in the
quotient are determined. e. g. If y = 0.003 and z = 0.12

and z in the computer is 0.000000A1200

and y in the computer is 0.OA003000000

(Dividend)

(Di visor)

then x in the computer will be 0.00040 00000
A

(Quotient)

The number of digital places between the "two decimals"
in the quotient, x, equals the difference between the cor
responding digital places in the dividend, z, and the divisor,
y.

Exercises demonstrating these techniques, especially as
they relate to the new instructions presented in this chapter,
will be encountered.

The instructions described in this chapter supplement
those explained in Chapters 3 and 4, and, hence, it is again
suggested that the UNIVAC Code Sheet, stored in the back of
this booklet, be used to help identify instructions previously
presented.

SEC. 2. USE OF THE ~FLOATING DECIMAL POINT"

In the arithmetic manipulation of numeric quantities, it
is con ven ient, 0 ft en, to resort to a "flo at ing decimal po in ttl
routine. In such procedures all numeric quantities may be
represented as follows~

Digital Position

1

2 through 10

11 and 12

Contains

Algebraic sign of quantity

The numeric quanti ty wi th the
first non-zero digit in the
second digit position

Exponent of required power
of ten plus 49. The use of
49 is made to facilitate the
representation of negative
exponents.

Page 59

Chapter 5 Arrangement of Information

For example: 15,379 = + .15379 X 10 5

app ears as 015379 000054

Also, 0.0015379 = .15379 x 10- 2

App ears as 0 15379000047

When two quantities, represented in floating decimal
point notation, are to be combined by anyone of the four
fundamental operations of arithmetic, certain adjustments
may be necessary. The first step in performing anyone of
the four fundamental operations is to separate the quan
ti ties from their exponents, storing them in memory locations.
Fo rex am pIe, con sid e r th e qua n tit i e s A x lOA an d B x lOB
which are stored as

Aa ± xxxxxxxxxxee a = ee

and Bb ± xxxxxxxxxxff b ff

A and a, Band b are separated, by methods to be discussed
later in this chapter, and placed in storage.

If it is desired to obtain

it should be clear that these operations can be performed
only if a = b. If a and b are equal, A and B are added
(0 r sub t r act e d) al g e bra i call y an d the i r res u 1 t Cis 0 b t a in e d .
Of course, c = a = b and the result Cc = f xxxxxxxxxxgg (c =
gg) can be stored. If however, a and b are unequal, for
example, a < b, A is shifted to the right, as described later
in this chapter, until a = b and then the operation, as
expl ained abo ve, can be execu ted.

In the multiplication

C x 10 c = (A x lOA) (B x lOB) an d the p ro d u c t C = A x B
an d th e sum c = a + bar e de term i ned and the q u an tit y C x 10 c
can be formed, in storage, in the floating decimal notation.

Page 60

Chapter 5 Arrangem en t 0 f Info rm ation

It should be clear that c must be reduced by 49 in order to
represent the exponent of the product, in the excess-forty
nine code.

In the division

c x 10 C = A x 10 A I B x 10 B

C = AlB and c = a-b. An adj us tmen t wi 11 be necessary
to represent the exponent (c) of the quotient in the excess
forty"'nine code. Also, it should be evident that UNIVAC
demands that IAI < IBI and if this is not so, a routine must
be instituted to rectify this situation.

SEC. 3. PRACTICE EXERCISES

(050)

(051)

000640000000

000400000000

6.4 = x

4.0 y

Eleven digit-rounded results are required in the follow
ing exercises. In di cate decimal poin t s and deli ver.

1) x (x +y) to 060

2) x2 to 061 -
y

3) - X2+y2 to 062
y

The following quantities are given in the floating
decimal -poin t no tati on. Wh at n um ber s t r anscr i be d as fixe d
decimals, do they represent?

5) -64530000045

6) 070056000056

7) 020056000140

Page 61

Chapter 5 Arrangement of Information

SEC. q. SHIFT INSTRUCTIONS

The shift instructions are used largely to

(a) multiply and divide by powers of ten
(b) position quantities and decimal points
(c) obtain absolute magnitudes
(d) delete undesired information

Instructions

. nm Shift all digits of rA, including the digit in
the sign position, n digi ts to the right (ab
breviated SR:); drop the n least significant
digits; SUPPlY n decimal zero s in the sign and
most significant digit positions; ignore m.
(Note n is any number from 1 to 9).

; n m Sh i f tall dig its 0 f r A , in c 1 u di n g the dig i tin
the sign positions, n digits to the left, (ab
brevi ated SL:); drop the si gn and n -1 mos t si g
ni fi can t di gi t po si tions; supply n deci mal zero s
in the least significant digit positions; ignore
m.

-nm Shift all digits of rA, except the sign n dig
its to the ri ght (ab brevi ated Srn); drop th e n
1 e as t sign i f i c an t dig its; sup ply n dec i mal z e r 0 s
following the sign; ignore m.

Dnm Shift all digits of r.A, except the sign, n
digits to the left (abbreviated SL N); drop the
n most significant digits (following the sign);
supply n decimal zero s in the 1 east si gn i fi can t
digit positions; ignore m

OOm "Skip"instruction; perform no operation, con
tinue to the next instruction; ignore m

Page 62

Chapter 5 Arrangem en t 0 fIn form ation

The instructions. Om, ; Om and -Om may not be used. In
these cases, the computer will continue to shift until, at
the en d 0 f two s e con d s , a s t all i sin d i c at e d .

A complete shift operation requires at least three in
structions; (a) transferring the quantity to be shifted to
r,A, (b) shifting the quantity n places right or left, in
cluding, or not including, the sign, (c) transferring the
shi fted quan ti ty from r A to the memo ry.

Exampl e 1: (050) = x. Obtain I x I and store it in 051.

Mem.
Loc.

020

021

Instruction

B 050
; 1 000

. 1 000
C 051

Remarks

X --> rA and rX
SLr (x) dropping the sign
SRr (x); 0 - - > sign posi tion
(r A) = I x I - - > 051

E x amp 1 e 2: A W 0 r d W 0 f an in put item co n t a ins the follow in g
in formation.

--
Digit Position

1
2,3,4
5,6
7,8
9, 10
11, 12

In form at ion

o
type of policy
year
month issue date
day
rate basis

The word is stored in 628. The issue date is to be isolated
an d del i v ere d tom em 0 r y 10 cat ion 14 5 . Let W = 0 t 1 t 2 t y 1 y 2

d d r r
m1m2 1 2 1 2·

Th iss u b r 0 uti n e i sap art 0 f the pro gram toe val u ate 1 a p sed
1 i f e in su r an c e po 1 ic i e s .

Page 63

Chapter 5 Arrangement of Information

Mem.
Loc. Instruction Remarks

020 B 628
. 2 000

021 ;6 000
. 4 000

022 C 145

Note: This result may also be obtained by extraction. See
example 1 in Section 6 of this Chapter.

Example 3: (Illustration of "rounding off" procedure)

Melll.
Loc.

020

021

022

(050) • 0 48843270530 = x = .4884327053

(051) = 08 0000000000 = y = 8

(052) = 000000000005 fo r rounding ou t

Deliver x 11 digit rounded quotient to 060 -
y

Instruction Remarks

00 000
L 051 8 - - > rL

D 050 0.61058092566 --> rA
A 052 Rounding 0.61058092571

-1 000 (SR) 0.06105809257 -->
C 060

--> rA
rA

Example 4: It is desired to obtain 5 % of $15379.73 = A,
rounded to dollars and cents, and deliver it to memory loc
ation 052.

(050) • 015379 730000 • A

(051) • 005000 000000 = 51

(052) • 5 % of A

Page 64

Chapt er 5 Arrangement of Information

Mem.
Loc.

020

021

022

023

SEC. 5.

Instruction

B 051
-4 000

C 051
L 050

M 051
04 000

C 052

Remarks

005 --L rA and rX
SR4 (r A) = 0000005 = (r A)
(rA) - - L 051
A = 015379 730000 -- > rL

and rX
000000 0768 99 --> rA
SL4 (rA) = 000768 990000
5 % of A --> 052

PRACTICE EXERCISES USING SHIFT INSTRUCTION

For use in exercises 1 to 4

(050) = -00452832000 = 452.832 = x

(051) = 090000000000= 9.0 y

(052) 000000704440= 70.444 = Z

Write the instructions necessary to

1. Obtain x and sto re in 060.

2. Obtain X+Z and store in 061.

3. Obtain x-z and store in 062.

4. Obtain x+y+z and store in 063.

5. Write the in struc·tions to evaluate

x + x2 + x3 If x = 0.01

Assume necessary constants in memory and obtain 11 digit un
rounded result. Place the most significant digit of the an
swer in the M.S.D. position.

Page 65

Chapter 5 Arrangement of Information

6. I tis des ire d tot ak e 6 % 0 f $ 3, 7 35. 3 2 r 0 un de d to
dollars and cents and deliver the result to memory
location 060

(050)

(051)

03725 320000

0600000000000

7 . In e x am pIe 2 0 f Sec t ion 4, i so I ate the t y p e 0 f pol icy
and the rate basis and put in memory locations 600
an d 601

8. Assume that the

(050) = 004455143625

represents in the first six digital positions the price
of a radio set and its coded description in digital
positions 7 through 12. Provide the instructions for
isolating the price into memory location 060.

SEC. 6. E~TRACT INSTRUCTIONS

The extract instruction is used to sel ect, assembl e,
and delete information.

Instructions

Fm Tran sfer (m) to rF. A "one" (or any character
or digit whose least significant binary digit
is zero) "specifies" an extraction. A "zero"
(or any character or digit whose least signif
icant binary digit is one) does not specify an
extraction.

Em Erase the digit positions of rA specified by
rF. In sert in these posi ti ons the co rrespond
ing digi ts 0 f (m).

Page 66

Chapter 5 Arrangement of Information

A complete extract operation requires three or four in
structions, (a) transferring the "extractor" to rF, (b) trans
ferring the quan ti ty to be ext racted upon to r.A, (c) extract
ing the specified digits from minto r.A, and (d) transferring
the result to the memory.

Example 1: Extract the "i ssue date" described in Example 2,
section 4 of this chapter.

Mem.
Loc.

020

021

(050)

(145)

(628)

000011 111100 =E,

issue date

W = word containing issue date

In struction

F 050
K 000

E 628

C 145

Remarks

E, = 000011 111100 --> rF
o --> rA; (rA) = rL
E,(W) = 0000 Y'Y2m,m2d,d2
00 --> r,A
(rA) = issue date --> 145

Example 2: The quantity 15,379 is represented, with a float
ing decimal point, as 015379 000054.

It is required to separate the exponent and digits of the
quantity in preparation for arithmetic operations.

(050) 015379 000054 = A'

(051) = 000000 000011 E,

(052) = .A dig its 0 f q u an tit y

(053)

(054)

(055)

a = exponent of quantity

000000 00049

decimal zero s

Page 67

Chapter 5 Arrangement of Information

Mem.
Loc.

020

021

022

023

In structi on

F 051

E 050

C 053

E 055

k 000

S 054

B 050

C 052

Remarks

E, = 000000 000011 --> rF
o - - > r A; (r A) - - > rL
E , (A') = 000000 000054 --> rA
-49 --> rX; 000000 000005 = a --> rA
(rA) = a --> 053; 0 --> rA
A' = 015379 000054 -- > rA
E, (055) -->,A' = 015379 000000
(rA) = A --> 052

Example 3: The sign of the quantity A is to be changed from
pI us to minus.

Mem.
Loc.

020

021

A > 0 (049)

(050) -00000 000000 = E,

Instruction Remarks

F 050 E, = -00000 000000
B 049 A --> rA and rX

E 050 E 1 (E ,) = -A in rA
C 049 (rA) = -A --> 049

--> rF

SEC. 7. PRACTICE EXERCISES ON EXTRACT ORDERS

1) Write the instructions to obtain the absolute value
of a quantity (A) by means of the extract order.

2) (050) = 027543000052

(051) = 048270000054

The quan ti ti es are represen ted in floatin g decimal
point notation. Wri te the in structions to del i ver
the sum of these quantities to 060.

3) It is desired to assemble certain information con
cerning life insurance policies into one computer
"Word", to be placed as follows

Page 68

Chapter 5 Arrangement of Information

In formati on Di ~i tal Positions Code

Policy Accoun t 2 N

Branch 3 B

Year 4,5 Y l' Y2
Plan 6,7,8 P 1 ' P 2' P 3

Age 9, 10 A1 ' A2

Not Used 1, 11, 12

When assembled in a computer word, it will appear as
ONBY1Y?P1P2P3A1A200. Assume that this information is stored,
as part of more complete data, in 3 different memory locations
as follows -

(050) = XXXXXBXXXXXP 1

(051) = P 2P 3XXXA 1A2XXXXX

(052) XXXXXXY 1Y2NXXX

Provide the instructions needed to assemble this data and
place in memory locations 060.

Example 4: A word W of an input item contains the following
information

Digit Position

1,2,3,4
5,6,7
8,9.10,11,12

In formati on

Poli cy Num ber
Type of Policy
Premium

The wo r dis s tor e din 0 50 . Th e t h r e e item sin t his wo r d
are to be isolated and sent to memory locations 060,061,062.
Provide the necessary instructions.

Page 69

Chapter 5

(080)

(081)

(082)

1111 00000000 E t

000011100000 E2

000000011111 E3

Page 70

Arrangement of Information

Section

1

2

3

4

5

6

7

8

9

CHAPTER 6

TRANSFER OF CONTROL

Top i c

Preliminary Discussion

Stop Instruction

Instructions For Transfer of Control

Q, T, U as Right Hand Instructions

Q, T, U as Left Hand Instructions

Comparisons in the Sign Position

The R-U Instructions

Practice Exercises

Breakpoint Instructions

Page

71

71

72

72

75

76

77

79

81

Chapter 6 Transfer of Control

SEC. I. PRELIMINARY DISCUSSION

In this chapter, instructions will be defined which
will transfer control conditionally and unconditionally.
Both types of control transfer are extremely useful in the
development of computer programs. For example, routines
which lead to iterative patterns are important in computer
processes and are direct applications of these new instruc
tions. It will be useful to the reader if the concept of
iteration is developed more fully prior to the presentation
of the actual instructions.

The foregoing chapters contain the procedures necessary
for simple computer processing such as transfer of data,
arithmetic operations, extracting and shifting. Routines,
composed of these instructions often require many successive
repetitions.

To take an elementary illustration, consider the problem
of evaluating

Y i = ax I + b

where a and bare constants,and XI represents nine different,
but related, values of x. Assume that these values of x are
Xl = (0.1, 0.2, 0.3 ... 0.9). It is apparent that the arith
metic processes required to obtain the nine corresponding
values of Y, are repeated exactly nine times, using for XI
the nine values given. The instructions for transfer of
control, presented herein, enable the programmer to encode
for this iterative situation. The reader will observe add
itional applications of these instructions in the examples
provided.

SEC. 2. THE STOP INSTRUCTION

The stop instruction is used to terminate a computation.

INSTRUCTION

90m Stop UNIVAC operation. Light "stop" neon.

Page 71

Chapter 6 Transfer of Control

SEC. 3. I NSTRUCT ION FOR TRANSFER OF CONTROL

The sequence of instructions to the UNIVAC may be inter
rupted and altered both conditionally and unconditionally.
This provides a method for entering, re-entering and exiting
from subroutines. A "transfer of control to m" means that
the next instruction pair is to be obtained from memory lo
cation m, instead of from the memory location in the normal
sequence.

INSTRUCTIONS

Qm If (rA) = (rL), transfer control to m.

Rm If Rm is entered on line c, record [00 000
U (c+l)] in m.

Tm If (rA) > (rL), transfer control to m.

Um Transfer control to m.

OOm Skip. Continue to the next instruction;
ignore m.

SEC. 11-. Q, T, U AS RIGHT HAND INSTRUCTIONS

Qm, Tm and Urn are normally entered as the right hand
instruction of a pair. For exceptions see examples in Sec
tion 5 of this chapter.

A complete test operation using the Qm and Tm instruc
tions requires three operations; (a) transferring a quantity
to rA, (b) transferring a quantity to rL, and (c) comparing
(rA) with (rL).

Page 72

Chapter 6 Transfer of Control

Example 1: (049) = x, (050) = y. Transfer the algebraically
greater quantity to 100.

Mem.
Loc. Instruction

020 00 000
B 049

021 L 050
T 023

022 J 100
U 024

023 ClOD
00 000

024

Remarks

X --> rA and rX
y --> rL and rX
If x > y, go to 023

If x ~ y. (rX) = y --> 100
go to 024

If x > y, (rA) = x --> 100;
Skip 0 --> rA

Continue routine

E x amp 1 e 2: (049) = x, (050) = y. I f x 2: y, en t era "1"
from 040 in 051 and return to main routine; if x < y con
tinue main routine.

Mem.
Loc. Instruction

020 00 000
K 000

021 S 050
K 000

022 S 049
T 024

023 F 040
G 051

Remarks

(rA) --> rL; 0 --> rA
-y --> rX; 0 - y --> rA
(rA) = -y --> rL; 0 --> rA
- x - - > rX; 0 - x - - > r A
If -x > -y (x < y), go to 024

If - x ~ - y (x 2: y), 1 - - > rF
(rF) = 1 --> 051

024 Continue main routine

Page 73

Chapter 6 Transfer of Control

Example 3: (050) = x. If x > 0, continue routine A line 023.
If x = 0, go to routine B line 061. If x < 0, go to routine
Cline 083.

Mem.
Loc. Instruction

020 00 000
B 050

021 K 000
T 083

- - - -

022 00 000
Q 061

023

Remarks

X --> rA and rX
x --> rL; 0 --> rA
If 0 > x, go to 083 routine C

If n < x, test for equality
If 0 = x, go to 061 routine B

If 0 j x; i. e., 0 < x, continue
routine A.

Example 4: (512) = I, (614) = 0, (633) = d,

If d = I, go to routine A location 235;
-If d = 2, go to routine B location 249;

y,c d = 3, go to routine C location 255; ~~

If d = 4, go to routine D location 574;
If d l- 1, 2. 3, or 4, stop computation

This subroutine was required to classify life insurance pol
icies according to dividend preference.

Mem.
Loc. Instruction Remarks

229 L 614 0 --> rL and rX
B 633 d --> rA and rX

230 S 512 -1 --> rX; d-1 --/ rA; (rX) = -1
Q 235 If d-1 = 0, go to 235

231 X 000 (rA) + (rX) = d-2 --> rA
Q ?d.Q If d~2 = n go to 249 ~ . .., v,

- - - -

Page 74

Chapter 6 Transfer of Control

232 X 000 (rA) + (rX) = d-3 --> rA
Q 255 If d-3 = 0, go to 255

- - - - - - - -
233 X 000 (rA) + (rX) - d-4 --> rA

Q 574 If d-4 = 0, go to 574

- - - -
234 00 000 If d 1- 1, 2, 3, or 4

90 000 Stop computation.

SEC. 5. Q, T, U AS LEFT HAND INSTRUCTIONS

If a Qm, Tm, or Um instruction-ia placed ~n the left
half of a word, it-w-ill_ cause a transfer of control subj ect
to the usual conditions, but the memory location to which
the transfer is made will be that contained in the right
hand instruction. Both instructions will be executed.

Example 1: E, = 000000 000011 = (049), (050) = A, (051) =
B, (052) = C, (053) = a, (054) = b. If a > b, extract from
A and deliver to C. If a ~ b, extract from B and deliver to
C.

Mem.
Loc.

020

021

022

023

024

- - -
025

Instruction

00 000
F 049

L 054
B 053

T 000
K 024

- - - -
E 051

U 025

- - - -
E 050

00 000

- - - - - - -
C 052

Remarks

E, = 000000 000011 --> rF
b --> rL and rX
a --> rA and rX
If a > b, go to 024 after executing
a --> rL; 0 --> rA next K

E, (B) --> rA
go to 025

E, (A) --> rA
Skip

(rA) --> 052; 0 --> rA

Page 75

Cha.pter 6 Transfer of Control

Example 2: (049) = x, (050) = y, (051) = Z, (052) = 1. If
x + 1 = y go to routine A line 061. If x + 1 1 y and x + 2
= z, go to routine B location 732.

Mem.
Loc. Instruction

020 00 000
L 050

021 B 049
A 052

022 Q 000

X 061

- - - -
023 L 051

Q 732

024

Remarks

Y --> rL and rX
x --> rA and rX
1 --> rX; x+1 --> rA; (rX) = 1
If x+1 = y, go to 061, after
executing next X
x+2 --> rA; (rX) = 1

Z --> rL and rX
If x +2 = z, go to 732

If x+2 f z, continue main routine

Example 3: (050) = a, (051) = b. If a ~ b control is to be
transferred to a subroutine starting on location 243.

Mem.
Loc. Instruction Remarks

020 B 050 a --> rA
L 051 b --> rL

021 T 000 If a > b transfer control to 243
Q 243 If a = b transfer control to 243

When Qm and Tm instructions, in either order, are in
the same instruction pair transfer of control takes place if
(rA) ~ (rL), and transfer is effected to the memory location
indicated by the right hand instruction.

SEC. 6. COMPARISONS IN THE SIGN POSITION

So that the Tm instruction shall transfer control when
(rA) is algebraically greater than (rL), the signs of both
quantities must be in the sign position. If any character
or digit other than a sign occupies the sign position, a

Page 76

Chapter 6 Transfer of Control

twelve digit comparison is made, and the transfer of control
takes place if (rA) has a pulse code of greater magnitude
than (rL). Thus, S > H, D > C, A > 8, 0 > -, - > ~, ~ > I;
refer to the UNIVAC pulse code given in Chapter 2.

SEC. 7. THE R-U INSTRUCTIONS

The Um instruction is frequently used to transfer to a
subroutine. If the Rm instruction is used in conjunction
with the Um instruction, a transfer of control may be preset
to return to the main routine upon completion of the sub
routine.

Example 1: Illustration of the use of the R-U Instructions

Consider the following set of instructions

Mem.
Loc.

020

Instruction

R 150
U 100

Remarks

Sends 000000 U 021 to 150
Control to 100

021 Main Routine

022

100

101

.
150 00 000

Subroutine A

U 021 Control to 021

Page 77

Chapter 6 Transfer of Control

Comments: The effect of the R-U instruction in memory lo
cation 020 is to

(a) Automatically place 00 000 U 021 in memory lo
cation 150

(b) Send control to memory location 100 for the devel
opment of subroutine A

(c) Send control back to memory location 021 to con
tinue main routine.

Example 2: Two quantities in a "floating decimal point"
routine together with their exponents are transferred to
"working storage" locations. Control is transferred to the
"floating decimal" addition routine. After the addition is
completed, control is returned to the main routine and the
result withdrawn from working storage.

(002) = A where A' = A x lOa
(003) = a
(004) = B where 8' = B X lOb working
(005) = b storage
(006) = C where C' = C x 10 c = A' + B'
(007) = c
(026) floating decimal addition routine.

through (083)
(050) = A
(051) = a
(052) = B
(053) = b
(054) = C
(055) = c

Mem.
Loc. Instruction Remarks

120 V 050 A, a --> rV
W 002 A --> 002, a --> 003

121 V 052 8, b --> rV
W 004 8 --> 004, b --> 005

·122 R 083 record [00 000 U 123] in 083
U 026 obtain next set of instructions

from 026

Page 78

Chapter 6

026

082

083 [00 000

123 V 006

124

u 123]

W 054

Transfer of Control

Floating decimal addition routine

Return to main routine
C, c --> rV
C --> 054, C --> 055
Continue main routine.

*Note particularly the use of the R-U instructions.

SEC. 8. PRACTICE EXERCISES ON CONTROL TRANSFER

1. (050) = ±x

(051) = ±y

Write the instructions which will compare the absolute
values of these quantities and send the larger to 060 and
the smaller to 061.

2. (050) = x

(051) = y

(052) = 1

If x < y, add one to x and transfer control to Routine
A, line 020, if x > y stop computation.

3. Write the instructions to evaluate.

for 10 values of Xi

XI = 0 .. 01, x 2 = 0.02, X3 = 0.03 -----x
10

= 0.10

Page 79

Chapter 6

(050) = 001000 000000

(051) = 050000 000000

(052) = 000400 000000

Transfer of Control

(053) = 010000 000000 (For testing)

Put the 10 values of y in memory locations 060 to 069.

Stop computer after storing y,0'

4. Six 6-digit numbers a, b, c, d, e, f occupy the last
six digital positions in memory locations 050, 051, 052, 053,
054, 055 respectively. The contents of each memory location
is in the form

000000 XXXXXX

It is required to set up a routine which will place the num
eric quantities in these words in memory locations 090, 091,
092 in the form

ab, cd, ef

That is, the quantity a would occupy the first 6 digital
positions of 090 and the quantity b the last 6 digital pOSi
tions etc.

However, this is to be done only when the given number
is less than 000000 100000 (in other words when the 7th
digit is zero). If this is not so, zeros are to replace the
number.

5. Consider any thirteen cards dealt to a player" in a
bridge game. Refer to these cards as a

"
a 2 , ••• a

'3
and

place some appropriate representation of these cards in mem
ory locations 040 to 052. Develop a routine which will
determine the number 0 f cards in each sui t, and place these
numbers in 060, 061, 062, 063.

6. In problem 5, also determine the number of honor cards
(Jacks, Queens, Kings, Aces) and place in memory locations
064, 065, 066, 067.

Page 80

Chapter 6 Transfer of Control

Sec. 9. Breakpoint Instructions

The Hbreakpoint" instructions are used largely to check
a program the first time it is run. Certain switches and
buttons on the Supervisory Control are associated with the
breakpoint instructions.

(a) Breakpoint Switch.
the ,m instruction.
"b reakpo in t".

Operated in conjunction with
Two p os i t ion s, "no rmal" and

(b) Conditional Transfer Breakpoint Selector Buttons.
Operate in conjunction with the Qnm and Tnm in
structions. Twelve buttons, "Reset", "0", "9"
HAll". One or more of the buttons "0", ... , "9"
may be depressed simultaneously.

(c) Conditional Transfer Switch. Operates in conjunc
tion with the Qnm and Tnm instructions. Three
positions, "Normal", "Transfer", and "No Transfer".

Instructions

,m Breakpoint stop; ignore m. If the Breakpoint
Switch is in the normal position, interpret ,m as
a skip instruction. If the Breakpoint Switch is
in the breakpoint position, interpret as a stop
instruction.

Qnm Conditional transfer breakpoint stop. If the Con
or di tional Transfer Breakpoint Selector Button "Re-

Tnm set" is used, the Qnm and Tnm instructions operate
in the normal manner. If the button corresponding
to n is depressed, the UNIVAC will stop after (rA)
and (rL) have been compared by Qnm or Tnm, but be
fore the transfer of control takes place. If the
"All" button has been set, the UNIVAC will stop on
all Qnm and Tnm instructions, after (rA) and (rL)
have been compared, but before the transfer of con
trol takes place.

Page 81

Chapter 6 Transfer of Control

The transfer of control indicated by the Qnm or Tnm in
struction will or will not take place according to the posi
tion of the Conditional Transfer Switch. This switch, three
position and non-locking, must be manually operated if posi
tions (b) or (c) are desired.

(a) Normal. The Qnm and Tnm instructions operate in
the normal manner.

(b) Transfer. The Qnm and Tnm instructions operate to
transfer control regardless of the relative magnitudes of the
quantities in rA and rL.

(c) No-Transfer. The Qnm and Tnm instruction do not
transfer control regardless of the magnitudes of the quanti
ties in rA and rL.

The switch may be moved to the transfer or no-transfer
position after a stop caused byaconditional transfer break
point in order to transfer or not transfer control. A neon
(CT) indicates whether or not the magnitudes of rA and rL
had indicated a control transfer.

Page 82

section

1

2

3

4

5

6

Chapter 7

Ove r f low

Topic

Preliminary Discussion

Overflow Due to Addition or
Subtraction

Practice Exercises

Overflow Due to Division

Practice Exercises

Instructions to Stop Computer
on. Overflow

Page

83

83

90

91

94

95

Chapter 7 Overflow

Sec. I. Prel iminary Discussion

It will be recalled that numeric quantities are con
sidered, by the computer, to be less than unity and if, as
the result of an arithmetic manipulation, the absolute mag
ni tude 0 f the resul ts exceeds "compu ter uni ty" an overflow is
said to have occurred. A programmer must recognize the pos
sibility of this situation and be prepared to cope with it.
It should be noted here that overflow will not occur from
the use of the "shift" instructions.

It is the purpose of this chapter to discuss the prob
lem of overflow and to present a number of exercises to
illustrate the techniques of handling it.

Before entering this discussion, the use of two sym
bols should be understood. An asterisk, placed in front of
a letter indicating the arithmetic operation, suggests the
possibility of overflow. Also, the use of brackets [] and
(), embracing an instruction, or part of an instruction,
indicates that the enclo sed quan t i ty will undergo some change
in the procedures to follow.

Sec. 2. Overflow Due to Addition or Subtraction

It is apparen t that, as the resul t of an algebraic ad
dition or subtraction of two quantities, the sum or differ
ence may exceed "computer unity" and overflow would occur.
The carry digit would be lost and the remaining digits to
gether with the correct sign would remain in rAe The com
puter reacts to an "overflow" situation automatically. The
sequence of instructions is interrupted, and the pair of
instructions in memory location 000 is inserted. This in
sertion is effected after both instructions of the original
pair have been executed even though overflow may have been
caused by the first instruction of the pair.

If memory location 000 contains an instruction which
transfers control, a new instruction sequence is initiated.
It is important to note that, if no transfer of control is
ordered, the original sequence of instructions is resumed
after executing the pair contained in 000.

Page 83

Chapter 7 Overflow

E x am pIe 1· (049) = x , (050) = y. Del i ve r x + y = z too 5 1 .

Nem.
Loc.

Case I

020 8

021 C

Case II

020 00

021 *A

Instruction

049
*A 050

051
00 000

000
B 049

050

C 051

Remarks

X --> rA and rX
y --> rX; x+y = z --> rA; if
overflow, act on instructions
contained in memory location 000.
If no overflow, (rA) = z --> 051;

o - -> r.A.

X --> rA and rX
y --> rX; x + y = Z --> rA; if
overflow, ±[Ix + y 1-1] = z--> rAe
erA) = z --> 051; 0 --> rA; if
overflow, act on instructions con-
tained in memory location 000.

Example 2: An addition is performed in a "floating" decimal
point routine. Ifan overflow occurs, (a) the sum must be
s h i f ted 0 n e po sit ion to the r i gh t , (b) a II 0 n e" m u s t bee x -
tracted into the most significant digit position, and (c)
the exponent of the sum must be increased by one.

(050)= A
(051)= 8
(052)= C
(053)= c = exponent of C
(054)= EJ = 010000 000000
(055)= -1 000 U 100
(056)= 001000 000000

page 84

Chapter 7

Mem.
Loc. Instruction

020 B 055
C 000

021 B 050
*A 0'5 1

- - -
if overflow

000 -1 000
U 100

- - - - - - -
100 F 054

E 054
101 C 052

B 053
102 A 056

C 053
103 B 052

U 022

- - -
022 C 052

Overflow

Remarks

[-1 000 U 1001 --> rA
(rA) --> 000; set overflow routine
A --> rA and rX
B --> rX, A+B = C --> rA

SR I (C)
obtain next instruction from 100.

EI = 010000 000000 --> rF
E t (E I) --> C

C --> 052; 0 --> rA
c --> rA and rX
+1 --> rX; c+l --> rA
c+l --> 053; 0 --> rA
C --> rA and rX
obtain next instruction from 022.

C --> 052; 0 --> rAe

Instructions which are considered in greater detail in
Chapter 8 are used in the following example and, hence, they
are defined here also. The instruction "50m" will print one
word from memory location m onto the printer associated with
Supervisory Control. Furthermore, it will be seen in Chapter
8, that the symbols It and i. represent "carriage return" and
"ignore" instructions to the printer.

Example 3: If the difference of two quantities overflows
(is less than -1) print "overflow" and stop the computation.

(050)
(051)
(052)
(053)
(054)

=
=
=
=
=

A
B
C
[50 054
ItOVERF

page 85

90 000]
LOWi.i.i.

Chapter 7 Overflow

Mem.
Loc.

020 00

021 C

022 *8

- -
000 50

- - - -

Instruction

000
B 053

000
B 050

051
C 052

- - -
054

90 000

- - -

Remarks

[50 054 90 000] --> rA
(rA) --> 000; set overflow routine
A --> rA and rX
-B --> rX; A -B = C --> rA
(rA) = C --> 052; 0 --> rA

print "overflow"
stop the computer

Example 4: It is desired to repeat subroutine L (memory
location 010 through 020) ten times and then proceed to sub
routine ~ (memory locations 205 through 229).

Mem.
Loc.

008

009

010

020

021

(051) = +1
(052) = n
(053) = [00 000 U 205]

Instruction Remarks

00 000
B 053 [00 000 U 205] --> rA

C 000 (rA) --> 000; set overflow
C 052 P > n (052)

Subroutine L

B 052 n - - > r X an d r.A
*A 051 +1 --> rX; n+1 --> rA

when n = 10, overflow occurs

000 00 000
U 205 go to su broutine ~

- - -
022 C 052 (rA) = n+1 --> 052

U 010 go to repeat subroutine L

Page 86

routine

Chapter 7 Overflow

Example 5: It is desired to repeat a certain computation
(subroutine L , memory locations 010 through 020) containing
in 018, the pair of instructions Mm em for the 484 points
(memory locations 516 through 999) of a certain mesh. After
the mesh has been swept, it is desired to go to an editing
routine starting at memory location 023.

(050) = [M 9 9 5 16
(051) = 000001
(052) = 00 000

C 516] See Note Below.
000001
U 023

(Note: The computer ignores the second and third digits
"99"

008 B 052

009 B 050

010

018 [M(99516)

020

021 B 018

in an instru ct ion like M99516)

C 000

e 018

C (516)]

*A 051

[00 000 u 023] --> rA and rX
(rA) --> 000; set overflow routine
[M99516 e 516]
(r.A) --> 018; 0

Subroutine

[M99516
000001

[M99517

C 516]
000001
e 517]

--> rA
--> rA

--> rA and rX
--> rX

> rA

overflow occurs when addition gives [M(OO)OOO C(Ol)OOO]

000 00 000
U 023

022 C 018
U 010

023

go to editing subroutine

[M99517 C 517] --> 018
return to compute next point

start of editing subroutine

Page 87

Chapter 7 Overflow

Example 6: If successive overflows may occur, each requir
ing a di fferen t overflow rout ine, the following coding de
vice may be employed to avoid the necessity of resetting the
overflow instruction contained in 000. Suppose that [R 092
U 089] has been stored in 000.

Page 88

'Chapter 7 Overflow

089 B 092 [00 000 u (n+1)] --> rA and rX
A 204 (000000 000005) = (204) --> rX;

(rA) + (rX) --> rA
090 C 092 (rA) = [00 000 u (n+6)] --> 092

U 092
091

Constant
092 [00 000

u (n+6)] obtain next instruction from
memory location (n+6) for appro-
priate overflow routine.

Thus~ in case of an overflow caused by the addition on line
010.

Mem.
Loc.

010 B

- - - -
000 R

089 B

090 C

092 [00

Instruction

(m t)

*A (m 2)

- - -
092

U 089

092
A 204

092
U 092

000
u (016)]

Remarks

(m
t

) --> rA and rX
(m 2) --> rX; (m t) + (m 2) --> rA;
overflow

[00 000 U 011] --> 092
obtain next pair of instructions
from 089

[00 000 U 011] --> rA and rX
5 --> rX; (rA) + 5 --> rA
[00 000 U 016] --> 092
obtain next pair of instructions
from 092

obtain next pair of instructions
from 016; i.e., start overflow
routine

It should be noted that this routine requires neither
time nor operations until, and unless, overflow occurs. It
is therefore, of greatest value when substituted for such
tests as those for end of block. end of mesh, etc.

Page 89

Chapter 7 Overflow

Example 7: An order is to be constructed to shift left s
places where 0 < s < 10. The quanti ty A is to be shifted
left s places.

(050) = 01 000 00 000 = SL 1

(051) = B G52 C 024
(052) = 01 000 09 000 = SL 10
(053) = A
(054) = s-l

Mern.
Loc. Instruction Remarks

020 00 000
B 051 [B 052 C 024]

021 C 000 --> 000; set overflow routine
B 050 [01 000 00 000] --> rA

022 *A 054 + s-l
C 024 [Os 000 00 000] --> 024

023 00 000 skip; i. e. , con tinue to next
instruction

B 053 A --> rA
024 [00 000 SLs (A)

00 000]
025 C 053 (rA) --> 053; 0 - - > rAe

If s = 0, the instructions in 024 become [00 000 00 000].
If s = 5, the instructions in 024 become [05 000 00 000].
If s = 10, overflow occurs, and the instructions become

[01 000 09 000].

Sec. 3. Practice Exercises Involving Overflow

1 . 1ft h e sum 0 f the a b sol ute va I u e s 0 f two q u an tit i e s
A and B overflows, stop computation. If not, print
"No Overflow" and tran sfer con tro 1 to anew rout ine.

2. Three quantities A, B, C, represented in floating
decimal notation, are s tor e d in 050, 051, 052.
They are to' be added and the sum D is to be placed
in 060. Provide the instructions for this routine.
Do not stop for overflow but shift appropriately
and con tin ue.

Page 90

Chapter 7 Overflow

3. There are six 10-word input items, located in mem
ory locations 060 to 119, which are to be transfer
ted to memory locations beginning with 240. When
this has been done, control is to go to 500. Place
proper instructions in 000 and begin routine with
memory location 150

(150) = [Y94060
(200) = 001010

Z 240]
000010

4. Prepare a routine which will evaluate

Y = 32. 56x 3 -27. 74x2+71. 22x+19. 00

for 50 values of x from

x = 1 to x = 50 in intervals of 1.

Sec. ~. Overflow Due to Division

It should be clear that, for all proper divisions
IDrl > IDdl and Dr ~ O. If an improper division occurs, the
sequence of instructions is automatically interrupted, and
the pair of instructions in memory location 000 is inserted.
This insertion is effected after both instructions of the
o rig ina 1 ins t r u c t ion p air h a v e bee n ex e cut ed, eve n th 0 ugh
overflow may have been caused by the first instruction of
the pair.

If memory location 000 contains an instruction which
transfers control, a new instruction sequence is initiated.
If no transfer is instituted, the original sequence of in
structions is resumed after executing the pair in 000.

When overflow due to division occurs, the quantity de
livered to rA is 10 I Dd - Dr I. The reason fo r this wi 11 be
more eviden t when the reader considers the principles of com
puter division presented in Chapter 9.

Page 91

Chapter 7 Overflo"

Example 1: In a floating decimal point routine, it is de
sired to divide N by D to obtain Q (the corresponding ex
ponents are n, d, and q). All quantities are so positioned
tbat their first non-zero digit lies in the most significant
digit position. Hence, if an overflow occurs (a) the num
erator must be shifted one position to the right and (b) the
exponent of the quotient must be increased by one. If a sec
ond overflow occurs when the division is repeated, D = 0,
the UNIVAC is instructed to print "infinity" and stop.

(050)
(051)
(052)
(053)
(054)
(055)
(056)
(057)

Mem.
Loc. Instruction

020 B 054
C 000

- - - - - - -
021 L 051

*D 050

- - -
022 C 052

00 000

- - - - - - -
Overflow Routine No. 1

000 B 050
U 134

- - - - - - -
134 -1 000

C 050

=
=
=
=
=
=
=
=

N
D
Q
q
[B 050 U 134]
001000 000000

[50 057 90 000]
itINFIN ITYJf,XX

Remarks

[B 050 U 134]
--> 000; set overflow routine No. 1

D --> rL and rX
N --> rA; Q = N/D --> rA;
(rL) = D.

(rA) = Q --> 052

N --> rA and rX
obtain next instructions
from 134

sa 1 (N)
(rA) = N --> 050

Page 92

Chapter 7

135 8 053
A 055

136 C 053
8 056

137 C 000
U 021

overflow Routine No. 2

000 50 057

90 000

Overflow

q --> rA and rX
1 - -> rX; q + 1 --> rA
(rA) = q + 1 --> 05.3
[50 057 90 000] --> rA and rX
--> 000; set overflow routine No.
return to repeat division

print "infinity" on Supervisory
Con trol

stop the computation

2

Example 2: In computing a denominated payroll, it is known
that th e quanti ty P is such that ~20 > P ~ O. I t I ies in the
position OXX"XXO 000000 in memory location 050. It is de
sired to det~rmlne whether or not P ~10., and if P > S10
to enter a tally in 060 of one ten dollar bill. -

(030) = 010000 000000
(031) = 000000 000001
(050) = P
(060) = T 1 0 (tally of ~10 bills)
(061) = [F 031 G 060]

Mem.
Loc, Instruction Remarks

020 8 061 [F 031 G 060] --> rA
C 000 --> 000; set overflow routine

021 L 030 . 1 --> rL and rX
*D 050 P --> rA; p/.1 --> rA

Overflow Routine

000 F 031 1 --> rF
G 060 (rF) = 1 --> 060 for tally

page 93

Chapter 7 Overflow

Note: If overflow does not occur, P is returned to rA in
the position, OXoXXOO 000000. If overflow occurs, P - 1 0
remains in rA in the position OXAXXOO 000000 (10Ip-101)
In either case the quantity is ready to be tested for $5
bills.

Sec. 5. Practice Exercises Involving Overflow

1. (050) = 043254000052 = X
(051) = 025063000052 = Y

Quantities X and Yare represented in floating decimal
notation. provide a routine which will place the quotient
Q = x in memory location 060.

y

2. Set up a routine to solve the simultaneous equa
tions

for x and y.

Assume that equations are independent and that the con
s tan ts a l' b l' C l' a 2' b 2' C 2' h a v e val u e s ra n gin g bet wee n
+ 10 and - 10.

3. Set up a routine to determine the twenty-five values
of z where

Z1j = 2x t +3
3y.-1

J

x and y each assume 5 values

where

Xl = -2,0, +2, +4, +6

Y1 = -3, -1, +1, +3, +5

Page 94

Chapter 7 Overflow

Sec. 6. Instructi ons to stop Computer on Overflow

If desired, an instruction can be inserted to stop the
computer in case overflow develops and on-the-stop remedial
steps can be taken to handle the situation.

Instructions

A-m
D-m
S-m
X-m

By placing minus signs in the
second digital positions of these
instructions the computer will
stop if overflow develops.

Page 95

Chapter 8

Input, Output

Section Top i c Page

1 Preliminary Discussion 96

Review of
UNITYPER 96
UNISERVOs 96
Supervisory Control 96
UNIPRINTER 97
Registers I and 0 97

2 Forward Read 98

3 Backward Read 100

4 Practice Exercises 101

5 Write Instructions 102

6 Rewind Instructions 103

7 Interlock 104

8 Supervisory Control 105

9 Practice Exercises 106

10 Editing 106

Chapter 8 Input) Output

SEC. I PRELIMINARY DISCUSSION

In the foregoing chapters, the instructions which direct
the computer to perform the variety of internal operations
necessary to the proper processing of data were described.
It is the purpose of this chapter to present the instructions
designed to get this information into the computer and those
instructions needed to obtain the results from the computer.

For proper understanding of the input and output in
structions itis advisable to review the functions of certain
component units of UNIVAC, especially as they are related to
the current discussion. First, it will be recalled that the
UNITYPER is equipped with a standard typewriter keyboard and
an auxiliary numeric keyboard. The function of this unit is
to convert raw data into a pattern of pulses, with a pulse
density of 20 to the inch, recorded on the magnetic tape.
The programmer prepares this input information in the form
of "words" of data and "words" of instructions -- each word
consisting of twelve characters. It is important to note
that when an instruction pair is unityped twelve charac
ters must be inserted. For example, if the instructions are
8 325 Q1 000, the typist must depress the keys, 800325
Q10000.

The tapes are mounted on UNISERVOs which physically con
trol the tapes in accordance with the instructions contained
in the central computer. Any number of UNISERVOs, up to ten
(and numbered 1, 2, 3, 4, 5, 6, 7, 8, 9, -) may be used.
These UNISERVOs are under automatic control and it should be
clear that they may be used as ei ther input or output devices.
They can feed data into the computer, "reading" the tape as
it moves in either a forwardor backward direction. However,
in recording the desired output, the "writing" is performed
only with the tape moving in a forward direction. .

The Supervisory Control is a main console keyboard,
and contains a typewriter dolly, all manual control keys and
indicator lights. The operation "initial read", performed by
depressing a switch on Supervisory Control, transfers the
first block (120 instructions) from the magnetic tape on the
appropriate UNISERVO to memory locations 000----059.

Page 96

Chapter 8 Input, Output

Thereafter, the computer automatically "reads" from
magnetic tape to its memory, or conversely "wri tes" from
memory onto magnetic tape according to the instructions set
up by the programmer. Information is transferred between
the tapes on the UNISERVOs and the computer in sixty word
blocks. Moreover, if proper instructions are inserted into
the computer, the resul ts may be printed on the electric type
writer associated with the Supervisory Control

The UNIPRINTER contains an electric typewriter (and a
tape reading unit) which translates the magnetic impulses
on the tape into printed copy. All keys, including upper
and lower cases of the alphabet, punctuation marks, spaces,
tabs and carriage returns, operate automatically. However,
margin and tab stops are set by hand. A tape "edited" by the
UNIVAC for print ing is compl ete in all details; fo r exampl e,
with proper coding, zeros to the left of significant digits
are suppressed, tabs are interspersed and carriage returns
operate at the end of each printed line.

I tis, al so, advisabl e to review, brie fly, th e func t ion s
of rI and rO as they are related to the input-output pro
cesses ..

Register I: Register I is a sixty word register. In
formation transferred to the computer is read from magnetic
tape into rI, and then, from rI into the memory.

Register I is unlike other UNIVAC registers because it
does not erase on read-in but only on read-out. Therefore,
rI must be erased before information is transferred from
tape to rIo If rI is not erased, a read causes new digi ts
to be superimposed upon those already in rIo This usually
resul ts in an error signal when the contents of rI are trans
ferred to the memory, since the resulting combinations very
probably will fail to satisfy the odd-checking system.

When a backward read instruction is executed, rI re
ceives the information from the tape in reverse order. To
maintain the same relative order within the block, the first
digit from the tape is stored in the least significant digit
position of rIo The digits from the tape are then filled
consecutively in a backward direction. The net resul t is

Page 97

Chapter 8 Input, Output

that all digits in rI appear in the same order whether a
backward or a forward read instruction has been executed.

Register 0: Sixty words are transferred from the
memory to rO, thence to tape, during a wri te instruction.
Unlike rI there is no separate transfer instruction to or
from rOo Therefore, rO need not be considered in coding.

SEC. 2. FORWARD READ

INSTRUCTIONS

1nm Read one block of data (60 words) from the
tape mounted on UNISERVO n to rIo The tape
moves in a forward direction. The memory
location, m, is ignored.

3nm Transfer one block of data from rI to sixty
consecutive memory locations beginning with
m, and erase rIo Then, read one block of
data from the tape mounted on UNISERVO n to
rIo The tapes move in a forward direction.
The least significant digit of m is ignored
by the computer, i.e., m is treated as an
integral multiple of 10.

30m Transfer one block of data from rI to sixty
consecutive memory locations beginning with
m, and erase rIo The least significant
digit of m is ignored by the computer.

To complete a transfer from tape to memory, it is nec
essary to read from tape to rI and fromrI to mem6ry. Note:
rI must be erased before information is transferred from
tape to rIo

Exampl e 1: Ini tial read has been performed, and rI is erased.
Read one block of information from tape 1 to memory locations
060 ... 119 and then erase rIo ·

Page 98

Chapter 8

Mem.
Loc.

000

Instruction

11 000
30 060

Input, Output

Remarks

Tape 1 --> rI
r I - - > 060 ... 119; erase rI

Example 2: Initial read has been performed and rI is erased.
Read two blocks 0 f instructions from tape 1 to memory loca tions
060 ... 179. Read two blocks of data from tape 2 to memory
locations 400 ... 459 and 200 ... 259. Read one block of data
from tape 10 to memory locations 300 .•. 359, leaving the next
block of data from tape 10 in rIo

Mem.
Loc.

000

001

002

Instruction

11 000
31 060

32 120

32 400

3- 200

3- 300

Page 99

Remarks

Tape 1 --> rI
rI -->060 ... 119; Tape 1

- -> rI
rI - - > 1 20. . . 179; Tape 2

--> rI
rI - - > 40 o ... 459; Tape 2

--> rI
rI -->200 ... 259; Tape 10

--> rI
rI -->300 ... 359; Tape 10

--> rI

Chapter 8 Input, Output

SEC. 3 BACKWARD READ

INSTRUCTIONS

2nm Read one block of data (60 words) from the tape
mounted on UNISERVO n to rIo The tape moves
in a backward direction. The memory location,
m, is ignored.

4nm Transfer one block of data from rI to sixty
consecutive memory locations beginning with
m, and erase rIo Then, read one block of
data from the tape mounted on UNISERVO n to
rIo The tape moves in a backward direction.
Th e 1 e a s t s i g n i f i can t dig ito f m is i g nor e d by
the computer i. e., m is treated as an integral
multiple of 10.

40m Transfer one block 0 f data from rI to sixty
consecu ti ve memory locations beginning wi th m,
and erase rIo The least significant digit of
m is ignored by the computer. (Note that 30m
and 40m instructions are identical).

A backward read cannot be used to start a problem since
all tapes must be mounted on the left hand reel of the
UNISERVO. Tapes move from the left reel to the right reel
during a forward read, and in the opposite direction during
a backward read.

A backward read is accomplished by moving the tape in
a backward direction and transferring digits from tape to rI
in inverse order. For this reason information is transferred
from rI to memory and in the same relative order as for a
fo rward read.

Example 1: Assume rI is erased. Read one blockof information
from tape 1 to memory locations 200 ... 259 with tape 1 moving
in a backward direction. Erase rIo

Page 100

Chapter 8 Input, Output

Mem.
Lac.

100

Instruction

21 000
40 200

Remarks

rI <-- tape 1
rI --> 200 ... 259; erase rI

Example 2: Transfer the contents of rI to memory locations
200 ... 259. Read two blocks of data from tape 2 to memory
locations 260 .•. 319 and 320 ... 379 wi th the tape moving in
a backward direction. Read one block of data from tape 10
to memory locations 400 .•. 459 with the tape moving in a
backward direction. Erase rIo

Mem.
Lac. Instruction Remarks

100 42 200 rI --> 200 ... 259; rI <-- tape 2
42 260 rI - -> 260 ... 319; rI <-- tape 2

101 4- 320 rI --> 320 ... 379; rI <-- tape 10
40 400 rI --> 400 ... 459

SEC. q. PRACTICE EXERCISES ON FORWARD AND BACKWARD READS

1) An input tape, which contains four blocks of infor
mation is mounted on UNISERVO 1. The initial
read has been performed. If the tape is moving
in a forward direction, provide the instructions
to send blocks 2, 3, 4, to memory locations 60 ...
119, 120 ... 179, 180 ... 239, clear rIo

2) Provide the instructions needed to do the follow
ing: transfer the contents of rI to memory loca
tions 320 to 379. Read two blocks of data from
tape 10, moving in a forward direction to memory
locations 100 to 159 and 160 to 219. Also, read
two blocks of data from tape 5, moving in a back
ward direction. Send the first block of loca
tions 500-559 and leave the second block in rIo

Page 101

Chapter 8 Input, Output

3) Initial read has been performed on tape 1. Pro
vide the coding necessary to transfer one block
of information from each of tapes 2, 4, 6, 8, to
memory locations beginning with 200, 400, 600,
800 respectively. Tapes 2 and 6 are moving in
a forward direction; tapes 4 and (1 are moving in
a backward direction. Clear rIo

SEC. 5 WRITE INSTRUCTIONS

Writing on tape may be done in only one direction, for
ward. If a tape already contains information and a write
is executed on block n of the tape, the information in the
succeeding blocks n + 1, n + 2, n + 3, etc. cannot be read.
The write mechanism does not always space blocks in exactly
the same physi cal posi tion on the tape. Block n, which has
just been written, may have been partially superimposed on
block n + 1. This m€-~s that the following blocks are out
of register.

There are two wrlte instructions available: one writes
on tape at 100 pulses/inch, the other writes on tape at
20 pulses/inch. Which of the two is used depends on the
future operations to be performed on the reel in question.
All tapes to be Uniprinted must be written at 20 pulses/
inch. This is the only pulse density acceptable to the UNI
PRINTER. All tapes to be used again in UNIVAC operations
should be wri tten at 100 pulses/inch. The UNIVAC will accept
ei th er pul se densi ty; however, tape at 100 pu I ses/inch may be
rea d a p p ro x i mat ely f i vet i me s as fa s t a sat ape a t 2 a p u 1 s e s /
inch.

Page 102

Chapter 8 Input, Output

INSTRUCTIONS

5nm Wri te one block of data, from the sixty con
secutive memory locations beginning with m,
on the tape mounted on UNISERVO n. The tape
moves in a forward direction. The least
significant digit of m is ignored by the com
puter. The pulse density on the tape is 100/
inch. This tape may be used only in future
UNIVAC operations.

7nm Wri te one block of data, from the sixty con
secutive memory locations beginning with m,
on the tape mounted on UNISERVO n. The tape
moves in a forward direction. The least
significant digit of m is ignored by the com
puter. The pulse density on the tape is 20/
inch. This tape may be used in future UNIVAC
or UNIPRINTER operations.

Example 1: Write two blocks of data from memory locations
200 ... 259 and 260 ... 319 on tape 6. Write one block from
memory locations 400 ... 459 on tape 10. Tape 6 is to be used
in future UNIVAC operations. Tape 10 is to be Uniprinted.

Mem.
Lo c. Instructions Remarks

100 56 200 200 ... 259 -- > tape 6
56 260 260 ..• 319 -- > tape 6

101 7- 400 400 .•. 459 --> tape 10
00 000 Skip

SEC. 6. REWIND INSTRUCTIONS

Rewind instructions are used to return the tapes to the
left hand reel of the UNISERVO after they have been processed.
This is necessary because tapes may be removed only from the
left hand reel.

Page 103

~hap ter 8 Input, Output

One or two tapes may be rewound simultaneously. If a
third rewind instruction is given during the time two tapes
are already rewinding, the computer will interlock until
one of the two previous rewinds has been complet~d.

INSTRUCTIONS

6nm Rewind the tapes mounted on UNISERVO n to the
beginning. The memory location m is ignored
by the computer.

8nm Rewind the tape mounted on UNISERVO n to the
beginning. This instruction interlocks UNI
SERVO n and produces a visual signal. No
data can be read from or wri tten on the tape
associated wi th UNISERVO n until the manual
interlock release switch on this UNISERVO has
been actuated. Changing a tape causes this
switch to be activated.

Example 1: Rewind the tape mounted on UNISERVO 4 with inter
lock. Rewind the tape mounted on UNISERVO 5 without inter
lock.

Mem.
Loc.

100

Instruction

84 000
65 000

SEC. 7. I NT E R LO C K

Remarks

Rewind tape 4 with interlock
Rewind tape 5

If a read (write) instruction is being executed and
another read (write) is ordered, computation is interrupted.
Under this set of condi tions the computer is said to be inter
locked. This interlocking condition will remain until the
first read (write) instruction is completed. Then the com
puter automatically resumes operation. and executes the in
struction which caused the interlock.

Page 104

Chapter 8 Input, Output

SEC. 8 SUPERVISORY CONTROL

The programmer may arrange to use the Supervisory Con
trol as an input-output device. When this is done certain
options are available depending on the switch settings.
These options are explained in "Supervisory Control Opera
tions". The two programmed instructions which may be used
for input or output in connection with the Supervisory Con
trol are listed.

INSTRUCTIONS

10m Stop UNIVAC operations and produce a visual
signal. Call for one word to be typed from
the Supervisory Control keyboard into memory
location m. UNIVAC operations are resumed
after the "word release button" on the Super
visory Control has been actuated.

50m Print one word from memory location, m, onto
the printer associated with the Supervisory
Control. UNIVAC operations'are resumed auto
mati cally after m has been transferred to an
intermediate output storate location prior
to printing.

The ability to type into or print out of any desired
memory location du~ing the processing of a problem permits
a very flexible control of that problem. However~ it is well
for the programmer to remember that the time required to
execute these instructions is relatively great especially for
a type-in instruction which is a human operation and an
added source of error.

Page 105

Chapter 8 Input, Output

SEC. 9. PRACTICE EXERCISES

Problems on write, rewind, Supervisory Control orders.

1) Provide the coding needed to write three blocks
of data from memory locations 300 ... 359-, 360 ... 419,
420 ... 479 on tape 10. Write two blocks from mem
ory locations 500 ... 559, 600 ... 659 on tape 3. Tape
10 is to be used in future UNIVAC operations and
tape 3 is to be Uniprinted. Also, rewind tapes
3 and 10.

2) The results to a computerproblem have been organized
into five blocks of data and are located in memory
locations 500 to 559, 560 to 619, 620 to 679, 680
to 739, 740 to 799. Provide the instructions which
will print the first word of each block on Super
visory Control printer and also which sends the
first three blocks to tape 3 and the fourth and
fifth blocks to tape 6. All information is to be
written for future Uniprinting; also tapes should
be rewound.

3) Four blocks of data are located on tape 10 and are
to be processed through the computer. Assume that
initial read has been performed. Provide the in
struction which will send these four blocks of data
to memory locations 200 to 299, 300 to 307, 400 to
459, ~OO to 559 and clear rIa Then introduce the
10m instructions which will enable the operator to
replace the data in the first word of each block.
Also rewind the tape.

SEC. 10. EDITING

General Description

Editing may be classified according to its use as
input editingor output editing. Input editing is essentially
a comb ina tion of shift and ext ract ope rat ions whi ch rearran ge
fields in order to facilitate computation. Output editing is

Page 106

Chapter 8 Input, Output

similar to input editing in the operations which are used.
However, since its purpose is to "edit" the output so that
when it is printed, the information will be easy to read
and understand, it also includes (1) the insertion of
standard punctuation and symbols such as commas, decimal
points, periods and percent signs, and (2) the insertion of
printer operation instructions such as carriage return, tab,
space, shift lock, and printer stop.

UNIPRINTER Instructions

The only instructions not previously described are the
UNIPRINTER instructions. These differ in that each digit is
essentially an instruction. The coding symbols for the
UNIPRINTER instructions are given in the first column of the
table that follows. The UNIPRINTER can be set to operate
on ei ther "Normal" or "Computer Digi t". If the printer is
set on "Normal", it will perform the operations shown in
col umn two. If th e p ri n t e r iss e ton 14 Co mp ute r Dig it" , i t
will not perform the operations indicated with two exceptions;
it will "Space" and "stop" when called for. For the other
instructions the printer will type out the symbols given in
column three.

UNIPRINTER Instruction Normal Position Compu ter Digit

,K Carriage Return Types /
t Tab Types *
~ Shift Lock Types z
Jj Shi ft Unlock Types 8
~ Single Shift Types -
6 Space Space
1- Ignore Types x
~ Printer Breakpoint Types y
P Printer stop Printer stop

Page 107

Chapter 8 Input, Output

Use of Lay-Out Sheets as an Assist in Editing

Every problem in editing is different. There may be
some short subroutines which can be standardized but in gen
eral, each problem must be approached from the standpoint of
what is to be accomplished during a particular run or group
of runs. The lay-out sheet is a great aid in the analysis
of the problem as well as to the coding and subsequent check
ing.

Before the coding of the problem is started, the input
item and the output item including the heading for the out
put page should be put on the lay-out sheets. This "would
be" heading and output item is then tested on a standard type
writer. At this stage of the problem, any desired change
can be made quite easily. Also, if any similar types of
edi ting exist, their presence is seen more easily. When this
point in the editing problem is reached, the major part has
been completed. The programmer knows what he has, what he
wants and the form it is to take. The remainder is routine
coding.

Examples of Editing

Two lay-out sheets are included on the next two pages
in order to clarify some of the examples which will be gi vena
It will be noted that the input item is a ten-word item with
an apparent waste of space. This was done to facilitate the
handling within t~e computer. It will also be noted that the
output item is only a 6-word item and is rather closely pack-
ed. The heading output is a 12-word item (multiple of 6).
Th e 0 u t put wi 11 no t b e use d a g a i n in the com put e r but wi 11 go
to the UNIPRINTER where the amount of material to be printed
is the main consideration. The length of the output i tern is
usually a factor of 60.

Page 108

'"0
~

(Jq

CD

~

o
co

(fO WORDS)

t 2 3 4 5 6 7 8 9 10 t 1 12

o I PO:' t ~um~er > 1 : pre:fi': ISUf!ix

21 0 : 0 -'-Or-O 'OJ '---Qu~ntitY-Shipped' ---I
I I I ,I I I I I

310:0:0:0} : :Unltp:'i<e: : 1

4l0}--: ,-- A m;~nt -r

(6 WORDS)

2 3 4 5 6 7 8 9 10 , , 12

o [!l-~~u:ont~ty : \' : A : A : A I
1 [-S~;;~~;· ~~r: : I i I J I p~efi~ I
21 P'~fi< 21 A I ~ar< Nu:mbe:r : : I A 1

31 sur fix : I A : A : A : A : J: 1 : ,i' I c o~ d. 1

4 [i \ i ' u nl t " Tri~~e I ;t 1

51 0: 0: uo: 0 : a: 0: 0 I A C:CO~-~t-CI~".: J I 5 [: u_: A~-~~t : I I
6[--;;;fi,x- r '-T-[S;ffiX: 'O-c~~~

, I • I' I '"

71 0 : 0 : 0 : 0: I >a~t ~um~e< : 1

81 D~sti~. I 0 : 0 : 0 : 0 : 0 :0 : 0: 0 :0 1

91 0 :0 : 0 I D ~y I 0 : 0 : 0 : 0 : 0 : 0 : 0 I
2 3 4 5 6 7 8 9 10 11 12

CA6-1251-1 (500-652)

6 [, , , :_~_~m: : 1

71 : 1

81 : 1

91 : 1

2 :3 4 5 6 7 8 9 10 11 12

OUTPUT ITEM (t 2 WORD~)

"tJ
P'

OQ
m
.....
o

• •

HEADING ITEM WITH ADDRESS

2 3 4 5 6 7 8 9 10 1 1 12

o I J(:,R' : J(~,R' : ,. :,R : ,f(: ,R : j 7)~),-]

, I MO:nth I ~ I~~Y I ~ I ~~~;-]!7: i. ~~l
21 ~ : ~ 1-"'~OiC~-N-~~ --) ~ r p r :-lpOg~ NO:]

3 r? : f{ :7 :-x I I : ~A: G ~ -I r Pi' A R

41 Y : ~ : A r S-'-S ---. E ' ,; r-;-.-~ .-;-' ~- , p]
I I I , I I , , ,

~I L > : N > ><,R : ~ : f : < 3 : 4 : ~ 1
~~ 61 t : s : 0 r-i.--'-j4 , 2 : 3: r ' d~' -t !l
-a I " ",,

c(

71 T :Jt' :;(: c : I : T : Y : V : J : L : L: E I
81 ~: K > :,.:;(>< < it':~ :,i' ><'" I
9Ij><~><,<,<,< .<,i':.i ><",1

- 2 3 4 5 6 7 8 9 10 11 12

1 23456789

o I A C ~ t. C 1,011 if,i_co_t_i O_"_""'-------L

1 1-" T,. 'Ii '.R 'ft-' i r i 'j('j--' ~j--'-)S' l
I I I I I I I I I I ,

21 ' ,-- ,--, , ,- -, -- ,----. -: I

31 : : : 1

41 : : : I
51 : : : I
61 : : : I
71 : : : I
81 : : : 1

91 : : : 1
2 3 4 5 6 7 8 9 10 11 12

Chapter 8 Input, Output

Rearrangement of Fields for Sorting

Assume that an earlier run was sorted by destination,
day, shipper number, and part number. For this, the destination
(word 08) was reduced to a 2-digit field and the day (word 09)
was reduced to a 1-digit field by assigning alphabetic
characters to 2-digi t days. These fields were then extracted
into the position as shown in word 01.

Rearrangement of Fields for Computation

In this particular probl em, since the quanti ty shipped
may be as large as a 7-digi t field, and the uni t price range
is an 8-digit field correct to the fifth decimal place, it
is impossible to shift the factors so that the amount will
be rounded off to cents by 11-place multiplication. The
amount, correct to cents, under the above conditions would
require a 12-digit field if it were not known that the com
bination of a large quantity with a high unit price does
not occur.

If, in the above problem, the quantity had required no
more than a 6-digi t field, the quanti ty and the uni t price
could have been placed as follows:

(02)
(03)

o [XXXXXX] 000 0
o [XXXXXXXXX] 000

quantity shipped
unit price

so that the 11-place multiplication could be carried out
without resorting to 22-place multiplication, adding a
round-off and then shifting. This would definitely have
simplified the problem. In such situations the chances of
the quantity exceeding 999,999 should be investigated; the
problem need not be more complicated than necessary.

Address-Type of Input Editing

Consider for a moment the UNIPRINTER instructions nec
essary to correctly print an address, and the variations in
the character and length of various parts. It will be obvious
that many complications arise. For this reason, addresses are
most often pre-edited --- they are editedas they go on tape.

Page 111

Chapter 8 Input, Output

For example, 7 words have been allotted to the address part
as seen in the heading output item on page 110. The initial
carriage returns together with the tab set, place the start
of the address correctly. Then typed it will appear as

IMAGINARY ASSEMLY PLANT

1234 so. 23rd st

CITYVILLE KY

The words allotted to an address are seldom manipulated except
as a whole.

Insertion of UNIPRINTER Operations

Attention is called to word 00 of the regular output
item on page 110. In addition to the UNIPRINTER instructions
as shown, it is desirable to have .6s precede the first
significant digit of the "quantity". This could have been
accomplished in the following manner.

B XX2

R 105

;4 000

E 421

100 C 483

101 L 483

102 .1 000

103 C 485

104 [F 485

00 000

U 100

F 420

C XXO

B 422

00 000

T 102

B 423

E 483]

Quantity from input item position
--> rA

--> Zero Suppression Routine

SL 4
100000001111
Extract Edit Symbols
--> output item

OOOOOXXXXXXX --> ws
00001-------

[00001-------] --> ws

Page 112

Chapter 8 Input, Output

105 [00 0000
u] Return Line

420 100000 001111 483 w. s. for amount to be edited

421)tOOOOO oo,l{j{j{j 485 w. s. for extractor

422 00001- ----- ..

423 !::'{j{j!::'{j{j !::'{j!::'!::'!::'!::'

It is to be noted that the sub-routine has been coded in
such a manner that lines 100-10'5 may be used for suppressing
the zeros in the "part number" (word 07) which will be a
par t 0 f th e 0 u t put w 0 r d 0 2.

Insertion of Punctuation and Standard Symbols

It is desired to suppress the zeros preceding the first
significant digit in the "amount" and to insert the decimal
point. This can be done in a manner similar to the straight
suppression of zeros. With the amount in rA,

R 113 U 106
-~~~-~-------------------

C XX5 --> Outpu t
-----------------~-------
106 F 424 100000 000011

H 486 Amount --> working storage
107 E 425 Extract decimal point and zero

F 426 000000 000011
108 ; 1 000 SL1

E 486 Extract cents
109 C 487 Amount with . XX --> w. s.

B 427 1-----------
110 L 487

T 114
111 C 488 Fabricated extracto r - -'> w. s.

B 423

Page 113

Chapter 8 Input, Output

112 F 488
E 487 Extract amoun t

113 [00 000
U Return line

114 . 1 000

U 110

423 !:J!:J!:J!:J!:J!:J !:J!:J!:J!:J!:J!:J

424 100000 000011

425 000000 0000.0

426 000000 000011

427 1----- ------

428

486 [OXXXXX XXXXXX] Unedited amount

487 [XXXXXX XXX. XX] Partially edited amount

488 [1----- ------J Fabricated ext rac to r

Page 114

Section

1

2

3

4

5

6

7

Chapter 9

Elementary Description of the Operation
o f a Co m put e r

Topic

Preliminary Discussion

Basic Electrical Concepts

Representation of Information

Characteristics of a Simple Computer

Component Units of Computer

Flip-Flops
Gating and Buffing
Comparators
Del ay Mechani sms
Adders
Compl~menting
Counting
Registers
Shifting
Distribution and Collection
Function Tables

Operation of the Computer

The Instruction Code
Organization of the Computer
Timing
The Three Stage Cycle of Operation

Introduction to the Operation of UNIVAC

Preliminary Discussion
The Four Stage Cycle of Operation

Page

115

115

117

122

124

125
126
131
133
135
138
139
142
145
146
150

153

153
155
157
162

170

170
172

,Chapter 9 Operation of a Computer

SEC. I PRELIMINARY DISCUSSION

The purpose of this chapter is to present information
which will lead to an understanding of the fundamental oper
ation of UNIVAC. It should be clear that the scope of this
development will be on an elementary level. In pursuance of
this idea it is planned to discuss in some detail a modified
simple computer which uses components contained in UNIVAC
but, it must be emphasized. this computer will not be UNIVAC.
This chapter will be concluded by pointing out the similari
ties and differences that exist between UNIVAC and the com
puter herein developed. However. before describing the com
puter and its relationship to the operation of UNIVAC. it is
advisable to review some elementary concepts of electricity.

SEC. 2 BASIC ELECTRICAL CONCEPTS
BATTERY SWITCH

R
A B

VOLTMETER

Fig. 1

The simpl~st form of electrical circuit is a battery
with a resistence connected to its terminals as shown in
Fig. 1. A complete circuit must have an unbroken path so
that current can flow out of the battery, through the ele
ments connected to it and back into the battery. The circuit

Page 115

Chapter 9 Operation of a Computer

is broken or opened if some part of this path is removed.
A switch is a device for opening or closing the circuit and,
hence, for preventing or allowing current to flow.

The battery in this circuit maintains a difference of
potential energy, V (measured'in vol ts), between its termin
als which will for~e current to flow through the circuit
e 1 em en t s. The cur r en t , I , i s d e fin e d as the move men t 0 f
electricity along a conductor and is measured in amperes.
It has been found that the current flowing in a circuit is
proportional to the difference of potential established be
tween the terminals of the battery. Then V 00 I.

This can be written as an equation by introducing a
constant of proportionality R. The constant R (measured in
ohms) is called the resistance of the circuit and measures
the resistance to the flow of current through any given cir
cuit. The expression for difference of potential between
two points can be written as V(volts) = I(amps) x R(ohms) and this
relationship is called Ohm's Law.

Thus in Fig. 1, the vol tage difference between points A
and B can be determined by Ohm's Law if the current in am
peres flowing between A and B and the resistance in ohms of
this part of the circuit are known, or the voltage differ
ence between points A and B can be measured directly by con
necting a device called a voltmeter as shown in Fig. 3.

Suppose that, when the switch is closed, the batterY
forces a current flow of 2 amperes and that the resistance R
is known to be 5 ohms. Then by Ohm's Law it will be known
that the voltmeter will register 2 amp x 5 ohm = 10 volts.
However, if the swi tch is opened the ci rcui t is broken and
no current flows. The difference of vol tage between points
A and B would now be 0 amp x 5 ohm = 0 volts.

Thus, by opening and closing the swi tch, the vol tmeter
can be made to register ei ther zero or ten vol ts. Because
the battery produces a constant potential difference and the
resistance, R, does not vary the vol tmeter can assume only one
of these two values depending upon the position of the switch.

Page 116

Chapter 9 Operation of a Computer

It is possible to hold point A at a constant potential
level, and use thi s as a reference 1 evel. If thi sis chosen
as zero, reference can be made directl~ to the voltage at
point 8. For, if the swi tch is closed, the difference of po
tential between A and 8 is ten volts. But since A is fixed
at zero then point B must be at ten volts. Considering the
circuit in Fig. 1, the voltage of point 8 will fluctuate be
tween zero and ten volts as the switch is open or closed.

SEC. 3. REPRESENTATION OF INFORMATION

The two possible voltage levels of point B provide a
means of representing information. For example, the ten vol t
condition might represent true, the zero condition false, or
the choice yes or no, or the number one or zero. It would
seem. however, that the type and quan ti ty of information that
can be represented in this manner is limited. This is cer
tainly true if point 8 is examined at only one instant of
time. However, if point 8 is sampled one second after some
reference time and then two seconds after the reference time,
making the restriction that the person operating the switch
cannot change its· position more than once per second, four
conditions can be represented.

Referring to Fig. 2, showing a graph 0 f the vol tage of
point 8 plotted against time in seconds, we see that point 8 can
have the value 0 volts during the first second, 0 volts dur
ing the second second, or ten volts during the first and
zero during the second and so on. Four distinct patterns can
be used to represent the decimal number 0, 1, 2, 3.

Sampling each of three successive time periods would
produce one of 2 3 or eight possibl e patterns representing the
decimal numbers zero through seven. 8y sampling successive
time periods one of 2n possible patterns would exit. Thus,
by choosing the number of time periods sufficiently large,
any decimal number can be represented.

It is important to realize that the pattern of voltages
of point 8 representing a number does not appear instantan
eously but appears serially. This is necessary because
point 8 can have only one of two possible voltages at any
instant of time.

Page 117

o Volts o Volts

o o

to Volts
------ ...,

o Volts
I

VOLTAGE

OF
0

POINT

B

10 Volts

o Volts
.----- ---,

I
0 2

10 Volts 10 Volts
---------.--~~--

o
2

Time in Seconds --------~~

FIG. 2

Page 118

Chapter 9 Operation of a Computer

It is advantageous at this point to repeat the struc
ture of the decimal number system as given in Chapter 2.
It is called the decimal system because it uses the ten in
t e g e r sO. 1. 2 ... 9 . Fur the r m 0 r e • a n u m be r s u c h as 2 3 9 i s
really a short hand method of writing 2 hundreds plus 3 tens
plus 9 units. This may also be written as 2 X(10 2) +
3 X(10') + 9 X(100). recalling that 10° = I. 10' = 10. 10 2 =
10 x 10 = 100. 10 3 = 10 x 10 x 10 = 1000, etc. The digi ts
2. 3 and 9 are really the coefficients of three different
powers of ten which is called the base of the system. Again
2.134 is really a short way of writing 2 X(10 3) + 1 X(10 2) +
3 X(10') + 4 X(100).

There is no reason why ten must be the only base that
can be used. Examine br i efly the binary number sy stem whi ch
uses only two integers 0 and 1. Numbers can be expressed in
the same general form as in the decimal system. Thus 1101
in the binary system is really a short hand notation for
wri tinge

Its decimal equivalent would be

8 + 4 + 0 + 1 = 13.

To represent the number expressed decimally as 17 would
require one sixteen and one unit and would be written in
binary as

1 X (24) + 0 X (2 3) + 0 X (22) + 0 X (2') + 1 X (2°) 0 r
10001.

It is interesting to note the similarity in the short
hand notation for the binary representation of numbers and
the voltage patterns representing numbers in the circuit in
Fig. 2. In the binary system numbers are represen ted by a
serial pattern of zeros and ones, and in the circui ts by a
serial pattern of no voltage and voltage. Thus, there is a
direct correspondence between an easily produced character
istic of an electrical circuit and the binary system of rep
resenting numbers. This and the fact that the rules of
binary arithmetic are very simple make it practicable to use
simple voltage patterns to represent information for comput
ational purposes.

page 119

Chapter 9 Operation of a Computer

Using the circuit described and the time interval of
one second to represent a binary digit, it would take ten
seconds to represent ten binary digits. Since such a pat
tern can represent only the range of numbers expressed de
cimally as 0 ... to 1023, it is evident that such a serial
representation of information is quite time consuming.

The obvious remedy would be to decrease the time re
quired to represent a binary digit and hence reduce the
overall time to represent a given amount of information.
If the time interval mentioned above is reduced from one
second to 1/100 of a second, any ten binary digit number can
be represented in 1/10 second instead of ten seconds.

It is impossible, however, to manually operate a switch
this rapidly or to observe. voltmeter readings changing so
frequently. It is possible to replace the switch with an
electrical device which will open or close the circuit
rapidly for accurately measured time intervals. With such
a rapidly operating device, voltmeter readings would be
impossible to observe but interest exists generally in
operating additional electric circuits with the voltage
pattern produced and not in directly observing information
so represented.

The number of binary digits that can be represented per
second is called the frequency. In the initial consider
ation of the circui t in Fig. 1, it was assumed that the
voltage at point B could change only once per second. A
binary digit, therefore, lasts for one second; hence, the
frequency would be one. In reducing the time required to
represent information, it was assumed that the vol tage at
point B could change once per 1/100 second. Thus, the fre
quency would be 100, since 100 binary digi ts could be rep
resented in one second.

The period of time required to represent a binary digit
(= 1) is called a pulse time. A pulse is said to

frequency
be present if a binary one is represented during a particu
lar pulse time. Thus, the binary number 1011 would be rep
resented electrically, least significant digit first, as pulse,

Page 120

C.hapter 9 Operation of a Computer

pulse, no pulse, pulse. This is shown graphically in Fig. 3
at a frequency of 100 pulses per second. When denoted in
this manner, frequency is sometimes called the pulse repeti
tion rate, or the "rep rate".

PULSE PULSE PULSE I
I

to
I

I I

..J I
lIJ I > I lIJ
..J lIJ I z
lIJ :::; I
C!)

z I cs:
~ 0 I
0 I
> NO PULSE I

I
0 I I

0
t ..L -L ..1...
100 tOO tOO 100

TIME SCALE

Fig. 3

Voltage changes which persist for relatively long periods of
time are called signals. In general, signals will be used
for control purposes while pulse patterns are used to rep
resent information.

Page 121

Chapter 9 Operation of a Computer

SEC. ~. CHARACTERISTICS OF A SIMPLE COMPUTER

We are now ready to define the characteristics of the
computer mentioned in the first paragraph of this chapter.
The reader is again reminded that the description to follow
is not that of the UNIVAC, but nevertheless helpful in the
understanding of the operation of UNIVAC.

In the simple computer to be considered, the "rep rate"
is assumed to be 1,000,000 pulses per second or a frequency
of 1 megacycl e, (1,000,000 cycl es per second). The time
required to generate a single pulse or to represent a single
binary digit will be 1/1,000,000 second or 1 microsecond
(1 j.Ls). It shall be assumed, further, that thirty binary
digits will be sufficient to represent the range of numbers
t hat will b e use d. I nor de r to stan d ar d i z e the tim i n g 0 f the
computer, every number shall be represented by thirty binary
digits whether or not all thirty positions are necessary.
This basic unit of information is called a computer word or
word. It has been shown that only one binary position can
be rep res e n ted at 0 n e ins t an t 0 f tim e ; bin a ry 0 new i t h a hi g h
voltage or presence of a pulse or binary zero with a low
voltage or absence of a pulse. Hence, the entire word must
be represented by a serial pattern of pulses. It is possible
to represent the word (with respect to time) with the most
signi fi can t di gi t (MSD) fi rst or wi th the 1 east si gni fi can t
digit (LSD) first. To facilitate arithmetic operation the
least significant digit will be represented first followed
by succeeding digits in order of significance up to the most
significant digit.

An additional pulse position will be added after the
MSD to indicate the sign of the quantity. No pulse in the
si gn po si tion wi 11 indi cate a negati ve quan ti ty; a pul se in
this position will indicate a positive quantity.

In order to allow a fixed interval of time between suc
cessive words on a line, additional pulse positions will be
assigned which will never contain pulses. There will be
seven such pulse positions before the LSD and four following
the sign position and will be called the space between words
(S8W) •

Page 122

Chapter 9 Operation of a Computer

The final structure of the word consists of 42 pulse
positions. The first of the seven pulse positions preceed
ing (time wise) the LSD will be designated as po. The re
maining positions are numbered consecutively through P41

which is the last of the four pulse positions of the SBW
following the sign position. This structure is illustrated
in Fig. 4.

saw SIGN NUMERIC saw

l~r)11~-6 ---.A----·~I~· 'pol

. t I I __ I

t ~SD LSt t
LAST, TIME-WISE FIRST, TIME -WISE

WORD STRUCTURE

Fig. 4

The basic pulse frequency of 1 Mg. fixes the time to
represent one pulse at 1 ~sec. Since the word contains 42
pulse positions. the time to represent one word. or the word
time. is 42 microseconds.

Page 123

Chapter 9 Operation of a Computer

SEC. 5. COMPONENT UNITS OF THE COMPUTER

At this point, descriptions of certain component units
and certain operations of the computer will be introduced.
Specifically, the discussion below will attempt to describe
the operations of flip- flops, gating and buffing, the com
parator, delay mechanisms. adders, complementing, counting,
registers, shifting, distribution and collection, function
tabl es.

DYNAMIC VERSUS STATIC SIGNALS AND STORAGE

A radio message may be thought of as dynamic. During
the reception of information some of it has already been
given, some of it is immediately available, while still more
is yet to arrive. In contrast, the message once received
and written down is static: the message may be examined in
whole or in part at any time after reception.

If the radio message were to be repeated continuously,
then the information contained in the message would be dyna
mically remembered. Anyone desiring the information would
merely tune in at any time and listen once during through
the entire message. (Obviously, the message would only be
received in its correct arrangement if the listener tuned in
just at the beginning.)

Much of the information in the computer is in dynamic
fo rm; it c ircul ate s around loops can tainin g el ectri cal del ays.
Such information can be observed serially as it passes some
point in the path, yet all the information is not available
simul taneously.

It contrast there are static storage devices in the com
puter which retain information in static form. All the in
formation stored in static form is immediately available. but
it may be realized only by sampling or probing the static
device with some signal in order to learn its present state.

Page 124

Chapter 9 Operation of a Computer

One of the most common forms of static memory is the
flip-flop (FF). It is indicated on block diagrams by the
symbol:

FF
5 R

~ I~

Fig. 5

It is a memory for one binary digit; it has two stable
states,one representing zero and the other representing one.
These two states are indicated by S (= set) and R (= restore).
Its use is sufficiently broad that the binary notation is not
always appropriate. For example, it can, in a binary compu
ter, store the sign digit, that is, either a + (which is
equivalent to a one) or a - (which is equivalent to a zero).
The flip-flop is also useful for converting from a pulse to
a static signal. For example, one pulse may indicate when a
static signal is to start and another pulse when it is to
stop. The FF can be used for generating such a static sig
nal. The duration of the signal is fixed by the interval
between pul sese

When a pulse" is applied to the "set" input,the FF is
s ai d to be set; w hen a p u 1 s e i s ap pI i edt 0 the " res tor e"
input, the FF is said to be restored or cleared.

If the flip-flop is in the "set" state, the set output
will be at the signal level and the reset output at the no
signal level. The opposite is true for the "restore" condi
tion. In some logical circuits, we shall be interested in
only one of the outputs. In this case only the necessary
output will be shown.

Page 125

Chapter 9 Operation of a Computer

•

FF
S R
~

Fig. 6

Of course, the restore output line is still present in this
case, but is not shown.

GATING AND BUFFING

Circuits known as gates are the chief form of switching
used in the UNIVAC. As their name implies, gates permit or
prohibit passage of signals from one point to another. Gates
are indicated by the following symbol:

S

Fig. 7

The signal being gated (8) appears on the left. The
various control signals are indicated as 1, 2, and 3. In
order for si gnal 8 to pass through gate G, si gnal s 1 and 2
must be present and signal 3 must be absent. Any other
arrangements of signals is sufficient to prohibit signal S.
Signal 3 is often called an inhibiting signal (note the small
circle at the point of connection) while signals 1 and 2 are
called permissive signals (without the circle connections.).

Page 126

Chapter 9 Operation of a Computer

The indications within the large circles always imply
the existence of some other device which generates the re
quired gate si gnal s. Typ ically, ano ther gate can gen erate
such gate signals.

Gt

Fig. 8

Signal S can pass through G1 if G2 developes no signal.
G2 can only develope a signal if 1 AND 2 are present AND
signal 3 is absent. Gate circuits are sometimes called
"and" circuits because they require the presence of this
AND this AND this signal in order to operate. Gates may be
"opened", "activated" or "excited" in order to permit sig
nal s to pass. They may al so be "inhi bi ted", 0 r "closed", or
they may "prohi bi t" si gnal s from passing.

It is important to realize that every gate passes ONE
signal under the influence of OTHER signals. In general,
the control signals must overlap in time the signal being
gated. The wo rd "al erted" is app 1 i ed to a gat e to de scri be
the condition when one or more but not all of its SEVERAL
control signals are present.

A "pulse" signal is one which has a time duration of
approximately one pulse time. Longer signals are generally
referred to as static type signals.

For e x amp 1 e , i f a w 0 r dis pas sin g- so m e poi n t an d the
sign position is to be examined, then 'a gate with the de
sired pul se si gn ai, say P37 tis connected to the poin t.

Page 127

Chapter 9 Operation of a Computer

A
WORD-.... -~

SIGN PULSE

Fig. 9

If a pulse is present at point A during the sign time
of a word, it is also gated through G by the p37 pulse. The
p37 pulse for the gate is generated elsewhere in the computer.

The converse of gating is buffing. The buffer is in
dicated by a symbol B. A typical buffing circuit is shown
as:

o

Fi g. 10

The purpose of buffing is to combine several signal sources
into a single line without interaction among the sources.
Thus signal 81 cannot pass into 82 but only through its buf
fer B to the output o. Either signal 81 or signal 82 can
pass into the output O. For this reason the buffing cir
cuit is sometimes called an "or" circuit.

Page 128

Chapter 9 Operation of a Computer

Gating signals can be applied through buffers, thus:

Fig. 11

Signal 1 or signal 2 may open or activate the gate to permit
signal S to pass through the gate. At least one signal must
be present; when both signals are present no new situation
has been created.

It is not necessary to show buffing on the logical
diagram if it is understood that such elements exist ~o pre
vent back-circuits. It will be assumed that no signal can
be passed in the reversal di rection 0 f the arrows. Thus,
figure 11 will be drawn as:

5 G

Fig. 12

To determine at some time after p37 if the flip-flop
is set or reset and, hence, whether the word was positive or
negative we must sample one of the output lines.

Page 129

Chapter 9 Operation of a Computer

If we need the information at time P1 to operate some
other circuit we can sample a gate fed by the flip-flop with
a P1 pulse as in figure 13.

s
FF

Fig. 13

A combination of gates and flip-flops can illustrate
some basic circuits of a computer. A gating arrangement
which is tested for the presence of a sign pulse was shown
earlier. If the information obtained from the test (or the
sampling as it is sometimes called) must be remembered then
a circuit like this can be used:

A
WORD-..... - ..

S R
FF

+

Fig. 14

Page 130

Chapter 9 Operation of a Computer

If a sign pulse is present .. it is gated by the p37
pulse to the S-input of the FF. The FF will remain set until
the p35 pulse resets it. The p35 occurs two pulse times be
fore the p37 during each word time. Therefore, the behavior
of the FF is as follows: at all times the "-" or restored
side of the FF is excited except when a sign pulse (plus
sign) passes pOint .A. When the sign pulse occurs the FF is
set. (If there are 42 pulse times per word then the FF re
mains set for 40 pulse times each time a sign pulse passes
point A.)

THE COMPARATOR (MAGNITUDE)

A binary magnitude comparator is a simple combination
of gates and flip-flops. Its purpose is to compare the mag
nitude of two unsigned binary combinations. First, it is
important to realize how to compare two binary quanti ties.
Suppo se the two quanti ti es are:

.A=O 110110111

B = 1 1 1 0 1 0 1 0 0 1,

with the LSD's shown on the right. Begin by comparing the
LSD's. They are both one's, therefore, the numbers so far
are equal. Compare the second digits: A has a one, B has a
zero; therefore, .A is now larger. The third comparison is
in favor of A and so forth, until the MSD is reached when
the decision finally falls to B.

The circuit for this comparison is as follows:

Reset
Pulse

~~""'-"'R

I----------:~S

Fig. 15

Page 131

FF
A>B

Chapter 9 Operation of a Computer

B is assumed larger than A unless proved other wise; there
fore, the restoring pulse removes the A > B before the com
parison starts. As the first or LSD pulses of A and Breach
their respective inputs, both gates, Gl and G2 are closed by
the opposite input. No pulse reaches FF. On the second
pair of digits the pulse on A inhibits G2 and passes through
Gl to set FF. A now is greater than B. The third pair of
digits follows the same procedure. When the fourth pair of
digits arrive. the pulse in B inhibits Gl but passes through
G2 to restore the FF, and so forth. When the MSD' s are com
pared, the FF is left in restored condition and the fact is
determined that A is not greater than B.

Suppose the two quantities A and B had been equal: no
pulses would have reached FF and it would have remained re
stored. Therefore, the comparator only indicates two con
clusions A>B and A~B; it can not distinguish between A<B and
A=B.

A more accomplished comparator is shown in Fig. 16.

A < B <�6__---4

A = 8 ~---+---I

FF
S 2 R

Reset

R FF
t-----~s t

Fig. 16

Page 132

t--........ A>B

Chapter 9 Operation of a Computer

When the restoring pulse restores FF1 and FF2, G3 is
open and the A=B signal is given. This signal persists as
long as identical zeros and ones appear at both A and B.
If a one appears at input A with a zero at input B then FF1
is set. If the opposite event occurs then FF2 is set and
FFl is restored if it had been previously set and G4 is
ope ned g i vi n g an A < B s i g n a I . W hat eve r s tat e e xis t s aft e r
the MSD's have been compared indicates the proper conclusion
as to the magnitudes of the two quantities, A and B. This
sign pulse suppression on G1 and G2 prevents a comparison of
sign which can be compared by another type of circuit.

DELAY MECHANISM

If signals can exist in dynamic form, then an electrical
delay constitutes a type of memory or storage facility. The
common acoustic echo illustrates this storage phenomenon.
For a period 0 f time after generating a sound, the sound is
stored in the form of acoustic waves which travel from the
sound source toward a reflector. The reflector is unessen
tial to the phenomenon but makes it easier to appreciate the
storage principle. Suppose, instead of a reflector, there
were some receiving device at a distance from the sound
sou r c e . The sam e p r inc i pIe hoI d s t rue. By the fa c t t hat
the sound has experienced a delay, that is, requires a fini te
transit time for travel between source and receiver, it has
been stored or remembered for a length of time equal to the
transit time.

Ordinarily, the transi t time for propagation of an elec
trical effect, through, say, a wire, is much too short to
real i ze any practi calor real i zabl e sto rage capaci ty. How
ever, there are several known methods by which the propaga
tion of electrical effect can be retarded. One of these is
to convert the electrical effects into acoustic patterns and
thus make use 0 f the much slower rate 0 f acoustic propagation.
The mercury memory with its transducing crystals at each end
is typical of this type of storage device. The acoustic
propagation through the mercury between the transmitting and
receiving crystals is exactly analagous to the acoustic
t ran sm iss ion des c rib e dab 0 ve.

Page 133

Chapter 9 Operation of a Computer

Another type of delay is the electric delay line. Any
coaxial cable wi th its distribu ted capaci tance and inductance
represents a delay line in which transit time for signals is
longer than over ordinary wires. A convenient equivalent
device requiring less physical space for a given delay time,
is a lumped parameter delay line in which coils and capaci
tor are wired together as follows:

Fig. 17

The total delay of such a line is fixed by the number
of sections. It is the pulse rate which determines how much
storage such a line represents. The higher the pulse rate,
the more pulses can be sent into the line before the first
pulse reappears at the opposite end of the line.

The important concept of timing now becomes a matter of
inserting and removing the correct amounts of delay in order
to bring about the synchronous arrival of various pulses and
si gnals at a gi ven poin t.

In the logical diagrams, both acoustic and electro
magnetic delays will be represented by boxes containing a
number to indicate the delay time in pulse time units.
Thus, figure 18 represents the delay of two pulse times.

Fig. 18

Page 134

Chapter 9 Operation of a Computer

If a pulse is fed into this line as a P2' it will con
trol the voltage of point A for time P2' but will not con
trol the voltage of point B until time P4 or two pulse times
after its introduction to poin t A.

ADDERS

By combining gates, buffers, and delays, several simple
types of adders can be constructed. One example is called
the half-adder. The half-adder combines the pulses of two
words and produces either sum or carry pulses according to
the laws of binary ari thmetic. These rules are as follows:

o + 0 = 0
o + 1 = 1 + 0 = 1 (sum pulse)
1 + 1 = 0 (sum pulse) and 1 (carry pulse).

A half adder is shown in figure 19.

G2 SUM
AUGEND

B
A Gt--..~--. CARRY

Fig. 19

The two inputs are marked addend and augend.
enter either input, no pulses are emitted.
appears on either input, it reaches Gland
through the delay (D), a buffer to G2. Since
one input signal it did not open and, therefore,
hibit G2. Therefore, a sum pulse was produced.

page 135

If no pulses
If a pulse

also passes
G1 had only
did not in-

Chapter 9 Operation a f a Compu ter

If two pulses are applied to a half adder, one to each
input simultaneously, then G1 does operate. The two pulses
become one pulse in G1. The output of G1 becomes a carry
pulse and also inhibits G2. The two input pulses pass
through the delays and buffers to G2 but are prevented by G2
from passing to the sum output. The two delays are inserted
in the path to G2 in order to delay the pulses for the amount
of time required for G1 to develope its inhibition on G2 if
both inputs of G1 have been excited. The half adder thus
follows all the rules laid down for it above. The half adder
will be shown on the logical diagrams by the following
s ymbo 1:

SUM CARRY

HA

ADD. AUG.

Fig. 20

In some cases the output of the carry line is not used and
will be ommi tted from the symbol. In a hal f adder, the
missing operation is the transfer of the carry pulse back to
the input of the adder so that it can be combined with the
next digit pair entering the adder. First, such a device
would require a one pulse delay between the carry output and
the input of the adder. However, there is still another
problem in that the half adder only has two inputs: the
carry pulse could not be buffed into one of the two present
inputs because the carry pulse would be lost if another pulse
should occur as a digit of the word entering that word.
Therefore, a third input must be devised to provide for the
triple input conditions when there is aone at both the addend
and the augend inputs and also a carry pulse to be added in
from the previous addition. For this operation a full binary
ddder is required. The full binary adder can be construct
ed from two half adders, which is how the half adder received
its name. An arrangement of two half adders which forms a
full binary adder is shown in figure 21.

Page 136

Chapter 9

ADD.

AUG.

ADDER 1

o

o

c
G

Operation of a Computer

ADDER 2

s
G

--..... SUM
G

G

-----.~~B~--------------------

Fig. 21

Adder 1 combines the input digits to form the proper sum.
If a sum pulse occurs it passes directly into and through
adder 2 to become a final sum pulse. If a carry pulse occurs
fro mad de r 1, i ten t e r sao n e p u I sed e I ay, D 1 , for s tor age
until the next pair of digits are added in adder 1. If they
produce a sum pulse from adder 1, then the sum pulse and the
carry pulse formed from the previous addition operation are
combined in adder 2. This si tuation, incidentally would pro
duce a carry pulse from adder 2 and no final sum pulse. If
the carry pulse occurs when zeros en ter the addend and augend
input at the next digit time, then the carry pulse passes
through adder 2 to become a final sum pulse.

On the logical diagrams a full binary adder will be rep
resented by the following symbol:

ADD

AUG
CARRY

. ... -
.. SA -
... -

r----
I

0, ~

Fig. 22

page 137

, SUM

CARRY

Chapter 9 Operation of a Computer

COMPLEMENTING

The hal f adder can be used fo r another purpose in binary
computing. The rule of the half adder is that two «ones"
pr 0 d u c e a z e roo nth e sum 0 u t put, and t hat a "0 n e" and HZ e ron
in either order on the inputs produce a one. Now examine
the b in a r y com pIe men t. By d e fin i t ion, the com pIe men t , w hen
added to the original quantity should produce all zeros ex
cept a final carryover in the place beyond the most signifi
cant digit (MSD). Thus, consider the following:

Quantity = 1 1 0 1 1 0 0 0 1 1 1 0 1
complement = 0 0 1 0 0 1 1 1 0 0 0 1 1

10 0 0 0 0 0 0 0 0 0 0 0 0

The upper quantity is represented in complementary form
by the lower quantity. Note that the complement is fO:l.'med
by interchanging ones for zeros and zeros for ones in the
original quantity except for the least significant digit
(LSD). The particular complement given in the illustration
is called a binary complement. The complement by inter
changing ones and zeros without correction in the LSD posi
tion is the binary complement minus one. Thus:

original quantity = 1 1 0 1 1 0 0 0 1 1 1 0 1

binary complement minus one = 0 0 1 0 0 1 1 1 0 0 0 1 0
1 111 1 1 1 1 1 1 111

The binary complemen t is used more frequently than the binary
complement minus one. The binary complement minus one can
always be converted to a binary complement by adding a one
to th e LSD.

Consider now the complemen ts and the half adder. If a
binary Quantity is added to a string of ones the binary com
plement minus one is obtained since the half adder has no
carryover circuit. Thus, only the individual sums are ob
tained for each pair of corresponding digits.

1 1 0 1 1 0 0 0 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1
binary complement minus one = 0 0 1 0 0 1 1 1 0 0 0 1 0
complement correction = 1
binary complement = 0 0 1 0 0 1 1 1 0 0 0 1 1

Page 138

Chapter 9 Operation of a Computer

By means of a half adder the binary complement minus
one can b e for m e d by" add i n g" the 0 rig ina 1 qua n tit y to a
string of ones. The binary complement can be obtained by
adding a one to the LSD. Thus the half adder is also a
complementer. When so used, the carry output of the com
plementer is ignored.

Consider now the following situation. If two pulse
trains are identical, and are applied simultaneously to the
two inputs, the sum output of a half adder should emit no
p u 1 s e s . The co m bin at ion s w hi c h pro d u c e nos u m p u 1 s e s are
two zeros or two ones. Thus, the half adder can be used as
a comparator. If the two input quantities are identical, no
sum pulses occur. If either quantity contains a one where
the other has a zero, the sum output emi ts a pulse which
Signals the lack of identity.

The half adder therefore, performs two very useful
functions for a serial binary computer: it complements and
it compares for identity.

COUNTING

One of the devices required in a computer is a counter
which can accept a sequence of pulses and indicate at any
time how many pulses have been received. Since the computer
operates in the binary system, the binary counter is the
basic counting device. The binary counter (BC) is indicated
on diagrams by either of the following symbols:

o

C1--.. co

s

Fig. 23

page 139

Chapter 9 Operation of a Computer

f o

CARRY
BC

STEPPING INPUT

C1 co

Fig. 24

There may be as many as three inputs to a binary counter. It
resembles a flip-flop in that it has two stable conditions.
However, it differs from the flip-flop in its basic logical
significance. A binary counter always changes state when it
is pulsed on the main input(s). The flip-flop is put into
either state without specific knowledge of its previous state,
while the binary counter cannot be so controlled by its main
input.

Each binary counter can be cleared to zero, or to one,
if desired, by special inputs, CO and Cl. A single binary
counter may be considered as an oddness-eveness indicator.
For example, if the binary counter (BC) has been cleared to
zero initially, then, any time after aneven number of pulses
has been applied to the input, the BC will read 0; conversely,
an odd number of pulses will find the BC reading one.

More easily recognized binary counting occurs when a
group of binary counters are connected as a mUlti-state
counter as in figure 25.

Page 140

Chapter 9

o o 1

Fi g. 2'5

Operation of a Computer

o o

CLEAR
TO
ZERO

INPUT

Such an array has 32 different stable states as follows:

o 0
o 0
o 0
o 0
o 0

1 1
1 1
1 1
1 1
1 1
1 1
1 1

Each time anyone counter of the group is pulsed and it
passes from one to zero, the one output delivers a pulse to
the input of the next higher stage of the counter. When all
the stages have reached one (which in the case of five count
ers equals decimal 31) all stages produce carry pulses which
turn every stage back to zero. At any time after a string of
pulses has been applied to the LSD counter input, the 5-
stage counter illustrated, will indicate how many pulses up
to 31 have been applied. Every time a multiple of 32 pulses
occurs the counter clears to zero and starts counting again.

Page 141

Chapter 9 Operation of a Computer

By increasing the number of stages such a binary count
er could count up to any power of two where the number of
stages would equal the power. Thus, a 5-stage counter has
2 5 or 32 stable states; an 8-stage counter would have 28 or
256 stable states.

The method by which such a counter is read or inter
preted depends upon how the information is to be used.
Various uses for binary counters will be given later and the
different methods for reading them will be discussed when
appropriate.

REGISTERS

The most elementary static binary memory has already
been described as the flip-flop. For remembering an entire
word. another type of binary memory can be employed. In
general. such a device is called a register. The register
is simply a combination of gates and delays hooked in a loop
s u c h t hat an y p u I see n t e r in g the I 00 p 0 r reg i s t ere x per i en c e s
exactly one word time of delay in one complete circulation.

One additional element is introduced at this point call
ed a pulse former (PFR). The pulse former is what adds the
energy of circulation to the system. Passage of pulses
through any of the elements. such as gates or delays. causes
deterioration of the pulses. The proper shape and timing of
pulses is dependent upon the PFR's which are introduced at
many points throughout the computer. They serve no logical
purpose. in general. but do lift the block diagrams out of
the realm of purely imaginary operation into the realm of
practicality.

The pulse formers are controlled by timing pulses from
the master oscillator. In the small computer we are consid
ering these occur at the rate of one million per second. or
at intervals of one microsecond. These timing pulses are
sufficient to insure that information pulses reshaped by the
pulse formers will be exactly of one microsecond duration.

Page 142

Chapter 9 Operation of a Computer

A pulse former will be shown on the diagram by the
following symbols:

.~

tB

PFR

A

Fig. 26

A pulse former will delay the transmission of pulses
for one pulse time. Timewise, it has the effect of a one
pulse delay. If in figure 26 a pulse is fed into the pulse
former during time P2' it will not control the vol tage at
point B until time P3.

Gt

Fig. 27

page 143

Chapter 9 Operation of a Computer

A typical register for a binary computer is shown in
figure 27. The direction of circulation in the register is
determined by the polarization of the PFR's and presence of
buffers (8). If the word length is 42 pulses then the reg
ister must represent exactly 42 pulse times delay. The main
delay element (which could be an electric delay line or a
mercury acoustic line) is 38 pulse times long. Each pulse
former represents 1 pulse time of delay and the compensating
delay (Dc) represents 2 pulse delay or a total of 42 pulse
times for a complete circulation.

There are three gates, Gl, G2, and G3. Gl is the out
put gate and G3 is the input gate., G2 is called the clear
gate. Its function is to interrupt the path of circulation
so that any pulses in the register are cleared out. The
clear gate is controlled by signal 82; when 82 is present G2
is inhibited and the register is cleared. The duration of
82 is important, for the signal 82 must certainly last at
least as long as the time required for a word to pass the
clear gate.

The 0 u t put gat e , G 1 , i s c on t roll e d by 81. W hen 8 1 i s
present, the pulses passing the output gate connection can
be communicated to another register or other elements of the
computer. The operation of Gl has no effect on the pulses
in the register.

The input gate, G3, is controlled by 83. Usually 82
and 83 occur together because each transfer to a register
such ashere illustrated, requires that the previous contents
of the register be cleared out before the new word enters.
Actually the duration and existence of signal 82 and S3 can
be identical.

Since G2 and G3 are at the same time point within the
register (there being no significant delay between these two
gates) the input can be opened at the same time that the
clear gate is closed or inhibited. If G2 and G3 are at the
same point in time, and the direction of circulation within
the register is as shown, then there must be exactly one
word delay between G3 and G2 from the standpoint of an enter
ing word. The existence of the buffer prevents the entering
or incoming word from reaching G2 except by the long route.

page 144

Chapter 9 Operation of a Computer

NoW, if the two gates are operated together, clearing of the
first pulse position of the previous word begins just as the
first pulse of new word passes through input gate G 3.
Furthermore, G3 should close just after the last pulse of the
incoming word. But at the same time, the last pulse of the
old word in the register has just reached the clear gate.

Since the first and last pulses of the information
portion a word in a register are separated by the space be
tween words (SBW), there are several pulse times available
d uri n g w hi c h to c los e the in put gat e an d 0 pen the c I ear gat e .
The clear gate, G2, must certainly open before the first
pulse of the new word reaches it. Due to the precise timing
th roughout the compu ter, th e time reI at ion bet ween the 0 I d
word in the register and the new word entering a register is
identical.

The timewise separation of Gl and G2 by the D2 delay
will be explained later.

SHIFTING

In the ordinary desk calculator, the operation known as
shifting is accomplished by moving the'accumulator dials on
the carriage with respect to the input keyboard. The shift
ing operation is required in multiplication and division.
Effectively, shifting is simply multiplying a quantity by a
power of the base of the number system. Thus a decimal cal
culator multiplies by powers of 10 (positive and negative)
as the carriage is moved to the left or right.

In a binary device a shift of one digit position to the
right is effectively multiplying the quantity by 1/2 or 2- 1 •

Shifting left two places is multiplication by 4 or 22. The
method of shifting in a dynamic circulating register is ac
complished by adding or removing unit pulse times of delay.
Thus in figure 28, shifting circuits have been added to a
register. The normal path of circulation is through gate
G5.

page 14'5

Chapter 9 Operation of a Computer

PFR PFR

HSB
Fig. 28

DISTRIBUTION AND COLLECTION

The flip-flop and binary counter were shown to be a
form of static binary memory. The circulating register is a
form of dynamic memory. If both types of devices exist
within the computer, there must be some means of converting
from dynamic to static storage and from static to dynamic
storage. The former process is called distribution and the
latter is called collection.

Figure 29 shows the schematic arrangement for distribu
tion. First, there is an electrical delay line shown on the
left. There is a delay of one pulse time between each tap.
The connection from the delay line to the gates are called
taps.

Page 146

Chapter 9 Operation of a Computer

W hen a seq u e n ceo f p u Is e s en t e r s th e del ay lin e , the
signal 8 can be so timed that each gate (all gates are
sampled at the same instant of time by S) will be operated
by the presence of a pulse at its tap. If a pulse exists at
any tap, it is transferred through the gate to the elementary
binary memory (M). These memories (M), for example, can be
flip-flops. They might be binary coun ters, in which case
the special clearing inputs of the BC's would be used and
not the stepping inputs.

Suppose we wish to set up the P7' Pa' Pg' and Pto posi
tions of the computer word in M

4
, M

3
, M2 and Mt • P7 controls

the voltage at point A during P7' but does not control the
voltage at point B until time Pa' During Pa time, Pa controls
the voltage at point A. Two pulse times later at time Pto'
the P7 pulse will control the voltage of point D, Pa the
voltage of point C, Pg the voltage of point Band Pto the
voltage of point A. Hence, if we sample the gates at P to
(8 = Pto)' pulses present in any or all of these four posi
tions will be transferred into the desi red memory, M t ••• M4 •

Although the sequence of pulses continues to move through
the delay line, no other pulse positions of the computer
word can be transferred to the binary memories, since the
gates are sampled only during time P,0'

Therefore, a word circulating in a register can be con
verted into static storage by using a distribution line, a
gating system and a set of flip-flops or other binar~ mem
ories. The time length of the delay line must equal the
numbers of pulses being con verted; the number of gates and
binary memories must likewise equal the number of pulses in
the sequence.

The process of collection is the opposite of distribu
tion. Figure 30 shows the schematic arrangement for col
lection. Information is stored in the binary memories Mt ,

M2 , M3 and M
4

• One output of each memory element is fed to
a gate. Signal S samples each gate during successi ve pulse
times, producing an output pulse on the transmission line,
for each gate alerted by its memory element.

page 147

o

c

B

A

INPUT s

FIG. 29

Page 148

1

r---~O
'-----'

I----~ 0 ""----

I---~O
'-----'

1----.. 0 '"----

FIG.30

Page 149

Chapter 9 Operation of a Computer

If the p 10 position of a word is stored in M4 , Pg in
M3 , Ps in M2 and P7 in M1, we can convert this to a sequence
of pulses by making S = P7. Then G1 is sampled at P7 and
will produce a pulse if the state of M1 indicates a binary
one. G2 is sampled at Ps' G3 at Pg and G4 at P10.

Only one output of each memory element is used to alert
its gate. Hence, a gate will have an output only if the "1"
output line of its memory element is excited, even though
all gates are sampled by signal S.

FUNCTION TABLES

A function table (·FT) is a device which can decode many
input lines into a single output line or encode a single
input line into many output lines. The former type function
table is called a decoding FT while the latter is called an
encoding FT.

Consider the output lines of two flip-flops. The ex
cited not-excited combination of these lines enables us to
represent numbers 0, 1, 2, 3, as shown by the following
table.

FF-2 FF-1 Numbers

R R 00

R S 01

S R 10

S S 11

The decoding of such an input into single output lines
is shown schematically in figu re 31.

Page 150

Chapter 9 Operation of a Computer

R ~~ - 'II1II,... "'111"

FF-t

5 - .4111 .. ~~ - "'111" ,.'"
R -- .411 - '1liiiIII'" 'II1II111"

FF-2

5 - .411" - , , r .. ,
'I11III'

00 CH to 11

Fig. 31

Only one output line of each flip-flop can be excited
at any instant of time. For a given output line to be ex
cited, both input lines to which it is connected (dots in
dicate connections) must be excited. The connections may be
either resistors or diodes.

If a group of flip-flops are set up, for example, by a
distribution circuit. then the quantity stored in the flip
flops can be read out on single lines by means of a decoding
function table. Similarly. a multi-stage binary counter can
be "read out" or decoded by the same type function table.

The encoding function table uses a single excited input
line to "pick up" or excite all the output lines connected
to it. Figure 32 shows an encoding table driven by the four
output lines of the decoding table shown in figure 31.

00 -411 .. .411'" - 'II1II,... '1liiiIII'" 'II1II111"

01 - - '1liiiIII'" '1liiiIII'" ... '"
to - ~ - 'II1II111" 'II1II111" 'II1II

t 4 -411 ~ - ;~ • ~~ , , ~~ " " '. 5 t 52 S3 54 S5 S6 57 58

Fig. 32

Page 151

Chapter 9 Operation of a Computer

Because of the nature of the decoding function table,
which provides the input in figure 32, only one input line
can be exci ted at any instant of time. Thus, if the "00"
line is excited, the S" S2 and 8 6 lines will be picked uP.
The "10" line will pick up S3 t S5 and S7 t but no others.
This makes it possible for a single input line to excite a
pattern of output signals which will cause the computer to
carry out some pre-determined operation.

page 152

Chapter 9

Sec. 6. Operation of the Computer

The Instruction Code

Operation of a Computer

The computer was designed to carry out only eight in
structions, in order to keep the logical circuits as simple
as possible. Therefore, only the P30 to P36 positions of a
word are decoded as an instruction. The P30 to P33 posi
tions indicate the address of a memory location if the mem
ory is to be involved in the instruction. Otherwise, these
positions are not used by the computer. When a word from
the memory is needed, the P32' P33 position indicate which
of the four memory channels contains the word, and the P30'

P31 position indicate which of the four within the selected
channel is to be read out. Thus, an address of 1000 would
indicate the zero word of channel two. Or if we number the
words from 0 (for the zero word of the zero channel) through
15 (for the 3 word of channel 3), 1000 would indicate word
8 of the memory.

The eight possible pulse combinations of the P30 to P36

position gives the code for the eight instructions the com
puter will execute.

Figure 33 indicates the portion of a word which the com
puter can use in instruction.

INSTRUCTION
CODE

CHANNEL
SELECTOR

Fig. 33

page 153

WORD
SELECTOR

Chapter 9 Operation of a Computer

The code is described as follows:

Instruction

OOOm

001m

010 0000

011m

100m

101m

110 0000

111 0000

Description

Transfer the contents of the memory
location incicated m to rA, clearingrA
of its former contents and leaving (m)
unaltered.

Transfer the contents of rA to the
memory location indicated, clearing m
of its form er con ten ts and 1 eaving rA
unaltered.

Transfer the contents of rA to rB,
clearing rB of its former contents and
leaving rA unaltered.

Transfer the address m of the in
struction word from the static reg
ister to CC, clearing CC of its former
contents.

Tran~fer the contents of memory lo
cation m to rB clearing rB of its
former con ten ts; transfer (rB) and (rA)
to the adder and return the sum to rA,
clearing rA of its former contents and
leaving rB unchanged.

Transfer (rA) and (rB) to the com
parator leaving the contents of both
registers unchanged; if (rA) > (rB)
transfer the address m of the in
struction word from the static regis
ter to CC. clearing CC of its former
contents if rA < rB do not change ce.

Shift (rA) one digit position to the
right replacing the sign position with
binary zero.

Shift (rA) one digit position to the
left replacing the LSD with binary zero.

page 154

Chapter 9 Operation of a Computer

Organization of the Computer - The overall layout of the
computer is shown in figure 34.

Memory - The main memory consists of four acoustic delay
lines each capable of storing four words, or a total storage
of sixteen words. These words can be instructions or data.

All instructions are stored in the memory as numbers,
and are distinguished from data only by the manner in which
the computer makes use of them. There is no section of the
memory specifically allocated for instructions; data or in
structions can be stored in any memory location.

It should be clearly understood that no arithmetic or
logical operations are carried out in the memory. It is used
only for storage. When a word stored in the memory is re
quired as an operand or for decoding as an instruction, it
must be transferred to the arithmetic circuits or control
circuits.

The transmission line which carries information from
the memory is called high speed bus (HSB) 1M. The line
which transmits information to the memory is HSB2M.

Arithmetic Circuits - These circuits consist of the alge
bra i cad d e r (A A), the com par a tor (C P), an d two 0 n e - w 0 r d
acoustic type storages called register A, rA, and register
B, rB. The latter serve as temporary storages for words to
be used by the adder or comparator.

The comparator is used on the 101m order to compare the
absolute values of rA and rB, and ini tiates one of two pos
sible sequences of instructions based on (rA) > (rB) or (rA)
< (rB). The comparator is also used on the 100m order to
determine whether addition or subtraction is to be performed
by AA.

The adder is used on the 100m order to add or subtract
the quantities stored in rA and rV, returning the sum to rAe
It is also used by the control circuits to increase the word
stored in the control counter (CC).

page 155

."
p)
IJQ
('D

.....
C1I
en

•
~ J

STATIC REGISTER' ----,
I • I, , i i
t • t t • .. t

CONTROL SIGNALS TO
ARITHMETIC-LOGICAL
COMPONENTS AND MAIN

MEMORY

r fAt ,"-----,
~co;~-~~ ,

1

, rA , I rB' ,
ii' •

HSB2A HSBtM

MASTER
OSCILLATOR

; I i
It.
1

I CYCLING UNIT I
I I I i I . , .. ,

TIMING SIGNALS
TO ALL COMPONENTS

t6 WORD

MAIN MEMORY

t HSBtA t "'HSBAL,~ ____ ~~~ __ _ HSB2M

BLOCK DIAGRAM OF A SIMPLE BINARY COMPlJTE R

FIG. 34

Chapter 9 Operation of a Computer

Control Circuits - The control circuits consist of the stat
ic register (SR), the cycling unit (CU), and the control
counter (CC). The static register converts the p ~o··· P36

positions of a word to be used as an instruction into flip
flop storage. These flip-flops drive function tables to
produce the necessary signals to carry out the instruction.

The cycling unit generates timing signals which are
sent to all components of the computer to synchronize its
operations.

The control counter is a one-word, mercury delay line
register. Its purpose is to store the address of the next
instruction word. The numerical value stored in CC is re
ferred to as the CC-reading. Normally, the instructions are
performed according to the numerical value of the memory lo
cations in which they are stored. Thus, if CC initially
reads zero, the computer is referred to 0000 for the first
instruction word. As the reference to 0000 is completed,
the CC-reading is advanced to 0001 and so forth. Hence, CC
functions as the sequencing mechanism of the computer.

If the normal sequence of instructions is to be changed,
then the CC-reading must be altered. Both the 011m and 101m
orders accomplish this. (See Instruction Code)

The transmission line which carries information to rA,
rB. CC and SR is HSB2A. HSBIA receives information from rA,
rB or CC and transmits it to the high speed bus amplifier
(HSBA). This is primarily a swi tching central and can send
information from HSB2A to HSBIA (for a register to register
transfer) or to HSB2M (for a register to memory transfer).

Timing - eyel ing Unit Signals

We have assumed a pulse rate of 1 Mg. for the computer.
Pulses are produced at this frequency by acrystal controlled
master oscillator, which maintains the pulse frequency with
negligible variance. The pulse output of the master oscil
lator (one per ~sec.) is not used to represent information
directly, but controls all pulse formers in the computer to
limit their output time for one information pulse to exactly
one microsecond.

page 157

"'tJ
~

(J'q
(t)

~

:::.n
co

SWITCH
~

SIGNALS FROM
MASTER OSCILLATOR

SINGLE PULSE
DEVICE

TO O.F.
FF

_______________ ---I..w ----------t .. ~1 P FR I ~

CYCLING UNIT

FF
R S

i

t ; .. t
6 35

FIG. 35

Chapter 9 Operation of a Computer

The propagation of information pulses through the var
ious components of the computer will tend to distort them,
but pulse formers are inserted sufficiently often in the
circuits to reshape tnem and keep their time duration con
stan t.

For control purposes, it is necessary to have signals
which occur at less than the basic pulse fre4uency of the
computer. It is necessary, for example, to have a signal to
mark the beginning of each minor cycle (word time) to indi
cate when Po position of a word in any of the one-word reg
isters is available for read-out. Such signals will be pro
duced by the cycling unit shown in figure 35. This is
nothing more than a one-word register with taps needed for
each signal.

After the master oscillator is started, the single
pulse device is switch operated. This produces one pulse
whose duration is fixed at one microsecond by successive
pulses from the master oscillator. The single pulse is fed
into the recirculation loop of the cycling unit. This passes
a PFR and a 01 delay, and then produces a signal at tap A
for one pulse time. The signal on this line is called a to
and indicates the beginning of a minor cycle. After 42
J-Lsec. or one minor cycle, the pulse once more reaches tap
A and the to signal is repeated.

Additional signals are needed at various times within
the minor cycle and these are produced by tapping off the
recirculation loop an appropriate amount of delay after the
to·

For timing signals which last more than a pulse time,
but which repeat each minor cycle, flip-flops controlled by
CU signals can be used. Thus, a signal is needed which lasts
from t 6 through t 35 of each minor cycle. This is produced
by using a t6 to a set of flip-flops and a t35 to reset it.
Thus, the signal condition of the set output of the flip
flop is present only during the required time in each minor
cycl e.

Page 159

Chapter 9 Operation of a Computer

Memory Timing

The main memory of the computer consists of four four
word registers or channels. The channels are numbered 00,
01, 10, and 11. Channel 00 is shown in full on ChartA
while only the input and output lines of the other channels
are indicated.

Each channel consists of a recirculation loop, a read-in
gate, G,; a read-out gate, Go; a clear gate Gc ; a control
gate G

T
• The recirculation loop contains 4 x 42 ~sec. = 168

~sec. of delay. Thus, a particular word in a channel is
available at the read-out gate once in each four minor cycles.
The time for the transit of a word from the read-out gate,
through the recirculation loop and both to the read-out gate
(four minor cycles) is called a major cycle.

It is beyond the scope of this description to deal with
the problem of getting information into and out of the com
puter. It will be assumed that all memory channels have been
filled wi th information in such a manner that the Po position
of a word is available at the read-out gate, G , at time t
i sin d i cat e d by the c y c lin gun it. T his H p u I s e p'b sit ion - tim e q,
reference will be indicated on drawings by indicating at the
appropriate point in the circuit (in this case, G ,) that p
= t. The mean s that the p posi tion of any w~rd in th~
rec~rculation loop will arr~ve at Go at t of some minor
cycJe. It also indicates that the PI position is available
at t l , P36 at t 36 , etc.

This reference timing does not necessarily mean that
the Po pulse will always be the first read-out. If Go did
not become permissive until t 3, the reference timing would
indicate that the P3 pulse is the first to pass through the
gate.

It is now possible to explain the D2 delay in the re
circulation path of the one-word register, which separates
their read-in and read-out gates. The· read-out time from
the memory to the transmission line HSB1M has been fixed at
PQ = to. It is necessary to have a PFR in this transmission
llne, hence, the time on arrival at HSB2A Which feeds the
input gates of all one-word registers is p = t. Thus, if o 0

Page 160

Chapter 9 Operation of a Computer

a Po pulse passes a memory read-out gate at time to as in
dicated by the cycling unit, it does not arrive at the in
put gate of a register until time t1 as indicated by the
cycling unit due to the one pulse delay inherent in the PFR.

There is no delay, however, between the Go' and G 1 in
the memory channels, hence, information passing from a one
word register to a memory channel must arrive with a refer
ence timing identical with the read-out timing, Po = to'
But is necessary to have a PFR in the transmission line,
HSB2A, which received information from the one-word regis
ters. In order for a p pulse to arrive on HSB2M until the
proper timing p = t it is necessary to start it from the
register a puls~ tim~ early in order to compensate for the
delay of the PFR or at time Po = t4 l' The D2 delay thus
separates the read-in gate and read-out gates of the one
word register by the necessary two pulse times.

Switching Time

Most of the gates in the computer are controlled by
signals from the encoding function table. The time required
lor the FT output signals to reach their new levels follow
ing any charge in the FT input is called switching time.
The switching time allowed for the encoding FT signals is
one minor cycle even though they reach equilibrium in less
time. The control signals on certain gates must only change
during the time the SBW is applied to the gates. A special
flip-flop controls all such gates. This flip-flop is called
the time-out flip-flop (FF-TO) and is always set whenever
the input to the encoding FT is changed. FFTO is always set
by a t signal from the cycling unit and reset by the follow
ing t ~ hence, it established the one minor cycle switching o
time.

The set output of FFTO is inhibitory on most gates, so
although FT signals may alert a gate during the time-out
minor cycle, the gate is not able to pass information until
FFTO is reset by the to cycling unit pulse. This ensures
that information will always leave a register LSD first.

page 161

Chapter 9 Operation of a Computer

The Three stage Cycle of Operation

There are three logical steps necessary for the com
puter to carry out an instruction. All instructions are
stored in the main memory; hence, the computer first obtains
the address of the next instruction to be executed. Second,
it makes use of this address to obtain the proper word from
the memory and stores the P30' •• P36 portion in a static mem
ory. Third, the output of the static memory is interpreted
by a function table which developes a pattern of signals
(unique for each instruction) to enable the computer to
carry out the indicated operation. This three stage cycle
is repeated for each order executed. The three stages of
this basic cycle are called by the Greek letters a., {3, 'Y.
The cycle counter CY, a two-stage binary counter, which
counts 00, 01, 10 and then resets to 00, is used to remember
which stage of the basic cycle 'the computer is on. See
Chart B.

CY - 2 CY - 1
0 0 = a
0 1 = f3
1 0 = 'Y
0 0 = a

Thus, CY provides the input to a decoding function
table whose output lines are the a. line, f3 line and 'Y line.
Of course, only one output line is activated at a time;
which one is picked-up depends upon the reading of CY.

Description of the Basic Cycle of Operation

Alpha time: The memory address of the next instruction
to be executed is stored in dynamic form in the control
counter (CC). This register. stores a full computer word
(42 pulse positions), although only P30' •• P33 are used to
store the address. Since only one pulse position of a word
is available to any instant of time on the recirculation
line of a register, it is necessary to transfer the word in
CC into a distributor line and convert the desired pulse
positions into static (flip-flop) storage. When this is done,
these pulse posi tions are available for as long as needed and

page 162

""d
~
(Jq
(t)

...,.
en
Col:)

0<. TIMES OUT
0<. FT SIGNALS RISE AND

STABILIZE

0(TIME ON
CC- READING-+
SR DISTRIBUTER LINE

f3 TIME OUT

f3 FT SIGNALS RISE
AND STABILIZE

A A, A __ _ r ---v-- - - ,\, '\

II I····················· ·1 I I I I I t 1 t 2 t 40 t 4t t 2 9 t 4

to to

RESET
FFTO

to

ENDING
PULSE

P30 OF CC-READING
AT G30
ENDING PULSE
DELAYED 4 PULSE-TIME

SET FFTO SET-UP SR.
STEP CY TO f3 (01)

TIMING DIAGRAMS FOR oC-TIME

FIG. 36

Chapter 9 Operation of a Computer

can be used to drive function tafles which will in turn
develope signals to extract the proper word from the memory.
Hence, the operation consists of transferring the word in ee
to a distributor line (withoutrlearing Ce) and converting
the P30 ... P36 pulses to static storage. The seven flip
flops (FF30 ... FF36) are called the static register (SR).

When CY - 1 and CY - 2 are both in the zero state, the
a line of the cycle counter decoding function table is pick
ed up. This in turn enters the main encoding function table
to select the 8, 9 and 10 lines. These signals are suffici
ent to effect the transfer from CC to SR.

The minor cycle in which CY reads 00 and FFTO is set is
the a TO minor cycle. (See figure 36) It is during this
period that FT signals 8, 9 and 10 are picked up and stabil
ized. By the end of TO, the aFT signals are alerting all
gates to which they are applied.- A t passes gate 25 which
is alerted by the set output of FFTO to reset the flip-flop.
The time-out inhibi tion is now removed from all gates. FT
signal 8 alerts the read-out gate of ce, G8, to allow the
word contained in the register to pass on to HSB1A. The
word began passing G8 as soon as FT signal 8 became per
missi ve, but was preven ted from reaching any other componen t
by the TO inhibition in the high speed line amplifier (HSBA).
HSBA consists of the PFR, G9A and G9B and the D1 delay in
the output of G9A. FT signal 9 is presen t and when FFTO is
reset G9A is alerted while G9B is blocked. Hence, the ce
reading is switched from HSB1A to HSB2A.

The word left CC with the reference timing p = t 41 ,

but the HSBA inserts the necessary delay to allow i to to enter
HSB2A wi th the proper reference timing Po = t 1. It passes
from HSB2A into the distributor line of the static register.

It is now necessary to consider at what time P30 will
be applied to G30 which controls FF30. When P30 is applied
to this gate, P31 will certainly be applied to G31 gate,
etc., hence, the portion of the word that we wish to convert
to static storage will be contained in the distributor line,
when P30 is applied to G30 and it is at this time that the
series of gates, G30, G3l ... G36 must be sampled.

Page 164

Chapter 9 Operation of a Computer

The reference timing on HSB2A which feeds the SR dis
tributor is Po = t I. If a p enters the delay line at tl
then P30 enters at t 31 . Theop3o pulse will be applied to
G30 fifteen pulses times later (after passing the delays of
the distributor line) or at t 46 or time t4 of the next minor
cyc Ie.

FT signal 10 is also present during time-on (T.ON) and
alerts G10. -G10 has the same t cycling unit signal as G25,
in the TO circuit but the t ~hich resets FFTO at the be
ginning of T.ON does not pa~s G10 even though FT signal 10
is permissive, since FFTO does not charge state quickly
enough to remove the inhibition on G10 before time t l .
Hence, it is a to one minor cycle later which passes G10.
The to pulse output of this gate is called the ending pulse
(EP), since it- occurs at the end of each state of computer
operation. This EP steps CY to 01 and sets FFTO and the
computer is now in p TO. It clears the program counter (PC)
to zero. (The use of this counter will be explained later).
It resets all of the static register flip-flops clearing any
information previously set up in static storage.

The EP also enters D4 delay and emerges at time t4 of
the f3 TO cycle. But this is the minor cycle following T. ON
and it has been shown that it is at this time that the P30
... P36 pulses of the CC reading are contained in the dis
tributor line. Hence, the EP delayed four pulse times
sam pIe G 3 0 A, G 3 1 A. . . G 3 6A a t t 4 t 0 set - up the me m 0 r y add res s
from CC in the static register.

Beta time: On f3 time the next instruction word is
transferred from the memory to the static register. The
task of reading into or from a memory channel is more com
plex than reading into or out of a one-word register such as
CC. Since the recirculation time for a word in CC is one
minor cycle, the word is available for read-out in every
m ino r cycle. However ,. th e rec i rcul at ion time for a word in
a memory channel is four minor cycles, and is available for
read-out in only one out of each four minor cycles. Hence,
to obtain a particular word from the memory necessitates,
first, selecting the channel in which the word is stored
and, second, selecting the minor cycle in which the desired

page 165

Chapter 9 Operation of a Computer

word is passing the read-out and read-in gates. The former,
a positional reference, is called channel selection and the
latter, a time reference, is called time selection.

Channel Selection - The first two digits of the memory ad
dress are stored in FF32 and FF33 of the static register.
The output lines of these flip-flops drive a decoding function
table which exci tes one of the I ines Co' C t' C 2 or C 3. The
excited line alerts the control gate, GT, of the channel in
dicated by the first two digits of the address. The channel
selector signal will be present, of course, a few J..Lsecs.
after the address is set up in SR.

Time Selection - The time selection counter (TSC) is a two
stage binary counter which is stepped once per minor cycle
by a t2 from the cycling unit. The reading of TSC at any
instant of time indicates which word is passing the read-out
gate of a memory ch annel. It mu st be remem bered that in for
mation in all memory channels circulates synchronously.
Thus, when TSC reads 01 it indicates that the 01 word in all
memory channels (that is, words 0001, 0101, 1001 and 1101)
are passing the read-out gates of their respective channels.

To select the proper minor cycle for reading into or
out of a memory channel, it is necessary to compare the two
least significant digits of the address stored in FF30 and
FF31 of SR with the TSC reading. And when the two agree,
to produce a signal for one minor cycle which will alert all
control gates, GT, in the memory.

The comparison of the word number wi th the TSC is accom
plished by gates, G70, G71, G72, and G73. As long as the
word number stored in SR does not agree with TSC, there will
be a signal output from one or more of the comparison gates.
However, when coincidence is reached, there will be no out
put from any of the gates. The buffed output line of the
comparison gates is sampled by means of gate, G1A, to determine
when the no signal condition, representing coincidence of
TSC and the word number stored in FF30 and FF31, has been
reached.

Page 166

Chapter 9 Operation of a Computer

Gate, G1A, is sampled each minor cycle by a to from the
cycling unit, but the sampling pulse will pass GlA only when
the inhibition from the comparison gate is absent. Hence,
the to will pass only when TSC agrees with the word number.
This sampling is effective only on operations involving the
memory, since only on these operations will FT signal 1 be
present, which is necessary to alert GlA.

When a to passes gate GlA, it sets the time selection
flip-flop (FFTS) to produce the time selection signal (TS)
for one minor cycle. The TS signal is limited to one minor
cycle, because the TS signal alerts gate GlB, which passes
the following to to reset FFTS.

The TS signal alerts all control gates GT,in the mem
ory channel and in addition is applied to gates G3 and G5.
If FT signal 3 is present, TS passes G3 to become the TS
signal which is used on reading out of the memory. If FT
signal 5 is present, TS passes G5 to become the TS, signal
used on reading into the memory.

Although the TS signal is applied to the control gates
of all memory channels, only one gate GT will develop an
output signal because only one of these gates will have a
channel selector signal. Thus, if the address of the de
sired word is 1001 only the control gate of channel 10 will
develop an output during the TS minor cycle.

The output of this control gate will alert the read-out
gate G , the read-in gate G

1
and the clear control gate GR

of' chartnel 10. If the operation is to transfer a word from
the memory, the TS o signal will be present and gate G will
be fully alerted. This permits one word to leave th~ mem
ory channel and enter HS81M. If the operation is a transfer
to the memory, TS 1 will be present and G, and G will be
fully alerted. This permits one word to enter tlie memory
channel from HS82M through G, and blocks the recirculation
path of the channel for one word time by inhibiting the
clear gate, Gc ' with the output of GR.

Page 167

Chapter 9 Operation of a Computer

It should be noted on operations involving the memory,
that there may be several minor cycles of time-on during
which the computer does nothing but wait for agreement of
the TSC and the word number stored in the SR. These minor
cycles of time-on are called latency time.

It is now possible to consider the operation of the
computer on fi time. The ending pulse pr~duced at the con
clusion of a time stepped CY to 01 (fi) and set FFTO. During
this fi time out minor cycle, the cycle counter decoding
function table decodes the 01 output of CY and excites the
fi line. This in turn enters the main encoding function
table to select FT signals I, 3, 7 and 11. Also on this TO
minor cycle, the channel selector signal is picked up
according to the most significant digit of the address
stored in FF32 and FF33 of the static register.

On fi time-on the TS signal is produced as soon as TSC
agrees with the word number stored in SR because FT signal
1 is present. FT signal 3 is also present and the TS o sig
nal is produced as well. This two signals are sufficient to
read the desired word from the memory to HSB1M. The word
leaves the memory with the reference timing Po = to and
after passing the PFR in HSB1M reaches HSB2A with the timing
PQ = t l • From HSB2A the word is fed into the SR distributor
lIne. (It is also sent to the read-in gates of the one-word
register, but this is trivial since none of these gates are
open). It is the P30' •• P36 position of the word (the in
struction portion) which are to be converted to static stor
age. The set-up time then is the same as for a time or at
time t4 following the time selection minor cycle. The end
ing pulse for the fi operation occurs at the end of the fi time
selection minor cycle. It is obtained through gate G7 • This
gate requires FT signal 7, present on the fi operation, and
the TS signal. The TS signal is necessary because the dura
tion of fi time-on varies depending upon the number of minor
cycles of latency time. A t passes this gate at the end of
the fi time selection minor cycle and steps the cycle counter
to y (10), sets FFTO, and resets the SR flip-flops. Delayed
four pulse times, it samples gates G30 ... G36 or a t4 and
converts the p ~O' •• P 3 6 posi tion of the word obtained from the
memory to statIc storage for use on a time.

Chapter 9 Operation of a Computer

During ~ time selection, simultaneous with the transfer
of the next instruction word from the memory to SR, the con
trol counter reading is sent to the adder, advanced by 1 in
the P30 position and returned to CC.

Gate G11 is opened during the ~ time selection minor
cycle by the presence of FT signal 11 and the TS signal.
The CC reading is transferred through G11D, a PFR and gate
G58A to become one input to the adder. Gate G58A is open
since neither the Si nor TO signals are present. The other
input to the adder s a pulse (binary one) during the time
the p 0 posi tion of CC is en tering th e adder. Thi s is ob
tained through gate G1lE which is alerted by FT signal 11
and TS, by passing a t 29 from the cycling unit. The refer
ence timing for the CC input to the adder is p = t!i 1; hence,
P30 = t1!9· Thus, the t 29 passed by G11E is Gadded into the
P30 posltion of CC. The result of this operation is to ad
vance by one the address stored in P30 ••• P33 of CC.

The sum which is the new CC reading is returned to CC
through a PFR and D1 on the sum output line of the adder and
through read-in gate GlIB of CC which is opened by FT sig
nal 11 and TS. These same signals operate gate G1lA where the
output inhibits clear gate GllC in the recirculation path of
CC to clear the register of its former contents.

Thus, at the end of a current ~ cycle, the address
stol-ed by CC is that which is to be used on the next ~ cycle.

Gamma time: On y time the computer executes the in
struction that was brought from the memory and converted to
static storage during ~ time. The instruction code stored
in FF34, FF35 and FF36 drive a decoding function table to
pick up one of the eight possible instruction lines, which
fee d th e m a in en cod in g fun c t ion tab 1 e. The pat t ern 0 f s i g -
nals produced by an instruction line and the address (if the
memory is involved) are sufficient to carry out the in
dicated operation.

The instruction lines can be excited only on y time
since all instruction lines require the y line from the cycle
counter decoding function table.

page 169

Chapter 9 Operation of a Computer

Sec. 7. Introduction to the Operation of UNIVAC

Prel iminary Discussion

A complete discussion of the operation of UNIVAC re
quires a description of the four-stage cycle of operations
and detailed analysis of each of the forty-five orders.
However, the remainder of this chapter will contain only a
brief description of the four-stage cycle of operation.

Before covering a analysis of the mode of operation, we
shall briefly review the word composition and the organiza
t ion of the memory. A UNIVAC word is the fundamen tal uni t 0 f
memory and consists of twelve decimal digits, where decimal
digit is interpreted as anyone of the 63 characters shown
in the C-10 code. The digit positions in a word are numbered
from left to right:

x X X X X X X X X X X X

1 2 3 4 5 6 7 8 9 10 11 12

Each decimal digit is composed of seven binary digits,
grouped for convenience in discussion as shown:

X XX XXXX -one decimal digit-

the right four being the binary part, the center group of two
known as the zone indicators, and the left most digit, the
check pulse.

The C-10 code-depicts the binary composition of each of
the 63 valid UNIVAC digits. In particular, it is seen that
the numbers zero through nine have binary zeros in the zone
po sit ion s , w hi 1 e the i r bin a r y par tis in th e ex c e s s - t h r e e
notation mentioned in Chapter 2. The number of binary ones
present in tte binary part and zone indicators determines
the check pulse. Thus, each decimal digit consists of an
odd number of binary ones.

page 170

Chapter 9 Operation of a Computer

The main memory of the UNIVAC is a set of 100 acoustic
delay lines called channels. Each channel has a capacity of
10 words. In addi tion, there is a ten word channel, regis
ter y, a two word reg ister V, and s 1 x one wo rd regi sters A,
X, L, F, CC, and CR. (See EBU-100 - Chart I in the Appendix)
In the input circuitry there are six ten word channels known
as register I, and similarly six ten word channels, register
0, in the output section of the computer. The essential
components of each channel and register are identical with
the acoustic memory of the small computer described in the
preceeding sections of this chapter.

HSB1 4- Go ---
OUTPUT
GATE

CLEAR GATE
- Gc INPUT -

GATE

DELAY LINE
,.

GI r4---- HSB2

Fig. 37

The time necessary for the voltage train representing a
complete word to pass a given pOint in the computer is known
as a minor cycle, and is a fixed interval of time. The
cycling unit (CU) emits signals marking the elapse of each
minor cycle and generates the timing signals needed for the
proper operation of all units.

The word positions in each ten word channel are numbered
from zero to nine. The cycl ing uni t assu res th e synchroniza
tion of all ten word channels, so that when word 5 of channel
00 is ready to emerge from its delay line, word 5 of each and
every 10 word channel is ready to emerge from its respective
delay line. Further, when digit position 12 is ready to
emerge from register A, digit position 12 of some word in
every delay line is ready to emerge. Words travel through
the computer least significant digit first, that is digit
position 12, first, followed by 11, 10, --- 1. Also, with
each decimal digit the binary part preceeds the zones which
preceed the check pulse.

Page 171

Chapter 9 Operation of a Computer

Since the only time a word may be brought out of the
memory is when it is passing by the output gate some means
must exist for determining when the desired word may be
operated upon. In order to identify word 073 it is not
enough to specify that the word is in channel 07. We must
know at what time the seventh word in the channel is ready
to emerge. The time sel ect ion coun ter (TSC) coun ts the num
ber of minor cycles elapsed modulo ten. Thus when TSC reads
3 the third word of each ten word channel is ready to emerge
from its delay line. The time selection counter and the de
vices for selecting a particular channel of the main memory
are called the memory switch.

The Four Stage Cycle of Operation

The normal operation of the computer involves four
distinct stages called a, p, y, S, and are executed in that
order. The cycle counter CY is a two stage binary counter
(four stable stages 00 = a, 01 = p, 10 = y, 11 = S) which
indicates the current stage the computer is on. Each stage
is further divided by "time-out" peri'ods, TO, as follows:

CY Readings stages

a TO
00 a

p TO
01 P

y TO
10 y

S TO
11 S

The purpose of these several divisions will become
clear as the characteristics of each stage are considered.
Also, in the discussion to follow, it will be helpful to the
reader to refer to the 'Simplified Block Diagram of UNIVAC'
(EBU-I00) - Chart I in the Appendix.

Page 172

Chapter 9 Operation of a Computer

To begin, assume that CY is in the a stage and the time
out flip-flop is set, producing the a TO period. When CY
reads a (00) it causes the function table to generate certain
signals associated with the a stage. The presence of the
time out signal which lasts for one minor cycle prevents any
further action of the computer and is necessary to allow the
function table signals to rise to their normal voltage level.
Thus one minor cycle elapses and then a pulse from the cy
cling unit removes the time-out signal by resetting flip-flop
TO. Removal of TO allows the a function table signals to
open the output gate of the control counter CC whence the
word in CC passes out onto high speed bus lA, (HSB1A) into
the high speed bus amplifier (HSBA) which under the action
of the a function table signals switches the word onto HSB2A.
While the word is on HSB2A it is examined by the USB odd
even checker (USB OEC). As each decimal digit enters HSB2A
the number of binary ones is counted by OEC. If for any dig
it an even count is registered, an error signal is produced
stopping the computer on the next time out period. The word
from CC en ters HSB2A and en ters the con trol register CR whose
input gate has been opened by an a FT signal. It passes
through CR and en ters the static register SR. SR consists of
a s~t of flip-flops and at the proper time a pulse from CU
transfers the digits 7 through 12 from their dynamic form as
a voltage train into static form in the SR flip-flops. At
the same time a pulse from CU is allowed to step CY to ~
(01) and set FFTO. The word in CC will appear as:

oooooooooxxx

where XXX is a number between 000 and 999 and thus OOOXXX
is set up in SR at the end of a time.

When Cy was stepped to ~ (01) the ~ function table sig
nals are generated. Again the presence of TO prevents any
action of the computer for 1 minor cycle in order that the
FT signals have time to rise to full strength. During each
minor cycle the reading of TSC and the right hand digit
(time selection digit) in the static register are compared.

page 173

Chapter 9 Operation of a Computer

During the minor cycle in which they agree, a flip-flop
(FFTS) is set and in conjunction with the ~ FT signals a
signal is applied to the output gate of each of the 100
chan n e 1 s 0 f the rna i n m em 0 r y . Mean w nil e dig its 2 and 3 in
SR have been decoded in the channel selection part of the
memory switch and a signal is applied to the output gateof
one particular channel; thus, only one channel during one
minor cycle will have both signals present to open its out
put gate. This minor cycle is called the time selection
minor cycle and may be as much as the 10th minor cycle after
CY was stepped to~. The TS and ~ FT signals close the
clear gate and open the input gate of CR. The word from the
selected channel passes out onto HSB1M into the HSB ampli
fier where it is routed onto HSB2A. It is also examined by
HSB OEC. From HSB2A the word enters CR. During this TS
minor cycle the output gate and a special input gate of CC
are opened while the clear gate is closed. The contents of
CC are routed to the adder by a special path where 000 000
000 001, generated by eu, is added tQ it and the sum coming
from the adder returns to CC. At the termination of the TS
minor cycle CY is stepped to y and TO set. The presence of
TO closes the output gate of CC, the input gate of CR and
opens the clear gates of CC and CR. The input gate of CC is
closed somewhat later in order that all of the sum returning
from the adder will enter CC.

Returning to the ~ TS minor cycle, the word from the
memory enters the recirculation path of CR and it is also
routed into the SR. At the same time, the ending pulse from
CU which sets TO and steps CY will also set up the digit po
sitions 1 - 6 in the SR flip-flops.

Recapitulating:

a TO:
a:

~ TO:
~:

a function table signals rise to strength.
digit positions 7 - 12 of CC set up in SR. End
ing pulse from CU steps CY to ~ and sets TO.

~ function table signals rise to strength.
during ~. TO and each following minor cycle digi t
posi tion 12 (TS digi t) in SR is compared wi th
TSC. Upon agreemen t the word in the memory lo
cation specified by digits 10 - 12 of CC (which

Page 174

Chapter 9 Operation of a Computer

was set up in SR during a) is transferred to CR
and the left 6 digits (left instruction) trans
ferred to SR. The contents of CC are augmented
by 1. The ending pulse for CU steps Cy to y and
sets TO.

Attention is called to the similarity of stages a and ~
in UNIVAC to that of the elementary computer. However, the
small computer has no device similar to CR, the instruction
word coming from the memory entering SR directly. Since a
UNIVAC instruction is completely defined in six digits, it
permits two instructions per word. In order to speed compu
tation, the number of memory "look-ups" should be reduced to
a mInImum. Thus by use of CR, it is possible to extract two
instructions from the memory at one time. The instruction
pair is stored in CR during ~ time, and the left hand in
struction (digits 1 - 6) are sent to SR in time for the end
ing pulse that steps Cy to y and sets FFTO to set-up the in
struction in the SR flip-flops.

During y TO, the instruction in the SR actuates the
function table directly to produce the signals peculiar to
that instruction. .After TO is removed the instruction is
executed. CY, being on y, produces a special function table
signal that passes the ending pulse of the left-hand in
struction to set-up the right-hand instruction in SR at the
same time as CY is stepped to 8 and TO set. This same pro
c e s sis then rep eat e d for 8 tim e. Howe v e r , th e end i n g p u 1 s e
now steps CY to a and the entire four steps are repeated.

This completes the discussion on the logic and operation
of UNIVAC and the components used by UNIVAC as planned for
this manual. This, of course, is an incomplete discussion of
the subject and it is planned, at some later date, to issue
a complete manual on the logic of UNIVAC.

Page 175

Section

1

2

3

4

5

6

7

8

Chapter 10

Flow Charts - An Aid to Programming

Topic Page

Preliminary Discussion 176

Assembling and Ordering Symbols 177

Logical Choice Symbols 179

Computation and Transfer Symbols 181

Illustrations Showing UseofSymbols 182

Additional Flow Chart Symbols 197

Concluding Remarks on Flow Charts 209

Notes on Multiple Input Routines 210

Chapter 10 Flow Charts

SEC. I. PRELIMINARY DISCUSSION

In the previous chapters were discussed the forty-odd
orders which the UNIVAC will execute. With these orders
were illustrative examples designed to clarify each order
and to suggest how these basic operations may be organized
to effect the solution of a problem. The purpose of this
chapter is to examine further the methods o'f organizing
these instructions to accomplish desired results.

From a logical standpoint UNIVAC instructions (and those
of most digi tal computers) can be grouped into three categori es,
called Logical Operations:

A) T r an sf e r 0 fin for mat ion fro m 0 n est 0 rag e 1 0 cat ion
(or medium) to another. In this category are the
UNIVAC orders B, C, E, F, G, H, J, K, L, R, V, W,
Y, Z, 10, 50, In, 2n, 3n, 4n, 5n, 6n, 7n, Bn.

8) Counting and its mathematical variant of alge
braic addition, multiplication, and division; com
prising the A, D, S, M, N, P, X, On, -n, .n, and ;n
orders.

C) Choice between which of two sets of instructions is
to be performed. In this group are the Tn, Qn, 00,
U, 90, Overflow, and ,0 orders.

"Programming" may thus be defined as the combining of the
three Logical Operations to "solve" a particular problem.
A "p rogram" is, then, the act ual com bin at i on 0 f such ope r
ations.

There is no general method available, as yet, by which
one can determine how the Logical Oper ations may be assembl ed
to solve a problem, or even to determine if the problem has
a solution suitable for digital computers. This is, there
fore, a question that must be decided on the basis of indi
vidual experience and judgement. Again, to choose among
several proposed methods, experience and judgement are the
best aids in determining which is most suitable.

Page 176

Chapter 10 Flow Charts

However, once the general plan of attack has been for
mulated there are aids to the programmer in accomplishing
the yet considerable task of puttin~ the solution in terms
of the actual in structi on s the comptl t er can car ry out. 0 f
these aids we shall discuss only on e --- flow-charts. Of
the others, short-order code, executive routines, tape
libraries, the reader is referred to the reference in the
bi bl iography.

Flow-charting is a graphical device to aid the pro
grammer in the detailed organization and improvement of the
basic plan of attack. Essentially it consists of symbols
for the Logical Operations we have discussed and devices to
assemble and order them.

SEC. 2. ASSEMBLING AND ORDERING SYMBOLS

The "path of computational flow" is indicated by a di
rected line segment:

The inference is obvious that the next step in the problem
wi 11 be f 0 un din th e d ire c t ion 0 f t)l ear row. W her e two 0 r
more different paths of computational flow merge to follow
one common path a "fixed connector" is placed at the point
of merging:

Page 177

Chapter 10 Flow Charts

By numbering the fixed connectors we need not indicate a
merging of flow paths by the actual joining of the lines as
shown above. This is especially advantageous where the
merging flow lines would have to come from widely separated
areas of the chart. Thus, figures A and 8 are identical
operations.

Figure A Fi gure 8

If for reason of,clarity we wish to indicate that a
certain condition is true at a certain point in the line of
computational flow, a "flag" asserting the condition is
attached to the flow line:

Page 178

Chapter 10 Flow Charts

A=B

-

SEC. 3. LOGICAL CHOICE

Logical choice between two paths of computational flow
based upon the relative magnitudes of two quantities A and B
is indicated by:

Or, for the choice of paths based upon the equality of two
qu an tit i e s :

Page 179

Chapter 10 Flow Charts

Standard practice has been to dispense with the flags in the
case of logical choice by the following scheme:

>

<

Ambiguity is avoided if we remember that the condition ex
isting on either outward flow line is that obtained by re
placing the colon (:) wi th the> or 5- symbol where the choice
is madeon relative magnitude or by = or ~ when the choice is
based upon equality.

Page 180

Chapter 10 Flow Charts

SEC. ij. COMPUTATION AND TRANSFER SYMBOLS

The evaluation of a formula or straight computation
is indicated inside a rectangular box:

----~4~_X_2_i __ + __ 3_L_O_G __ y-i-~---C __ i~I~--~~~

Where the arrow indicates that C j is now the quantity x~ +
3 log Y j • This box thus means a computation and a transfer
operation. The redundant case of a transfer only would appear
as:

A special case is made for all ari thmetic operations which are
essentially counting in nature. For example, if we desired to
compute anothe r C i we woul d wan t to increase the subscript i.
This is what we call a counting operation and is indicated by
a "substi tution" box:

.. 0, i + 1-'

The subscript idea will be covered more completely later.

Page 181

Chapter 10 Flow Charts

SEC. 5. ILLUSTRATIOKS SHOWING USE OF SYMBOLS

We shall introduce other commonly used flow-chart sym
bols when needed, but first let us bee how these symbols may
be combined to form a program.

E x am pIe 1: G i v e n a set 0 f t hi r tee ncar d s, de t e r min e if a
jack i s pre s en t.

The analysis of this problem is quite simple and
straight-forward: let us examine the face value of each
card in turn. I f the card is a jack, we shall indicate in
some manner that the problem answer is "yes". But if no jack
turns up in any of the thirteen cards, we will give the ans
wer "no". A qu estion ari ses as to the way we shall indicate
that we are considering a particul ar card of the set of thir
teen cards, and how we can make sure that our examination will
overlook no cards. The simplest rep~y is that such a device
already exists. Let us assume that the cards are stacked -
we can al ways do thi s, then it is natural to refer to the
top card of the stack as lithe first card", the card immediately
under this one as "the second card", and the next one down as
"the third card", and so forth until the thirteenth card is
reached which we call "the 1 ast card". As long as we do not
alter the order of the cards by shuffling the deck, the
"fourth card" is quite sufficient to designate one and only
one card. Again, when we are examining the cards, if we start
by looking at the top, or "first card", then at the "second
card", and so on, each card in its turn, we know that when
we have examined the "thirteenth card" we will have looked
at each and every card, and will have missed none of them.

Assuming that the cards are now stacked we can draw a
flow-chart of our solution at once, as shown in figure 1.

It is obvious that even for the small number of cards
we have to examine this flow-chart is a long and cumbersome
affair. To those with mathematical experience an improve
ment is easily evident. The great clarity and power of math
em at i c a I tho ugh t lie sin its use 0 f s y m bo I s a s ash 0 r than d
notation for a word description which at best is often long

Page 182

Chapter 10 Flow Charts

and ambiguous. Let us make use of this technique and see
how it may ai d us in conden sing thi s fl ow- chart. I f we de
signate the letter C to stand for card, then by introducing
a subscript we can easily refer to any particular card: C ,
being the first card, C2 the second card, C3 the third card,
and so forth. Cl is the obvious generalization of this con
cept, and will thus stand for the ith card of the thirteen.
Initially we will set i = 1 so that C, then means C. or the
first card. After examining this card we can increase i by
1 and then C, will mean the second card C2 • By testing for
i = 13 we will be able to tell when we have examined the
"last card". The flow-chart will now appear as shown in
figure 2.

Let us take a brief tour through the flow-chart so that
every operation shown will be clearly understood. From the
start circle, the first operation encountered is the sub
stitution box

which tells us that the
card counter i is initially set to read 1, the first card.
The comparison symbol

--{ Cj : JACK)-

is next to be encountered.
A t t his tim e, wee x am i net h e s e 1 e c ted car d to de term in e i f
it is a jack. Two paths of computational flow are shown
leaving the comparison box. This is always the case; which
path we follow depends, of course, upon the result of the
comparison. If the card C, is a jack, we will leave the
com par i son bo x a 1 0 n g the "e qua 1 to" flo w 1 i n e and pas s
directly into the operation box ---.I 1
instructing us to print the answer -. PRINT II YES" ...
"yes". Having found a jack we then
stop. However, if we take the "not equal" path from the above
comparison box, weknow that the ith card, Cl,is not a jack.

Page 183

~
~
aq
(1)

I-A
(X)

~

t" ,oF
J-----t~~(FIRST CARD: JACK

==

FIFTH CARO:JACK

-=

:=

:::

=

~TWELFTH CARD:JACK J----1.~1 PRINT "NO

=- = =

t-------t.~1 PRINT "YES"

FIGURE 1

=0
Z

II

t
Z
a:::
a.

t

Page 185

en
IJJ
>-
t
Z
it: a.

Chapter 10 Flow Charts

Therefore, we want to examine the next card. But first we
must assure ourselves that there is a next card, that is,
that the card we just examined was not the last card in the
stack. The comparison box

-{ i :13) •
will determine if

the card just examined, C T' is the 1 ast card, C 13. Thus, if
i = 13, we enter the operation box,

--'PRINT "NOI'~
telling

us top r in t the an s we r "no" sin c ewe h a vel 00 ked a t all
thirteen cards and found no jack among them. If the card
just examined was not the last card, we then increase the
card counter i in the substitution box
and proceed to examine thi s new card in
the same fashion, bypassing the box.

The flow-chart is a precise description of how we in
tend to carry out the process. But before we can instruct
the computer to solve this problem for use we must indicate
what a card is to the UNIVAC. The pertinent information pre
sent on a pI aying card is only the sui t and th e face val ue.
Let us use one UNIVAC word for each card, laid out in the
following fashion: the first seven digits will contain the
suit and the remaining five the face value of the card. Any
digits not needed in either field will be filled by space
symbols. Examples are given:

DIAMONDACE~~
HEART~~KING~
CLUB~~~QUEEN
SP ADE~AJ ACK~
SPADE~~10 l::.l::.~

DIAMOND2~~~~

Page 186

Chapter 10 Flow Charts

We could just as easily have designated the suit and face
value of the cards by numbers (which we shall do in the next
problem) but for the present we shall use the notation just
presented. If we store the cards in memory locations 101 to
113, then we can use the memory location of any given card as
the subscript i of our analysis. To code this problem we
need only assemble the few orders necessary to carry out
each of the operations designated by the flow-chart. The
coding for this problem begins on the following page.

Page 187

Chapter 10

000

001

[L 008

; 7 000

002 8 000

003 00 000

004 A 010

005 00 000

006 50 011

007 50 012

008 JACK60

009 LOOO08

010 000000

011 iNOT6P

012 jpRESE

8 101]

Q 007

L 009

Q 006

C 000

U 000

90 000

90 000

000000

800113

000001

RESENT

NTiiit

Flow Chart.s

Jack~O 000000 --> rL
i th card, C1 --> rA
Shift off SUIt
If C, is a jack, transfer control

i - - > rA

Transfer control if i = 13

i + I --> i

Transfer control to e..xamin e next
card

JtNOT~PRESENT --> Supervisory Con-
trol Prin ter

KPRESENT1,l,l,l --> S.C.P.

Page 188

Chapter 10 Flow Charts

A more complex probl em is the following:

Example 2: Given thirteen playing cards, determine if they
contain a royal flush (ten, jack, queen, king, and ace all
of the same suit.

This problem is trivial for a computer rivaling the
brain in complexity and coupled to an input servo as flexi
ble as the eye. Having only a UNIVAC to work with however,
we might approach the problem as follows:

Let us examine each card in turn to determine if it is
a d i am 0 n d. I fit is, wet h en ask i fit i sat en . I fit i s
not a ten, we continue by examining the next card, but if it
was a ten of diamonds, we then re-examine the entire set of
cards to see if there is a jack of diamonds present, and so
on until we find the ace of diamonds. (We start again from
the first card because we may have passed over the jack while
look ing for the ten!) Ho wever, if one of the cards mak ing
up the royal flush in diamonds is missing, we start the pro
cess over again, this time concentrating upon hearts, ter
minating the process as soon as we find a royal f1 ush in
some suit or when we have examined all suits and found no
royal flush.

As in the previous problem let the symbol C, stand for
the ith card of the thirteen cards. Since we are going to
be concerned with the suit of each card as well as the face
value let us further refine the symbology so that when we
are examining the suit of the ith card we can specifically
indicat e th i s. There fore, 1 et the sym bo 1 C ~ stand for the
suit of the ith card and C, represent the face value of this
card. Also, to bypass the trouble of writing out "jack" or
"d i am 0 n d s" , 1 e t F 2 stan d for a d eu c e , F 3 a trey, ..., F 1 0 a
ten, F 1 a jack, F12 a queen, F

'3
a king, and F'4 the ace,

while Sl will mean the first suit -- diamonds, S2 -- hearts,
S -- clubs, S -- spades. Generalizing then, FK will be
t6e kth coded face value and SJ will be the j th sui t. The
complete flow-chart will now appear as shown in figure 3.

Page 189

i = 1
j = 1
K=10

c~
I

: Sj) t .. (2 1 . (: 13) =t .11 i + 1 ~ i

=

C~ Fk - PRINTIINO ROYAL . FLUSH"

=
"tI
s:o

(Jtl C) r "ROYAL CD IIj + i -+- j K : 14 -. :RINT FLUSH"I
co l:t I 0

K+t----K 10-'" K

1~

FIGURE 3

Chapter 10 Flow Charts

Again, we shall tour the flow-chart so that every op
eration shown wi 11 be cl ear. Th e fl ag to the ri ght 0 f the
start circle tells us that initially the counter i reads 1,
the first card of the thirteen, the counter j reads I, so
that S J now stands for the fi rst sui t to be exam in edt di a
m 0 n d s . We h a v e set k = 1 0 sot hat F K mean sat en. The
first operation to be encountered is the test box.

- (CT : Sj)-----

where we examine the suit of the card Ct (C, for this first
tim e t n r 0 u gh) to see i fit i sad i amo n d. I fit i s no tad i a
mond, we next test the card counter i against 13:

-{ I: 13)--
since this card is not the last

card we increase the card counter by one

-11 i+ I-+i ~
an d go back to

connector f.\
~ to examine the next card. If the card was

a diamond, however, we then examine the face value to see if
it is a ten. If it is not, we pass through the section that
tests for the last card and advances the card counter. If
the card was a ten of diamonds, we exit from the equal-to
path of the test box

and into the box

-(K: 14)--
At this point we ask the question is the

card value we found an ace. If it eventuallY becomes an ace,
we know that we will have found a royal flush. Therefore, we
enter the operation box

---1""~-R-I-N-T-"R-O-Y4-~-L-F-LU-S-H-'-' ~

which prints ROYAL FLUSH

Page 191

Chapter 10 Flow Charts

and then stops the search. Of course, for the first time
through F = Flo; therefo re, we 1 eave the test alon g the
not equal Kto path and into the box

-11 K+ 1--+ K r---
increase k by 1 so the FK now signifies the jack.
the unnumbered connector we enter the box

---111 ~i ~
~----------- which resets the card counter so

can re-examine the
I f we do not find
eventually we will
the test box

first card when we le~ve connector
a royal flush in the first sui t.

pass through the equal-to side of

-{ i: 13)-

Here we
Passing

that we

I and encounter the oper'a~j: 4)-
I

Here the current suit just examined is compared against the
last suit, spades. If the suit is spades. it means that we
have leoked for a royal flush in all of the suits and having
found none we enter the box

---1"'P-R-IN-T-"-N-O-R-O-~-AL-F-WSH-"'"1----
. This indlcates

that there is no royal flush and we stop. However, if the
suit just examined was not spades. we wish to examine the
cards again for a royal flush in the next suit. This is
done in the series of operations:

----tIl j + I-+- j ~
where we in

crease the suit counter j so that we test each card against
the n ext sui t, -1110----.. K ~

reseting the card value counter

Page 192

Chapter 10 Flow Charts

so that we first look for a ten in the new suit, and finally

where again we reset the card counter i so that we
can re-examine the entire deck of cards.

This flow-chart is now the complete description of our
solution to the problem. We have reduced the problem to a
particular combination of counting and testing operations,
which can be carried out by any computing device capable of
executing the three Logical Operations.

For those readers not yet convinced, it should be point,
ed out that the human brain is just such a computing device,
and trying out the program with a few sample sets of cards
will demonstrate and clarify the validity of the flow-chart.

It is probably evident to those mathematically inclined
that the flow-chart which defines a computing process is a
co.plex function itself whose independent variable is a set
of thirteen cards and whose dependent variable has one of
two po sst bl e val ues, "royal fl ush" or "no royal flu sh".

Preparation of the program is now a simple matter. We
need only to specify what appearance the cards shall have
in the UNIVAC and where they shall be located. Let us
assume that each card will be represented by a word of the
fo rIB:

080 000 000 OVV

wh ere 8 i sag ai n th e sui t an d will co n sis t 0 fan um b e r , 1
for diallonds, 2 for hearts, 3 for c1 ubs, and 4 for spades.
VV is the face value of the card, duece being 02, trey = 03,
through 10 for the ten, 11 for the jack, 12 the queen, 13 the
king, and finally 14 for the ace. Further, 1 et us assume that
the cards are placed in mellory locations 101 to 113. Thus, the
memory location of each card will serve as the counter i
of the flow chart.

Page 193

Chapter 10 Flow Charts

Coding for Example #2

000 L 021
B (101)

001 . 2 000
Q 005 Transfer control if C~ = Sj

002 B- 000
L 022

003 A 026
Q 014 Transfer con trol if i 13

004 C 000 i + 1 --> i
U 000 Transfer con trol to examine

n ext card

005 K 000
X 000

006 01 000
L 027

007 00 000
Q 009 Transfer control if CV , FK

008 00 000
U 002 Transfer control to increase i

009 B 027
A 028

010 L 029
Q 018 Transfer con tro 1 if k 4

011 C 027 k + 1 --> k
00 000

012 B 030
C 000 1 --> i

Page 194

Chapter 10 Flow Charts

Example #2

013 00 000
u 000 Transfer control to examine

cards again

014 8 021
A 031

015 L 032
Q 019 Transfer control if j 4

016 C 021 j + 1 --> j
8 033

017 C 027 10 - - > k
U 012 Transfer control to set i 1

018 50 025
90 000

019 50 023
50 024

020 00 000
90 000

021 [00 010 SJ
000000]

022 LOO021
800114

023 lN06aO - - YAL~L
024 U88111

11.1.1.1.1
025 R.aOYAL - 6FLU8H
026 000000

000001
027 [000000 FK

000100]

Page 195

Chapter 10 Flow Charts

Exampl e 112

028 000000
000010

029 000000
000150

030 LOO021
BOO 10 1

031 000010
000000

032 000050
000000

033 000000
000100

Page 196

Chapter 10 Flow Charts

SEC. 6. ADDITIONAL FLOW CHART SYMBOLS

There remains three other important flow-chart symbols
in common use:

In some operations the possibility of an overflow is
present, and when it occurs the problem may call for special
operations to be performed. The starred (*) outward flow
line is followed in the event of overflow occurring during
the operation shown:

A+B-.......... C

*
,~

In UNIVAC the occurrence of overflow is often-times used as a
test for a counter or variable line of coding reaching a
particular value. The use of an overflow symbol as described
above is not to be used in such cases. Besides the fact that
a properly executed flow-chart is not to be interpreted as a
picture of the coding but rather as a picture of the logical
elements entering the thinking-out process the programmer
undertakes in solving the problem, the use of the symbol in
the following case .

... i +1 ,. - I ,.

*
~,

leaves the reader of the flow-chart in doubt as to what
value of lone takes the starred output line. If a discrim
ination on i is to be done it should be shown as:

11 i+I--+i I { : K)~

1=
))

Page 197

Chapter 10 Flow Charts

It cannot be over-emphasized that the flow-chart symbol:

-~{~_A--...: _8_,..,) > ~
J~

does not represent the UNIVAC T order, but does represent
the logical need of discriminating between a set of opera
tions to be performed by the relative sizes of the quanti
ties A and B. The flow-chart symbols shown do not restrict
the programmer from carrying out the indicated operation by
a variety of instruction codes or combinations of codes.

We defined, earlier, the "fixed connector" as a symbol
indicating the point of merging of separate flow lines.
The "variable connector" is its counterpart. This symbol is
placed in the line of computational flow where the common
input splits to select one of many possible paths. Variable
connectors always bear an identification symbol. Many sym
bols are in common use but in this chapter we shall always
designate a variable connector by a letter of the Greek
alphabet. In the figure shown below, the path of computa
tional flow upon reaching the variable conne~tor

continue along one,

or

(0
will

and only one of the possible paths

Page 198

G)~--~).~

6)~---~~

8---~··

Chapter 10 Flow Charts

The specification of which possible path will be taken must,
of course, be stated before the variable connector is reach
e d. S p e c i f yin g w hi c h path i s to be t ak en i s call e d "s e t tin g"
the connector, and is indicated by the square box:

By the use of variable connectors, a particular series of
operations common to many different sections of the .flow
chart may be performed without repeating the operations
for each section:

Example 3: A tape on UNISERVO 2 contains a series of three
word items arranged in ascending order. The number of items
present is not known, but we do know that if the last item
does not occur in the last three words of a block, the re
maining words of the block consist of twelve Z's, called
sentinels. In this case and the case where the last item
does occur at the end of a block, two additional blocks will
be found on the tape each word of which consists of twelve
Z's. The first word of each item is a serial number and it
is by this serial number that the items are ordered. The
other two words contain quantities A and B as shown in the
item 1 ayout:

SSS SSS sss SSS
000 000 AAA AAO
000 000 BBB BBO

All items of the same serial code are to be summed and the
summaries are to be written on a blank tape mounted on UNI
SERVO 3 which will then be printed on the UNIPRINTER, pro
ducing a table such as:

SERIAL CODE

SSSSSSSSSSSS

QUANTITY A

AAAAAAAA

Page 199

QUANTITY B

BBBBBBBB

Chapter 10 Flow Charts

If we let the serial number of the ith item be rep
resented by the symbol w~, the quantity A by the symbol w;,
and the quanti ty 8 by w~ the flow-chart will appear as shown
in fi gure 4.

The flow-chart has been divided into seven sections for
convenience in discussion. In section 1, we encounter the
operation ~ T2

--, - W~
designating in this case the trans

fer of the first twenty items (one block) from the tape
mounted on UNISERVO 2 into the twenty three-word items W1 •••

W20 denoted collectively by the symbol W. After transfer
ring the serial number of the first item to become the quan
tity S we examine the block just brought in from tape to de
termine if it is a complete or partial block. If it is a
partial block, we set connector

in order to
examine each item 0 f th e blo ck fo r the presence of a sen tinel.
Thus, by using the variable connector

G)
we can eliminate

testing each and every item from tape for a sentinel and in
stead test only one item per block, and only in the last
block need we test all the items. Section 2 contains the
main processing loop of the problem. Here each item serial
code is compared against the serial codes of the current tallies.
If it is equal, we obtain the new subtotals for D and E,
examine the item counter ito see if all items for this block
have been processed. If not, advance the item counter and
return to process the new item. If, however, the items in
the current block have all been processed, (i = 20), we
read a new blockof twenty items into the W storage, and examine
this new block to see if it actually contains 20 items, that
is, determine if it contains any sentinels. If it does con
tain sentinels, we set connector

Page 200

0=0 ;=1
E=O j=2

.0<',

HEADING~yl HT2-4>WHwb--'-' S

CV1S .YbHD~K~

~ GrjK .yi HE--+K~
r:.."
·0-.....

K .yi

01EDITK~K~
®----0
®--0

'I 2\

FIGURE 4

Chapter 10 Flow Charts

so that each and every item of the block is tested for a
sentinel before it is processed. In either case the item
counter i is reset to one and we return to the connector

Going back to the test

-(w!: s}
i if the current item does not

have a serial code identical with the serial code of the
subtotals we are now accumulating, we know that these sub
totals are now complete and we proceed to sections 4, 5,
and 6, where the serial number and totals are edited and
transferred into the output block. Using the variable
connector

o we can make the

same edi ting routine serve to edi t both D and E. The out
put item is labeled yj and when twenty such items have been
accumulated, the equal-to path is taken from the test

where the completed block i~ written on
the blank tape mounted on UNISERVO 3, the output item counter
j is reset to 1, S is set equal to the new serial number w~,
the subtotals D and E are reset to zero for the new accum
ulations, finally returning to connector

CD to process
the new item.

Once a sentinel item has been located the equal-to path
from the tes t

is taken.

Page 202

Chapter 10 Flow Charts

Indicates that a printer stop is placed in the current output
item, and the output block, whether complete or not, is then
wri tten on to the output tape. The tapes are then rewound
and the compu.ter stopped, terminating the problem.

Page 203

Chapter 10 Flow Charts

Coding for Example 113

000 [11 000 Se co n d b 1 0 c k 0 fin s t ru c t ion s - - >
32 060] memory

001 8 056 Set general ized overflow routine
C 000

002 C 318 Zero -- > D
C 319 Zero --> E

003 V 058
I 260 Heading --> y'

004 8 057
C 262

005 32 200 T2 --> W
8 200 I' --> S 0

006' C 317
U 038 Transfer cont ro I to connec to r 2

007 L 317 Variable connector a
00 000 1

008 8 200
Q 026 Transfer control if I~ = S a

009 L 318 D --> K 3
J 320

010 R 053 • f3 1
U 049 Transfer con tro 1 to connector 4

011 A 060
C 318 5

012 L 319 E -->K
J 320

013 R 053 • f3 2
U 049 Transfer control to connector 4

014 A 061 6
C 319

015 B 317
L 318

Page 204

Chapter 10 FlowCharts

016 [F45319
C 263]

017 [J 264
G 265]

018 B 016
*A 062

019 C 016 j + 1 --> j
B 017

020 A 063
C 017

021 B 200 Wt -- > S
0

C 317
022 C 318 Zero --> D

C 319 Zero --> E
023 00 000

U 007 Transfer control to connector 1

024 73 260 y -- > ~3
V 064 1 -- > J

02'5 W 016
U 021

026 B 318
A- 201 D + Wt

1 --> D
027 C 318

B 319
028 A- 207 E + Wt -- > E 2

C 319
029 B 032

A 063
030 C 032 i + 1 --> i

B 033
031 *A 066

C 033

Page 205

Chapter 10 Flow Charts

032 [B 200
L 201]

033 [F42202
C 200]

034 J 201
G 202

035 00 000
U 007 Transfer control to connector 1

036 ZZZZZZ
ZZZZZZ

037 32 200 T2 --> W
00 000

038 L 036 2
B 2'57

039 V 068
. f W20

Q 041 Transfer con tro 1 10= Z

040 W 032 1 -- > i
U 007 Transfer control to connector 1

041 R 007 • a 2
U 040

042 L 317 a 2
B 036

043 00 000
Q 045 Transfer control if S = Z

044 00 000
U 008 Transfer control if connector at

Page 206

Chapter 10 Flow Charts

045 B 067
81 000 Rewind instruction tape

046 R 017
U 016

047 73 260 Y --> T
3

82 000 Rewind input tape
048 83 000 Rewind output tape

90 000

049 B 070 1----- ------ --> rA
00 000

050 .1 000
T 050

051 C 321
F 321

052 B 071 1~~~~~ ~~~~~O --> 2A
E 320

053 [000000 Variable connector {j
000000]

054 B 322
A 072 Generalized overflow routine

055 C 322
U 322

056 R00322
UOO054

057 QUANTI
TY~BJtJt

058 JtSERIA
L~CODE

059 tQUANT
ITY~At

Page 207

Chapter 10 Flow Charts

060 000000
0000 at

061 000000
ooooolt

062 003000
000003

063 000003
000003

064 F42319
C00260

065 J00261
G00262

066 003003
000000

067 ppp;p;
prppp;

068 800200
LOO 201

069 F42202
C00200

070 1----- ---_ --
071 t!J~!J!J~

!J~!J~~O

072 000000
000005

073 000000
000000

119 000000
000000

Page 208

Chapter 10 Flow Charts

SEC. 7. CONCLUDING REMARKS ON FLOW CHARTS

The development of logically consistent and clear flow
charts aid materially in detecting errors in the program,
and pointing out labor and time saving shortcuts that may
exist but have remained hidden because of the complexity of
the problem. By requiring that the flow-chart not be a pic
torial image of the coding the essential elements of the
problem are laid clear for easy mastery by both the program
mer and whoever is engaged in checking the coding. Obvious
ly the development of a good notation for the elements of the
pro bl em eases the job 0 f programming the parti cuI ar pro bl em,
and conscientious effort to produce logically clear flow
charts leads to an early grasp of the techniques of efficient
computer application. Many problems will require new sym
bology and these symbols should be concisely defined in a
legend on the flow-chart.

So far, we have discussed flow-charts which made use of
graphical equivalents of the three logical operations. Ex
perience in preparing a wide variety of problems for solu
tion on the UNIVAC has shown that larger building blocks
exist that are common to many non-similar problems. That is,
certain combinations of the Logical Operations, in them
sel ves exceedingly complex, form a higher group of fundamen
tal operations, and for many problems a grosser breakdown is
first necessary. Collating or sorting routines, and various
merging routines for instance are some of the basic building
blocks of inventory control, billing, and tabulation problems.
Diagramb involving these elements are often termed Process
Flow-Charts. It is not the purpose of this chapter to dis
cuss the preparation of Process Charts, but only to indicate
that most large computer problems necessitate a preliminary
breakdown in this fashion so that the essentials of the pro
blem are cleared of the technical detail which a flow-chart
of each step entails. This is quite permissable since the
larger "fundamental" operations are well standardized routines.

Page 209

Chapter 10 Flow Charts

Sec. 8. Notes on Multiple Input Routines

In most phases of complex commercial applications of
UNIVAC, information from several different sources must
undergo simultaneous processing. The information sources
are recorded on tape, and each separate source is then
assigned a UNISERVO which serves as the transport device en
abling the information on the tape to be brought into the
central computer in units of sixty words, or one block. As
noted in the instruction code pertaining to the input orders,
all information from the tapes must pass into the sixty
word register I, and thus, only a block of data from one UNI
SERVO may be read into the computer at a given time. There
is an option present whereby the programmer may transfer the
block of data present in rI into the memory for processing,
and simultaneously order any particular UNISERVO to read
another block of data into rI, this reading being done in
dependent of the operation of the central computer which is
free to begin calculations on the block transferred from rIo

Scrutiny of the previous sample problem will point out
the fact that the block of data may not be completely pro
cessed when the UNISERVO has completed the transfer of the
second block on tape into rIo Thus, the time to read a
block of data from the tape may be completely absorbed in the
computation time. This is true, of course, only if continuous
read orders, the 3n or 4n, are given. For the combination
In followed by 30, the lapse of time between the execution
of the left instruction and the right instruction will be of
the order of 100 milliseconds on the average. This is time
during which the computer must wait until the read order is
completed before it can execute the transfer from rI to the
memory. Thus, from the standpoint of elapsed computer time
it is desirable to do continuous read orders.

Where the processing to be done consists of bringing
information into the computer from several different tapes
and in an order which is not known in advance to the pro
grammer, that is, in essentially a random fashion, how is
the programmer to make sure that the data will be brought in
at the right time and from the right tape?

page 210

Chapter 10 Flow Charts

For example, consider the problem basic to almost all
commercial applications: Information, consisting of a
s er i es 0 fit ems c on t a in in gas e ria I n u m be r , are r e cor d e don
tap e ina s c end in g 0 r de r by s e ria I n u m be r . Two s u c h set s 0 f
items (hereafter called A and B) are to be merged so as to
produce one tape containing all the items present on both
tapes, but arranged in ascending order.

The first block from each tape is brought into the com
puter, and their first items compared. The item with the
smallest serial number is then transferred to the first po
sition of an output block. If, for example, the lowest item
in the comparison was from the .A set of data, this i tern is
placed in the output block. The next A item of the block is
compared with this first B item and the smallest of these
two items is sent to the second position of the output block.
When the output block is filled, that is, when sufficient
items have been transferred so that the output block con tains
60 words, it is wri tten on the output tape. The next lowest
item transfer will go into the first output item position
again. Soon one of the input blocks will be exhausted, all
of its items having been transferred to the output block,
therefore, we must bring in a new block of these items from
tape. If we do the transfer from tape storage to computer
by the sequence In -- 30, the computer must wait for approx
imately 100 milliseconds before it can execute the transfer
from rI to the memory. But, if rI al ready con tained the
right block of data, we would be able to continue the pro
cessing by waiting only for the 3.5 millisecond transfer from
register I to the memory. Since the order in which information
from the two tapes will be read is indeterminate at the time
of preparing the program, (the order of reading, of course, is
determined by the data only) the programmer cannot always
be sure that register I contains the proper block. There is,
however, a method by which t he programmer is assured that the
information on tape will be processed in the proper order
with the minimum of elapsed computer time. The method is
known as the standby block procedure.

Page 211

Chapter 10 Flow Charts

Initially the first two blocks of A items are brought
into the computer and are known as block AI and A2 • The
first block of B items is brought into the computer and is
labeled BI , but the second block is left in rIo The setup
is shown in figure 1. The block for B~ is shown shaded to
indicate that it does not contain valid information.

B (rl)

Figure 1

Items from the AI and Bl blocks are then processed, and two
possible conditions may obtain, either we exhaust all the AI
items first, shown in figure 2, or all the B, items are ex
hausted first, shown in figure 3. Assume the condition shown
in figure 2 is obtained.

Page 212

Chapter 10 Flow Charts

B (rl)

Figure 2

At

Az

B (,I)

Fi gure 3

Page 213

Chapter 10 Flow Charts

For this configuration we order the computer to transfer the
block of B items in rI into the empty block B., and start
filling rI with the next block of A items. while rI is
being filled, we transfer the standby block of A items in
A2 into A

"
leaving the condition shown in figure 4. We

return to the r~utine which continues the processing of A
and B items from blocks A, and B, as before.

A (rl)

Figure 4

Now let us assume that the A, block is again exhausted be
fore the rest of the items in B, are exhausted (figure 5).

Bt

A (rl)
Figure 5

Page 214

Chapter 10 Flow Charts

The contents of rI are transferred into the A2 block which
is now empty, and rI is filled from the next block on the A
tape. Then the block A2 is transferred into A1 and we return
to process the A1 items against the remaining 8 1 items (figure
6). If A exhausts first again, we repeat the above sequence
of operalions, since the configuration is the same as figure
5.

AI

A (rI)

Figure 6

Let us now assume that the B1 block is finally exhausted
giving the condition shown in figure 7.

At

Fi gure 7 A (rl)

Page 215

Chapter 10 Flow Charts

The A block in rI is transferred into the empty A2 block,a
block of B ite.s is ordered from the 8 tape to be sent to
rI, and then we transfer the B2 block into 8, and return to
continue processing the remaining items in AI against the
ite.s now in 8,. The configuration is shown in figure 8.

At Bt

B (rI)

Figure 8

If now the AI block is exhausted first we have exactly the
case shown in figure 2 and thus, repeat the sequence given
ab~ve. If, however, the Bl block is exhausted first we have
the case shown in figure 3, not previously covered.

If then Bl is exhausted first, we transfer the B block
in rI into the e.pty B2 block and order a 8 block from tape
into rI. Meanwhile we transfer the just filled B2 block into
B1 , obtaining the pattern shown in figure 9, and then re
turning to the processing of these new B, items against the
remaining AI ite.s.

Page 216

Chapter 10 Flow Charts

Bt

A2

B (rl)

Figure 9

If A, now exhausts first we have the case of figure 2, re
peated, while if B2 exhausts first figure 3 is obtained.

Thus, we have covered all possible contingencies by
this standard sequence of operations:

1) Transfer the block currently in register I into the
proper standby block, A2 if the items in rI are from
tape A and into B2 if the items are from Tape B. By
remembering the last read order given we can always
determine what items are in rIo

2) Order the next block of items from tape into rI. If
an A block had been exhausted we order a block from
tape A, but if a B block had been exhausted we order
from tape B.

3) Transfer the standby block of items into the just
exhausted block of items (A 2 --> A, if A, was emptied,
B2 --> B, if the B, block was exhausted) and return to
the routine that continues the processing.

Page 217

Chapter 10 Flow Charts

The coding necessary to carry out these steps is ex
tremely simple. An example is given, where the A items are
assumed to be on UNISERVO 2, the AI block occupies memory
locations 760-819. A2 being the block in 820-879. The B
items are on UNISERVO 3, 8 1 is the block from 880-939. and
8 2 is the block from 940-999. At the start of the problem
AI' A2, 8 1 are filled, and rI contains the next 8 block.

Page 218

Chapter 10 Flow Charts

Coding for Stand-by Block Example

010 00 000
Q 012 Transfer control if At block is

empty

011 00 000
U Transfer control to continue

processing

012 B 066
F 068

013 R 064
U 062 Transfer control to read routine

014 y 820
Z 760

015 y 830
Z 770

016 y 840
Z 780 A2 --> A 1

017 y 850
Z 790

018 y 860
Z 800

019 y 870
Z 810

020 00 000
U Transfer control to reset A item

counter

031 00 000
Q 033 Transfer control if 8 2 block is

empty

032 00 000
U Transfer control to continue

processing

033 8 067
F 068

Page 219

Chapter 10 Flow Charts

034 R 064
U 062 Transfer control to read routine

035 y 940
Z 880

036 y 950
Z 890

037 y 960
Z 900 B - -> B 2 1

038 y 970
Z 910

039 y 980
Z 920

040 y 990
Z 930

041 00 000
U Transfer control to reset B i tern

counter

062 E 065
C 063

063 [000000 Read routine
000000]

064 [000000
000000]

065 [JOO065
330940]

066 JOO065
320820

067 JOO065
330940

068 000000
000111

Page 220

Section

1

2

3

4

5

6

7

Chapter I I

Appendix

Top i c

Review Practice Exercises

Techniques of Sorting, Arranging
and Ordering

UNIVAC C-10 Code

Tables Showing Certain Computer
Responses

Effect of "S" Order on the Sign
Position

Multiplication of Typewriter
Characters

Simplified Block Diagram of UNIVAC

Supervisory Control Panel

Bibliography

Page

221

227

229

237

238

239

240

241

242

Chapter 11 Appendix

Sec. I. Review Practice Exercises

1. In memory locations 100 ... 129 are 30 randomly arranged
numbers. Among these 30 numbers one and only ine is nega
tive. Code a routine, starting in memory location 010, to
find the single negative number and print it out on the
typewriter for inspection.

2. Two sets of numbers are stored in the memory, the fi rst
set (A's) in 100 ... 199, the second set (8's) in 200 ... 299.
Code a routine that will perform the operation AI + 8 -->
C

I
, i going from 0 to 99. Let the sum's (C's) be stor~d in

3uO ... 399.

3. In memory locations 100 ... 199 are contained a table of
100 values for a function corresponding the arguments .OO~
.001, .002, , .099. In memory location 200 is an
argument within the range of the table. Using linear inter
polation, find the value of the function which corresponds
to the argument in M. L. 200. Then print out the argument
and interpolated function value.

4. Gi ven an integer X, 0 < X ~. 9, -stored in memo ry loca
tion 200. Compute X! and print both X and X! on typewriter.

5. Stored in 13 consecutive memory locations starting
with memory location 100 are coded values for 13 playing
cards. Determine if the 13 cards contain a royal flush
(Ace, King, Queen, Jack, and Ten) in spades or hearts. Each
word contains the value of a card.

000 OOS 000 OCC

1 = Clubs 02 = Duce
03 = Trey

2 = Diamonds
S CC

3 = Hearts
12 = Queen

4 = Spades 13 = King
14 = Ace

Page 221

Chapter 11 Appendix

6. Code a routine which will compute all values for the
polynomial function; y = 4~4 + 3X 2 - .! + 1, in the range

5
.01 < X < 1.00, wi th' ~X = .001. Maintain nine significant
di gi ts in the computed values. Wri te the val ues on tape as
two word items, the argument in the first word and the value
of the function in the second word.

7. Tape unit #2 contains 10 word items (A's). These items
are arranged in ascending order by a key which is the first
word of each item. If the last block is not filled with A
items, it will contain sufficient sentinel items (ZZZ's in
the first word of each item) to fill the block. Two addi
tional sentinel blocks (ZZZ's in words 000 and 050) will
follow the partial block. If there is no partial block, only
the two sentineL blocks will follow the last A block.

Tape unit #3 contains B items similar to the A items,
with the same ending sentinel convention.

Code a routine that will merge the items of both tapes
together to form a continuous string of items in ascending
order, with the ~ame ending sentinel convention as the input
tapes. You may have more than one tape of output (2000
blocks). If so, the first output tape should contain no
partial blocks. Assume you have five tape units for the
problem.

8. Ten numbers are stored in memory locations 100 ... 109.
Prepare a routine that will arrange these numbers in as
cending numerical order.

9. Code a routine to find the value of the integral:

NOTE:
(X) 10,000

~~) 3
f 1 dx = L 1 ~X = .01 + 1 +

X3 1 X3 (1.01}3
1

+ .• J 1
(1.02}3

page 222

Chapter 11 Appendix

10. Tape unit number two contains a variable number of 10-
word items. Each item contains the following information:

WORD
NO.

0 SSSSSS SSSSSS
stock Number

1 SSSSSS ssssss

2 OOOOOX XXX xxx Total Required

3 ---- ------
Other information

4 ------ ------

5 OOOOOX XXXXXX On hand quantity

6 xxx xxx 000000 Date

7 OOOOOX XXXXXX On order quantity

8 ------ ------
Other information

9 ------ ------

This tape contains the standard ending sentinel con
vention described in problem number seven. Code a routine
that will select and write on tape unit number three all the
items of stock number:

AM4367 820000

V63900 W98800,

that have a total required greater than the sum of the on
hand and on order quantities.

Page 223

Chapter 11 Appendix

11. There are sixty open policies (premiums not paid) in
the files of a fire insurance company. For this problem,
assume that information concerning the policies, when put
in one-word storage, would take the form

Policy
Number Type Premium

XXXX XXX XXXXX

This data is in random order on the second block of the
tape on UNISERVO 1. It is required to set up a programming
routine which will arrange this data in the order of policy
numbers. Print these sixty words, in the order of policy
numbers. on Supervisory Control and write the arrangement
on the tape on UNISERVO 2. Also, total the unpaid premiums,
and type on Supervisory control. Make any other assumptions
necessary to the solution of this problem.

Note: Section 2 in the Appendix describes two methods of
sorting.

12. Set up a routine which will evaluate.

y = 13.1X! - 2.72X - 8.44

to four significant places for values of X from 0.01 to 1.00
in intervals of 0.01. Arrange to have the result typed on
Supervisory Control and also put on tape to be used on the
UNIPRINTER. The results are to be edited in two columns,
properly labeled. one for the arguments and the other for the
co.puted results.

Page 224

Chapter 11 Appendix

13. Consider the miniature production problem tabulated below.

Time Periods (5)

1 2 3 4 5 Totals
-

A-Autos 5 10 4 19

(1)
B-Iheels 25 50 20 95

(2)
Autos 2.75 5.5 2.2 10.45

(3)
C-Steel Wheels 0.25 0.50 0.2 0.95

(4)
Total 0.25 3.25 5.7 2.2 11.4

Page 225

Chapter 11 Appendix

&. 5, 10 and 4 automobiles are required in the three
time periods shown.

b. Five wheels are needed for each auto, one time
period in advance.

c. Each auto requires. 6 ton of steel, including
wheels, one time period in advance.

d. Each wheel requires .01 ton of steel in advance.

Beginning with the automobile requirements, determine a
routine which will provide, in each time period,

1. The number of wheels.

2. The total tons of steel.

and the overall totals for each item.

In other words, it is required to set up a routine to
give the results shown in rows I, 2, 3, 4 and column 5, of
the table given above.

Page 226

Chapter 11 Appendix

SEC. 2. TECHNIQUES OF SORTING, ARRANGING, ORDERING

Example 1:

Consider the numbers

2 3 1 6 5 4

to be arranged in numerical order.

1. Compare

the first number with the second, take smaller and
compare with the third, again take the smaller and
compare with the fourth etc. This will isolate the
smallest number, 1, which is put in storage and re
placed by a Z in the sequence

2. This gives us

2 3 Z 6 5 4
in storage
1

Start again with the first number and repeat the compari
sons.

3. We now have
in storage

Z 3 Z 6 5 4 1 2

4. This repeated until complete. arrangement is obtained

·Note that Z will show up greater than any numeric digit.

Example 2:

To arrange in numeric order

32, 53, 72, 18, 41, 75, 48, 23, 27, 61. 11, 6. 4, 40

Page 227

Chapter 11 Appendix

1. Apply the equality tests on the units digits to give:

Unit's Digit

-.!LL --L. -L --L --L
40 41 32 53 04 75

~ -L -L --L
06 27 18

61 72 23 48
11

2. Then sort by ten's digits starting on the left to give:

..JLL
04 11
06. 18

...L -L.
23 32
27

Ten's Digit

-L
40
41
48

--LL
53 61

..:L
72
75

(and then by hundreds digits, if necessary.)

Page 228

Chapter 11 Appendix

SEC. 3. UNIVAC INSTRUCTION CODE C-IO

The C-I0 Code is compiled and restated here for the
convenience of the reader. Although much of the informa
tion provided herein has already been defined some of the
material is new. Specifically, the average times in micro
seconds for each of the instructions is not given in the
body of the manual but is included in this section. Also,
certain combinations of rewind instructions will cause
UNIVAC to stall; hence, a short discussion of these pos
sibilities is provided.

UNIVAC INSTRUCTION CODE C-IO

Av. Time in
Microseconds Instruction Description

525 Am

445 Bm

445 Cm

3890 Dm

445 Em

445 Fm

Add (m) to (rA), result in rA;
(m) also pl~ced in rX.

Clear (rA), then bring (m) into
rA; (m) also placed in rX.

Place (rA) in m. Clear rAe

Divide (m) by (rL) rounding off
the quotient to 11 digits; re
sult in rAe Unrounded quotient
in rX.

Extract from (m) the characters
(including digits) specified by
(rF). Clear only those charac
ters of rA which are replaced by
the extracted characters. When
a digit in rF is "0", leave the
corresponding character in rA
unaltered. When a digit in rF
is "1", insert the correspond
ing character of m in rAe

Place (m) in rF.

Page 229

Chapter 11

445

445

445

285

445

2150

2150

2150

365

445

525

365

Gm

Hm

Jm

Km

Lm

Mm

Nm

Pm

Qm

Rm

Sm

Tm

AppenJix

Place (rF) in m.

Place (rA) in m without clear
ing rAe (i. e., Hold (rA) in
rA) .

Place (rX) in m; (rX) unaltered.

Place (rA) in rL, clear rA; dis
regard m.

P 1 ac e (m) in r L ; (m) a 1 sop 1 ac e d
in rX.

Multiply (rL) by (m) rounding
off the product to 11 digits;
result in rAe

Negative Multiplication. Mul
tiply (rL) by -em) rounding off
the product to 11 d igi ts; resul t
in rAe

Mul tiply (rL) by (m), storing the
more significant half of the
product in rA and the less sig
nificant half in rX.

Equality Test. Transfer con
trol to m if (rA) = (rL).

Record the number of the con
trol count plus one as an un
conditional transfer instruc
tion in m. U(c+l) in m.

Subtract (m) from (rA), result
in rA; -em) also left in rX.

Test to determine whether (rA)
> (rL) algebraically; if so,
transfer control to m.

Page 230

Chapter 11

285

485

485

285

650

650

285

40.5n+245

40.5n+245

Um

Vm

Wm

Xm

Ym

Zm

DDm

Appendix

Unconditional transfer of con
trol to m.

Place 2 consecutive words,
starting with m, in rV; m should
be a multiple of 2. (For ex
ceptions see additional infor
mation in Chapter 5).

Place (rV) in 2 consecutive
memory locations starting with
m; m should be a multiple of 2.
(For exceptions see additional
information in Chapter 3).

Add (rX) to (rA), result in rA,
disregard m~ (rX) unaltered.

Place 10 consecutive words,
starting with m, in rYe Here m
must be an integral multiple of
10.

Place (rY) in 10 consecutive
memory locations, starting with
m. Here m must be an integral
multiple of 10.

Pass to next instruction (Skip
instruction) .

SHIFT INSTRUCTIONS. N RANGES FROM I TO 9

.nm

;nm

Shift all d igi ts of rA, inc luding
the sign position, n digits to
the right dropping the n right
hand digits. Disregard m.

Shift all digi ts of rA, including
the sign position, n digits to
the left, dropping the n left
hand digits. Disregard m.

Page 231

Chapter 11

40.5n+245

40.5n+245

3500·

3500·

3500·

3500·

-nm

Onm

Appendix

Shift all digits of rA, except
the sign position, n digits to
the right, dropping the n right
hand digits (equivalent to mul
tiplying (rA) by 10- N without
rounding). Disregard m.

Shift all digits of rA, except
the sign position, n digits to
the left, (equivalent to mul
tiplying (rA) by ION without
rounding). Disregard m.

TAPE INSTRUCTIONS FOR I TO 9 TAPES

Inm

2nm

3nm

4nm

Read one block of data (60
words) from tape n and store in
r I , tap e m 0 v i n g i' n a for war d
direction; disregard m.

Read one block of data (60
words) from tape n and store in
rI, tape moving in a backward
direction; disregard m.

Transfer data (60 words) prev
iously stored in rI to 60 con
secutive memory locations, be
ginning with m, where m is an
integral mul tiple of 10; then
read one block of data (60
words) from tape n and store in
rI, tape moving in a forward
direc tion.

Transfer data (60 words) prev
iously stored in rI to 60 con
secutive memory locations, be
ginning with m, where m is an
integral multiple of 10; then
read one block (60 words) from
tape n and store in rI, tape
moving in a backward direction.

Page 232

Chapter 11

3500·

3500·

3500·

3500·

5nm

6nm

7nm

8nm

Appendix

Write 60 consecutive words,
starting with m, where m is an
integral multiple of 10, on
tape n; moving in a forward di
rection. Pulse density 100/in.
(tape to be used in a future
UNIVAC operation.)

Rewind tape n to the beginning.
Disregard m.

Write 60 consecutive words,
starting with m, where m is an
integral multiple of 10, on
tape n; tape moving in a for
ward direction. Pulse density
20/in. (Tape to be used in
future UNIPRINTER or UNIVAC
operations.)

Rewind tape n to beginning and
set an interlock, disregard m.
The setting of the interlock
will produce a visual signal
and no data can be read from or
written on tape n until the
mechanical interlock release
switch on the UNISERVO has been
actuated. More than one tape
may be rewound simultaneously.

TAPE INSTRUCTIONS FOR TAPE NUMBER 10

Instructions for tape 10 operate in the same manner as those
for tapes 1 to 9 except that n is
not a number but a "minus sign."

Supervisory Control Instructions with Input and
Output Selector Switch set ~t
Position 1.

Page 233

Chapter 11

3500·

3500·

285

10m

50m

Appendix

Stop UNIVAC operations and pro
duce a visual signal. Call for
one word to be typed from the
Supervisory Control keyboard
into m of UNIVAC. UNIVAC oper
ations are resumed after the
Word Release Button on the Su
pervisory Control has been
actuated.

Print (m), one word, on Printer
associated with Supervisory
Control. UNIVAC operations are
resumed automatically after (m)
has been transferred to an inter
mediate output storage location
prior to printing.

Supervisory Control Output Switch'- operates
in conjunction with the 50 m
instruction.

Position 1 Normal. The 50 m
instruction operates as describ
ed above.

Position 2 Skip. The 50 m in
struction is decoded as a skip
instruction (OOm).

Position 3 Stop. stop UNIVAC
operations and produce a visual
signal. At this time the set
ting of the Supervisory Control
Output Selector switch may be
changed. Actuation of the start
button causes the 50 m instruc
tion to be performed.

Page 234

Chapter 11 Appendix

*Times listed for Tape and Supervisory Control operations
represent computer time only. Computations may proceed
after the lapse of the indicated times, but may be inter
rupted if another tape instruction of the same nature ~ead
followed by read, or write followed by write) occurs before
the first tape readjng or writing operation has been com
pleted. The time to read or write one block of informa
tion is approximately .085 seconds for 100/ in pulse dens
ity if no tape reversal is needed. If tape is reversed
an additional 0.6 second is required. The first block to
be read from or written on a tape required approximately
1.8 seconds. The Printer on Supervisory Control operates
at approximately 10 characters per second.

285 ,m

Qnm
or

Tnm

STOP INSTRUCflONS

Breakpoint Stop, used for check
ing of programming; disregard m.
If the two-position Breakpoint
switch on the Supervisory Con
trol is in the "Normal" posi
tion, interpret as a skip in
struction. If the switch is in
the "Breakpo in t" position, in
terpret as a stop instruction.
To resume UNIVAC operations act
uate Start Button.

Conditional Transfer Breakpoint
Stop, used for checking of pro
gramming. The Breakpoint Stop
operates in conjunction with the
setting of 12 conditional Trans
fer Breakpoint Selector Buttons
on Supervisory Control; "Reset",
"0 ... 9", "All".

Reset - Qm and Tm instructions
operate in the normal
manner.

Page 235

Chapter 11 Appendix

285 gOm

0 ... 9 - If n corresponds to
the setting of the
button depressed, the
UNIVAC stops, after
(rA) and (rL) have
been compared but be
fore the transfer
takes place. One or
more of the Buttons
labe led 0 ... 9 may be
depressed simultane
ously.

All - The UNIVAC stops after
(rA) and (rL) have
been compared on all
Qm and Tm instruc
tions. To complete
instruction actuate
Start Button.

stop UNIVAC operations and pro
duce a signal; disregard m.

Rewind Instructions where "n" in each case is the same

(a) The following combinations will not cause UNIVAC to stall

6n followed by 8n
6n followed by 6n
tape un" not used followed by 8n
tape "n" not used followed by 6n

(b) The following combinations will cause UNIVAC to stall

8n followed by 8n
8n no tape on Servo n
6n no tape on Servo n
8n followed by any other tape order on Servo n prior to
substitution of new tape.

Page 236

Chapter 11 Appendix

SEC. ~. TABLES SHOWING COMPUTER RESPONSES TO CERTAIN SPECIAL
CONDITIONS

Table 1 shows the effect of the US"~ order on the sign
column and is an extension of the discussion in Section 11
of Chapter 4. Referring to the table, typewriter characters
are arranged in groups of two rows with four symbols in each
row. The six-pulse representation of each character is also
shown. The table is read as follows: An US"~ instruction on
any of the four symbols in the top row or a group will pro
duce the symbol directly below in the second row of the
group. For example, to determine the effect of an US"~ order
the symbol I, with a pulse representation of 00 ODD, this
symbol is first located in the top row of the first group of
those on the left. The symbol resulting from this instruc
tion is ~ found in the second row of this group directly
under the 4. Similarly, the result of acting on D, in the
sign column, leads to the letter c; acting on C leads to D;
7 leads to 8 and 8 leads to 7.

Table 2 shows the results of multiplying digits and
other typewriter characters. To use the table the multipli
cand is found in the sets of characters at the top and the
multiplier is found on the left. The number (or characters)
in the body of the table located in the space corresponding
to the column containing the multiplicand and row containing
the multiplier is the product produced by the computer. For
example. anyone of the quantities 5. E. N or J multiplied
by anyone of the quantities 2. B, K or S will produce 10.
This will be clear when it is recalled that the zone indica
tors are ignored in the multiplication process.

Page 237

TABLE 1 EFFECT OF S ORDER ON SIGN

COLUMN

00 01 10 1 1 00 01 10 1 1

0000 I ,R -, , 0001 6. , \ B
0001 6. , \ B 0000 I ~ 1 ,
0010 - . X \ 001 1 0 , + \
001 1 0 . + \ , 0010 - . X \
0100 1 A J / 0101 2 B K S
0101 2 B K S 0100 1 A J /
01 10 3 C L T o 1 1 1 4 0 M U
o 1 1 1 4 D M U 01 10 3 C L T

1000 5. E N V 1001 6 F a w
1001 6 F 0 W 1000 5 E N V

1010 7 G P X 1 0 1 1 8 H Q Y
1 0 1 1 8 H Q Y 1010 7 G P X

1 100 9 I R Z 1 1 0 1 \ \ t.. 0
1 1 0 1 \ \ t.. flJ 1 100 9 I R Z

1 1 1 0 \ \ \ \ 1 1 1 1 \ \ \A \
1 1 1 1 \ \ Jl1 \ 1 1 1 0 \ \ \ \

/ NOT PRESENTLY DEFINED

X NOT AVAILABLE (USED INTERNALLY)

Page 238

TABLE 2 MULTIPLICATION OF TYPEWRITER CHARACTERS

MULTIPLICAND

MUlTI- I 6. - 0 1 2 3 4 5 6 7 8 9 \ \ \
PLiER R , ; A B C D E F G H I \ \ \

"I \ X / J K l M N 0 P 0 R t \ Jd
p ~ \ \ + S T U V W X Y Z f2J \ \

0;/\ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lAJ+ 1 6. - 0 1 2 3 4 5 6 7 8 9 10 11 12

2BKS a /j~ 6. 0 2 4 6 8 10 12 14 16 18 20 22 24

3 C l T 7 10 / 0 3 6 9 12 15 18 21 24 27 30 33 36

4DMU 4 16. /j 0 4 8 12 16 20 24 28 32 36 40 44 48

5 E N V 1 1/j 11 0 5 10 15 20 25 30 35 40 45 50 55 60

6FOW 14 20 10 0 6 12 18 24 30 36 42 48 54 60 66 72

7GPX 11 26. 1- 0 7 14 21 28 35 42 49 56 63 70 77 84

8HOY 16. 2/j 16. 0 8 16 24 32 40 48 56 64 72 80 88 96

9 I R Z 21 30 1/ 0 9 18 27 36 45 54 63 72 81 90 99 108

\ \t ¢ 26. 36. 1/j 0 10 20 30 40 50 60 70 80 90 100 110 120

\\\\ 2y 3/j 21 0 11 22 33 44 55 66 77 88 99 110 121 132

\\0\ 28 40 20 0 12 24 36 48 60 72 84 96 108 120 132 144

IR"lrfJ 25 46. 2- 0 13 26 39 52 65 78 91 104 117 130 143 156

6. , \S 22 4/j 26. 0 14 28 42 56 70 84 98 112 126 140 154 168

- . X\ 2- 50 21 0 15 30 45 60 75 90 105 120 135 150 165 180

\

/ NOT PRESENTLY DEFINED r = 1110

X NOT AVAI lABlE (USED INTERNAllY) 16. = 0100 0001

a 1101 21= 0101 0000

/j :: 1111 3/j= 0110 1111

Page 239

TO ALL UNITS CONTROL I READ BUS FROM ALL

STANDARD PULSES

~~~~_:~~~~~ ____ • SUPERVISORY ~ _____________ ~ • -,:~~~L-=S:StTO AND 

_-~O~~T~!!I~~_~!~~~U (SC) ~ : r- UNISERVOS 
FROM ALL UNITS L : WRITE TO ALL UNITS CONTROL SIGNALS 

, ,A", , 

++~++~~ 
I I I I I I I 
I I I I I I I 
I I I I I I I 

TIMING PULSE 
GENERATOR 

a 
CYCLING UNIT 

(CU) 

TO IATES I BUS 
CONTROL SIGNALS I 4 ~ 

-----------------~1f-----t----~ 

,,--__ A ____ ...... 

r-~" H Ht H t f MAIN MEMORY --- .... 

I + I I I I I I I I I 
I .i.-l.-lltllll~ 

(MM) 
MEMORY 

------------~------_, I 
I 
I 
I 
I 
I 

SWITCH 1-__________ ...., 

t F UNCTION TABLE 

(FT) ~ - - - ----------~--_, 
I.....--.....-~-~-----I TIME OUT I 

(1000 WORDS) .. HS81M 

HSB2M 

I 
I 
I 
I 
I 
I CyJ lpc s~r2~ INSTRUCTI~\II "~N. LOCATION 

TO GATES DIGITS DIGITS 

t ~ ;---A----.. 
, I I I I 

I 
I 
I L ___ _ 

t- - - - ~- - - - -I STATIC REGISTER 
, , 

I 
I 
I , 

I 

INPUT- : 
OUTPUT t 
CONTROL I 

a I 

INTERLOCK I 
CIRCUITS : 
iii I 
I I I I 

CHECK 
CIRCUITS ---------. CONTROL 

CIRCUITS -- --------- - - - -- -------+ (SR) 

CONTROL 
SIGNALS 

-~TO 
t ,~ tit I 

INPUT .-.J 'L OUTPUT I 

\.~-- __ ~I 
V 

INPUT FROM 
REGISTERS 
AND OTHER UNITS 

y 

SIGNAL 
<3 

v 

, 

CONTROL SIGNALS 

I 
I 
I 
I 

I , TO A, F,L, a x REGISTERS 
TO AA a CP AND 
TO CONTROL CIRCUITS 

MQ 13 SIGNAL 
TO CR 

r -- - -- --~----

't tt f 
I 1 J I 
I I I I 

Moe 
I r- ----
I I '----.,...-r-' 

I SI8NAL I 
I >3 1 
I "" I 

+ +------, 
I 
L. L I F L 

,Ir 

X 

CONTROL 
SIGNALS 
TO AAacc 

tt 
COMPARATOR 

(CP) 

r--.......... ~ DISTRIBUTOR LINE --------_---...1 
OVERFLOW 
SIGNAL TO MQC 

A 

+ I 

: .~ 

ALGEBRAIC 
ADDER 

(AA) 

-

" 
CC ...... 

INPUT- OUTPUT 
CONTROL a 
SYNCHRONIZERS 4 ~ 

000-

SYNCHRONIZER : SYNCHRONIZER ..-...------r.-l , r -t-------f 

I I I I o I I : 

(60 WORDS) : I I (60 WORDS) 

--------'. + • 
, , SIGNALS 

TO 
CONTROL 
CIRCUITS HIGH 

SPEED 1-
EVEN BUS HSI It 

CHECKER AMPLIFIER 
(CEC) ~HS8A),.....----e:-...... H ....... S8iiioooiiii2 __ 0_~ 

~, ~ 

CR 
(to WORDS) 

J ~ 

(2 WORDS) (1 WORD) 

4~ ~~ 
(f WORD) (1 WORD) 

: ~. ~~ 

(f WORD) 

+ ~~ 
(t WORD) 

. ~ 
(f WORD) • 

I~ 

HSB2A 
I 
I 

, 
HS82A ,IP 

1 I 
• 

, ,. 
HSB1A 

I ,. 
~r I " HSB1A Ir 

I 
I 

r------..J 
'f 

I 

~ _E~!.R~~T_ E~TROL. - LEGENO: - ---INFORMATION SIGNALS -- -------CONTROL SIGNALS a PULSES 

ECKERT-MAUCHLY DIVISION or R[MINGTON RAND INC. SIMPLIFIED BLOCK DIAGRAM OF THE UNIVAC EBU-IOO 
Page 240 



0 0 0 
HEATERS ON 

o~ .~. 0 0 
~ HEA",,"" o~ @ ·;;:,0 a ::::.L 

CONTROL 

~ 

REGISTER SELECTOR 

MEMORY SELECTOR -HUNDREDS 

MEMORY SELECTOR-TENS 

® (!)(!) (!)®0® <:V 00 
SECONDARY SELECTOR 

QQQ)QQQQQQQ 
lAY lAY eAY lAY IllAY IllAY IllAY IllAY BAY lAY 

A I CD £ •• 5" J 

QQQQQQQQQQ 
D. C. FAULT INDICATORS 

QQQQQQe 

i BAY lAY lAY DE POWEJt a. IP\ ~ 
K l P OOMIIfJI5UPf'lY sarws \i;;II 

QQ)QQQQ ~ FAULT T PftIMARY 
TEST F~T RELAY 

RESET 

QQ)QQQQQ ~ 
STANO-BY HEATERS - LONG TANKS Q 0 

QQQ99QQQ::.;=. AGe ~ 
QQQQgQQQ~IY,2, STAlL 

F l A x v · CR2 5'12 SY02 IHUWIl RtS(T SPEAKER 

HSB 

HEATERS-SHORT TANKS 

HIGH • • • • A OFF • • • • • • 

HSi TO Hsii TO 
LOW HSB HS8 ADDER ADDER ADOER ADDER F l A X CONDo DELETE MASTER RESET X+ HSB B ON TIME CYC F.T. F.T. TANK SERVO 1.5. 1. 5. 0 .5. 1-0 TAPE 

CHECK I ; GAIN O-E COMP. MIN. SUB. ALPH. COMP. COMP' COMP' COMP' COMP' TRANS. SELECTOR DELETE CONTROL ERROR ERROR C.U.ERROR SERvO OUT UNIT OUTPUT INTER. SEL. SEL. >720 O-E O-E INT. 
MEM. SYO STOP INSERT INSERT POWER 

SECOND INSTRUCTION DIGIT FOURTH INSTRUCTION DIGIT FIFTH INSTRUCTION DIGIT SIXTH INSTRUCTION DIGIT 

QQQQQ QgQQ QQQQ g - 0 1 23456 789 
IER OR nR-OR ~ 3 REPEAT 

QQQQQ gT~gg Q~Q 9)E9 Q ' . ; ABC 0 E F G H I 

QQQQgQQQQQQQ 
Q 
Q) 

gg CLEARlSC 

~ CYCLEC~'. ~ 
CLEAR 9 9 CLEAL 

CY PC AND PC 

N 0 L M P Q R SCICR J K 

S T u v w x y z STALL 

QQQQQQQQQ~ 

0000000000C: 
BLOCK SUBDIVISION SELECTOR 

Q)Q)Q)Q) Q)Q)QQ) ~ ~ 
INPUT SYNCHRONIZER COUNTER f1 OUTPUT SYNCHRONIZER COUNTER ~ Q 

QQQ Cl~R QQQ :=A£YER 

INPUT TANK COUNTER I AND 0 OUTPUT TAHI( COUNTER 

QQQ~~Q)9Q)Q)99 Q TRANSFER Q Q Q> Q Q Q 9 9 Q 9 g Q _ 
C~~~:L ~ ~ r~ 0 , 2 3 4 5 6 7 8 9 - ~ ~ ~ ~ 

080000000000 Q NO BREAK Q) SECOND INSTRUCTION DIGIT INITIAL TIMER CLEAR SCI 0000000 
CONDITIONAL TRANSFER BFcEAKPOINT SELECTOR TRANSFER POINT READ C CR 

,067 

TANK HEATER 
VOLTAGE MONITOR 

t 
VOLUME 

ONE 
OPERATION 

ONE ~ ONE 
STEP ~ ADDITION 

ONE 
INSTRUCTION 

Page 241 

UNIVAC 
SUPERVISORY CONTROL PANEL 

~B.nd 
ECKERT - MAUCHLY DIVISION 

INITIAL TAPE SELECT 

SCI 
CR 

FILL 

OUTPUT SEI 

Q<; 
Q SYIl ~ 
INPUT ( 

RUDY ~ 
INF 
ER~ 



HIGH 

LOW 
GAIN 

• 

HSB 
O-E 

HSB 
COMP. 

• 

ADDER 
MIN. 

• 

ADDER 
SUB. 

• 

AOO£R 
ALPH. 

ADDER 
COMPo 

F 
COMP. 

L 
COMP. 

A 
COMP. 

X 
COMP. 

~ST INSTRUCTION DIGIT SECOND INSTRUCTION DIGIT 

QgQ Q9QQ QQQQ 
IER-OR ~ 3 REPEAT MUlT. - ouor. COUNTER PROGRAM COUNTER 

ggQ QQQQ QQQQ 

QQQQQ 
~ STOP TO TS S1-CP S1-X 

QQQQQ 
CLEAR 

CY 

QQ CLEAR lSC 

~ CYCLE COUNTER 

QQ 
CLEAR 

PC AND1iC 

Q TRANSFER 

CONDITIONAL 
TRANSFER 

g 
Q 

9 
Q 

&Q)~Q)Q)99999 

)800000000 Q NO BREAK 
'HAL TRANSFER BREAKPOINT SELECTOR 

ONE 
OPERATION 

::.'. @ .. g~~ON 

241 

ONE 
INSTRUCTION 

TRANSFER POINT 

CONDo DELETE MASTER RESET X+ 
TRANS. SELECTOR DELETE CONTROL ERROR 

STOP 

A OFF 

HSB B ON 
ERROR C.U.ERROR SERVO 
INSERT INSERT POWER 

TIME 
OUT 

• 

CYC 
UNIT 

• 

F.T. 
OUTPUT 

F:r: 
INTER. 

• 

TAN I( 
SEL. 

• 

SERVO 
SEL. 

1 . 5. 
>720 

• 

1. 5. 
O-E 

• 

0.5. 
O-E 

1-0 
.NT. 

s 

TAPf R 1.5. 
CHECK U. ERIlOR ERROR 

INSERT CLEM 

0.5. 
EJtRCM 
CL£AR 

FOURTH INSTRUCTION DIGIT FIFTH INSTRUCTION DIGIT SIXTH INSTRUCTION DIGIT 

- 0 f 2 3 4 5 6 7 8 9 

, . ; A B C 0 E F G H 1 

QQQQQQQQggQQ 
seIeR J K L M N 0 p Q R 

s T U V W x y Z 

2 3 4 5 6 7 8 9 

SECOND INSTRUCTION DIGIT 

UNIVAC 
SUPERVISORY CONTROL PANEL _R-nd. 

ECKERT-MAUCHLY DIVISION 

INITIAL 
READ 

-DECIMAL ZERO-

-BINARY ZERO-
INST. IISR SR 

QQQQQQQQQQ 
08000000008 

BLOCK SUBDIVISION SELECTOR 

QQQQ 
INPUT SYNCHRONIZER COUNTER 

Q 
IR 

TIMER 

QQQ 
INPUT TANK COUNTER 

CLEAR SCI 
C CR 

0000000000 
INITIAL TAPE SELECTOR 

SCI 
CR 

FILL 

OUTPUT SELECTOR 

QQQ 
n SYI1 12 lH SYlI A ':::!J DIGIT ~ 
INf'tlT n OUTPUT 

READY v::#J READY 

INPUT 
ERROR 

SIt. 

OUTPUT 
IMM 
POINT 

, 
"'" 

..;t'. ~.*P,-:t!. 210 40 '" ~ 
~ 

'- TA"I( HEATER 
YOl.TAGE 

~ PP«IITOI AUOW .. IU "' .. MY T_ 

~ ~ 
I ABSOLUTE YOl.TAGE __ 

AEF. VOLTAGE REMOTE METER 

..l1li 

o 
o o o 
(i) 
e 

IGl IC) ~ 
1(0) 11'1' t2) 1\ - -- --

+750 +90 +8 
0 0 -14 

+410 +80 +5 
+280 +70 0 

+380 +80 +5 
+90 +60 -14 

+375 +80 0 
0 0 -175 

.280 +80 0 
o -106 -H 

+246 +75 0 
0 0 -13 

+200 +70 0 
0 +60 -14 

+165 HO 0 
+90 0 -IS 

+165 +66 0 
+60 t60 -16 

+160 +60 0 
-40 0 -17 

+150 +50 0 
0 0 -Ie 

+120 +40 0 
+105 0 -20 

+120 +40 0 
-30 -88 -21 

+105 +35 0 
+95 0 -40 

+105 +]0 0 
+80 0 -50 

+95 +30 0 
0 -40 -60 

+90 +20 v 
+84 0 -100 

+90 +15 0 
+80 -100 -106 

+90 +8 0 
+70 o -300 

+90 +8 -4 
+60 -'4 -34 

(j 0 
ij) C!) 
<i~ (!) 
\it i!l 
~t ~ 
~t ~ 
~~ -(:) 
(i i2 
Ci~ (!!) 
~t C:) 
~t ~ 
Q.t ® 
~t ~ 
~~ ~ 
<:;t <!!) 
s:l ~ 
(:) \!!) 
~ CV 
~~ ~ 
j'i ~ 

10) ~ Ki 
It:"I ~ ~ 
I\, 3..J 1\ 4 .J 1\ 5..J - - --

-4 -88 +290 
-74 -It 7 ito 

-14 -88 +280 
-34 -150 +246 MEASURE 

-20 -95 +246 

~ -40 -100 +165 

-20 -95 +120 
-100 -117 +90 

DELAYED 
-25 -100 0 SHUT-OfF 

-100 -175 -34 

-25 -100 -34 
-190 -216 -74 

-34 -tt7 -. 
-40 -150 -100 

-34 -til' 0 
-50 -190 -191S 

-40 -'25 -1665 
-55 -Ito -I,IS 

~ -40 -'40 - 191S 
-100 -190 -2175 

-50 -'50 .48 
-ISO -163 0 VOLTAGE MOM. 

IIlMUAL 
-so -ISO SWITCHING 

-190 -.65 

-55 -150 
-100 -\90 

-55 -\SO 
-150 -216 0 -60 -165 
-ee -216 HIGH 
-60 -175 +279 

-100 -216 +90 

~ -71 -190 +247 -. -203 +90 

-74 -190 +79 
-88 -300 0 \'Ol.TAGE MON. 

FAULT RfLAY 
-74 - 216 -74 RESET 

-190 -224J -H 0 -80 -2\6 -'00 
-150 -300 -150 

LOW 

E J . LEVINSON ' - 52 



Chapter 11 Appendix 

BIBLIOGRAPHY 



Chapter 11 Appendix 

SEC. 7. BIBLIOGRAPHY 

The list of references herein included is not intended 
to be a complete list but, rather, selected to meet the needs 
and interests of the reader of this Instruction Manual. 

GENERAL REFERENCES 

I. 'Preparation of Programs for an Electronic Digital Com
pu ter' - Wilk es, Wheel er and Gill (0 f Cambridge Uni versi ty), 
Addison Wesl ey Press, Cambridge, Massachusetts, 19'51. (EDSAC) 

II. 'High Speed Computing Devices' - Engineering Research 
Associates Staff. McGraw - Hill, New York, 1950. 

III. 'Planning and Coding of Problems for an Electronic Com
puting Instrument', Goldstine, H.H. and von Neumann, J .. 
Institute for Advanced Study, V. 1, (1947), v. 2, (1948), 
v. 3, (1948) Princetor ... , New Jersey. 

IV. 'Proceedings of the Symposium on Large Scale Digital 
Cal cuI a tin g Machi ne ry', Harvard Uni versi ty Compu ta tion Labo r
atory, Cambridge, Massachusetts, Block, R. M. (Mark I) V. 16, 
1948. 
'Manual of Operation' (Mark I) Chapter I. Chapter IV, 1946 
(with complete mathematical literature references, pp 338-
404. ) 
Campbell, R. V. D. (Mark II) V. 16. 1948 
'Description of a Relay Calculator' Chapter VII, 1949 
'Second Symposium on Large Scal e Digi tal Calculators'. 1951 

MauchlY J. W •. 'Preparation of Problems for EDVAC-Type 
Machines' V. 16. 1948 

V. 'The Binac Manual' A-050-1B dated 7/20/49. Eckert
Mauchly Division of Remington Rand Corp .• Philadelphia, 
Pennsylvania 

VI. 'ElectroniC Digital Computer Papers', University Re-
search Board University of Illinois 1952. Manual 1952. 

Page 242 



Chapter 11 Appendix 

VII. 'SEAC Operating and Programming Notes', Computation 
Laboratory U. S. Dept. of Commerce, National Bureau of 
Standards, 
Report I, dated 21 April 1952, 
Report II, dated 22 .July 1952, 
Report III, dated 22 August 1952, 
Report IV, dated 12 September, 1952, 
Repo rt V, da ted 30 September, 1952 
'Handbook for SEAC', Joseph H. Levin, 1952 

VIII. 'Reference Guide to the UNIVAC System', Prepared for 
Dept. of Navy ASO, UNIVAC Seminar - January, 1951, Eckert
Mauchly Division, Philadelphia, Pennsylvania 

IX. 'Office Robots', Fortune Magazine, pp 82-87 January, 
1952 
'Mechanical Brains', Fortune Magazine, L.N. Ridenour, V.39 

#5 pp 108-118, May, 1949 

X. 'Interim Progress Report on the Physical Realization of 
an Electronic Computing Instrument', Bigelow et al., Insti
tute for Advanced Study, 
I Report, January 1947 
II Report, July 1947 
III Report, January 1948 
IV Report, July 1948 
V Repo rt, Janu ary 1949 

XI. 'Calculating Instruments and Machines', Universi ty of 
Illinois, D. R. Hartree, press, Urbana, Illinois 1949 
(With 122 references) 

XII. 'MIDAC' Papers, Willow Run Research Center, 1952 

V I I . 'R e vie W 0 f E 1 e c t ron i c Dig ita 1 Com p-u t e r s', J 0 in t A lEE -
IRE Computer Conference Publications 

XIV. 'Programming for Whirlwind-I' (MIT), H. Saxenian, 
R-196, 1952 also 'Digital Computers and their Applications' 
1952 

XV. 'Proceedings of the Association for Computing Machinery' , 
Joint AlEE-IRE, Richard Rimbach Associates, Pi ttsburg, Pa. 

Page 243 



Chapter 11 Appendix 

XVI. 'Compiling Routines', Richard K. Ridgway, Paper pre
sented at meetings of the Association for Computing Machin
ery, September 8, 9, 1952 

XVII. 'The Education of a Computer', Dr. Grace M. Hopper -
Paper presented at meetings of the Association for Computing 
Machinery, May 2. 3. 1952 

XVIII. 'Solution of Matrix Equations of High Order by an 
Aut 0 mat i c Co m put e r', D r ~ Her be r t It'. Mit c hell, Jr. - Pap e r 
presented at the meetings of Association for Computing 
Machinery, March 28, 29, 1950 

XIX. 'High Order Matrix Computation on the UNIVAC', 
H. Rubenstein and J. Rutledge - Paper presented at the 
meeting of the Association for Computing Machinery, 
May 3, 1952 

MATHEMATICAL TEXTS 

XX. 'Theory and Techniques for the Design of Electronic 
Digital Computers', Moore School of Electrical Engineering, 
(EDV.AC), Pennsylvania University, 2 V, 1947 

XXI. 'Numerical Calculus', W.E. Milne, Princeton University 
Press, 1949 (Math. methods) 

XXII. 'Numerical Mathematical Analysis', J.B. Scarborough, 
Bal timore, Johns Hopkins Press, 2nd ed., 1950 (Math. methods) 

XXIII. 'Interpolation', J.F. Steffensen, Baltimore, Williams 
and Wilkins, 1927 (Math. methods) 

XXIV. 'The Calculus of Observations', E. T. Whittaker and 
G. Robinson, 4th ed. Glasgow, Blackie and Lon Ltd., 1944 

Page 244 



I N D E X 



Index 

Numbers refer to pages. A page number followed by a (*) 
means that the reference is concerned with the elementary 
computer discussed in Chapter 9, al though in many cases the 
reference will be applicable also to UNIVAC. 

A 

Adders 135 
Addition 

of Numeric Characters 40 
of Non-numeric Characters 50 

in Sign Position 53 
Appendix 221 
Applications of UNIVAC 10 
Arranging Techniques 227 

B 

Backward Read 100 
Bibliography 242 
Binary 

One 17 
System 15, 119 
Zero 17 

Block Diagram of UNIVAC 240 
B r e ak poi n tIn s t r u c t ion s 8 1 , 23 5 
Buffing 128 (*) 

C 

Card-To-Tape Converter 7 
Carriage Return 107 
Central Computer 7 
Channels 171 
Channel Selection 166 (*) 
Ch eck Pul se 15, 23 
Cleared 28 
Coding 13 
Collection 147 (*) 
Comparator 131 (*) 

Page 245 

Comparisons in Sign Posi
tion 76 

Complements 19, 138 (*) 
Computer 

Characteristics of a 
122 (*) 
Use of 13 
Word 24, 122 (*) 

Computing Engine 2 
Conditional Transfer 

Switch 82 
Control 

Circuits 157 (*) 
Counter 157 (*), 172 
Register 173 

Counting 139 (*) 
Cycle 

D 

Major 160 (*) 
Minor 159 (*), 171 
3 Stage 162 (*) 
4 Stage 172 

Decimal and Binary Equiva
lents 17 

Decimal Notation 16 
Decimal Point 24 

in Addition !17 
in Subtraction 57 
in Multiplication 58 
in Division 58 
Posi tioning 57 
Floating 59 

Decoding 150 



Delay 
Lines 171 
Mechanism 133 (*) 

Digital Positions 25, 59 
Distribution 146 (*) 
Division 

E 

Numeric Quantities 48 
Non-numeric Quantities 55 
in the Sign Position 55 

E.B.U.-I00 240 
Editing 106 
EDVAC 4 
Encoding 150 (*) 
Ending Pulse 165 (*) 
ENIAC 3 
Erased 28 
Erro r Stop 51 
Excess-Th ree 

Addition 20 
Advantages 23 
Subtraction 22 
System 17 

Extract Instructions 66 

F 

Fields 106, 111 
Flip-Flops 125 (*) 
Floating Decimal Point 59 
Flow Charts 13, 176 
Flow Chart Symbols 

Compari son 179 
Computation 181 
Fixed Connector 177 
Overflow 197 
Path of Computational Flow 177 
Sentinels 199 

Substitution Box 181 
Transfer 181 

Index 

Variable Connector 198 
Forward Read 98 
Four Stage Cycle 172 
Frequency 120 (*) 
Function Table 150 (*) 

G 

Gates 126 (*) 

H 

High Speed Bus 157 (*), 173 

I 

Ignore 107 
Input Instructions 96 
Input Routines 210 
Instruction Code for 

Elementary Computer 154 
Instructions in a Word 25 
Instructions 

C-I0 Code 229 
Time for 229 
Am 40 
A-m 95 
Bm 31, 40 
Cm 31, 40 
Dm 48 
D-m 95 
Em 66 
Fm 32, 66 
Gm 32 
Hm 31, 40 
Jm 31, 40, 45 
Km 31, 40, 45 

Page 246 



Lm 31. 45 
Mm 45 
Nm 45 
Pm 45 
Qm 72 
Rm 72 
Sm 40 
S-m 95 
Tm 72 
Um 72 
Vm 33 
Wm 33 
Xm 40 
X-m 95 
Ym 35 
Zm 35 
OOm 62. 72 
.nm 62 
; nm 62 
-nm 62 
Onm 62 
1nm 98 
2nm 100 
3nm 98 
4nm 100 
5nm 103 
6nm 104 
7nm 103 
8nm 104 
10m 105 
30m, 40m 36, 98. 100 
50m 105 
.m 81 
Qnm 81 
Tnm 81 
90m 71 
UNIPRINTER 107 

Interlock 104 
Internal Memory 24 
Initial Read 96 
Iteration 71 

L 

Latency Time 168 (*) 
Lay-Out Sheets 108 

Index 

Least Significant Digit 25. 
122 (*) 

M 

Mark I 2 
Mark II 2 
Mark III 2 
Matrix Algebra Problem 11 
Memory 24. 171 
Min 0 r Cy c leI 59 (*). 1 71 
Most Significant Digit 25. 122 

(*) 
Multiple Input Routines 210 
Multiplication 

N 

Numeric Characters 45 
Non-numeric 55. 237 
in Sign Position 55 

Non-numeric Characters 25. 40 
50. 55. 237 

o 

Ordering Techniques 227 
Output Instructions 96 
Overflow 40. 48, 83 

in Addition 83 
in Di vision 91 
in Subtraction 83 
Stops Computer 95 
Symbol-Flow Charts 197 

Page 247 



P 

Period 120 (*) 
Printer Stop 107 
Problem Analysis 12 
Process Flow Charts 209 
Pro grammi ng 12, 1 76, 209 
Printer Breakpoint 107 
Pulse 15, 120 (*) 

R 

Code 27 
Density 96, 102 
Ending 165 (*) 
Fo rm e r 1 42 (*) 
Repetition Rate 121 (*) 

Reading 96 
Backward Read 100 
Fo rward Read 98 

Registers 28, 142 (*) 
A, X, L, F 29 
CC, CR 29 
V, Y 30 
I, 0 30, 97 

Rewind Instructions 103, 236 
Rounding Off 64 
R-U Instructions 77 

s 

Sentinels 199 
Seven Pulse Code 15, 23 
Shifting 145 (*) 
Shift Instructions 62, 231 
Shift 

Lo ck 107 
Unlock 107 
Single 107 

Index 

Sign Position 25 
Addition in 53 
Comparisons in 76 
Division in 55 
Multiplication in 55 
Subtraction in 53, 237 

Signals 121 
Dynamic 124 
Inhibiting 126 
Permissive 126 
Static 124 

Sorting Techniques 227 
Space 107 
Space Between Words 124 (*) 
Stall 236 
Standby Block 211 
Static Register 157 (*), 173 
Stop Instructions 71, 235 
Subtraction 

Numeric Characters 43 
Non-numeric Characters 50 
in Sign Posi tion 53, 237 

Supervisory Control 8, 14, 96 
Control Panel 241 
Ins t ru c t ion s 105, 233 
Output Switch 234 
Printer 235 

Switching Time 161 (*) 

T 

Tab 107 
Tape Instructions 232 
Time 

Latency 168 (*) 
On 165 (*) 
Out 161 (*), 172 
Selection Counter 166 (*), 
172 

Timing 157 (*) 

Page 248 



Transfer 

U 

of Control 71 
One-lord 31 
Multi-Word 33 

UNIPRINTER 5, 13, 97 
Instructions 107 

UNISERVO 5, 14, 96 
UNITYPER 5, 13, 96 
UNIVAC 

Operation 0 f 170 

Page 249 

I 

Iri ting 96, 102 
Instructions 103 

Z 

Zone Indicators 15 

Index 



T5 

CHART A 

ARITHMETIC AND MEMORY CIRCUITS 

OF AN 
ELEMENTARY COMPUTER 

P1=t6 

PO·t40 

038 

cc 

CT 

FROM SINGLE 
PULSE DEVICE 

P37 =t36 

OF 

P37=t37 

TS 

PO=14f 

BA 

P37·t37 

CARRY 

SUM 

Po·to 

TO 

HSBfA 

To 

Po=t40 

037 038 

rA 
TO 

TO 

CP 

HA 

P37=t35 

FROM STATIC 
REG. 

TO 

TO STATIC 
REG. 

TSo 

Post, PFR..-...--------' 

HSB2M 

Ot67 

Po·to 



FROM HSB2A DB 01 DI 01 0, r 01 01 01 
I 
I 

CHART B ~L$~~~~ L$ ~ 
~ ~ ~ l ! + + ROL CIRCUITS 
~S ~~ RI I s ~~ R I I 5 ~~ p I ls SS RJ Is S~ RI Is sF RI s Sb Rl OF AN 

CONT 

T 

ARY COMPUTER L J L J L J c .a ... -

~~~ ° (l1li' 
I C ~~ 1III'" to I "II" 'IIIII'" G73

c2
lilt.

'"
(l1li'

GIA C3~~~ ...

X ..
..

I'TSC_20~
, 0)~ IR FFT~I TSC-I '2 to GIB I

G3~3F1 ~
t3/ CT

G308 GI7C DC

.~
TO 17

01 01 01
3 G3 TO TO G5 5 to

TS

o GIO G7 T5
TO HSB2A E.P.

1 TSO TS TSI
~ ~

GI9 '9

ELEMENT

I PC-2 PC-'~ to
E.P. I 0 I 0

~To Clear PC. 1 GI38 13 ..
~ Il. To Set

'" FFTO
TO

TiO. Il. ... ,
DC

I
IS FF T~I

000 ~Il. 1III" Mem-rA ,..
001 1III11. ... JW rA-l'tIem ,.. ..

rA-rB 010 ... • 1III" .oil Il. ~ . 1III" .. 'III

PC U 011 ~ ... ~ ..
to O.F. Add 100. • ~ . .. 'III 'II 111

!
.. '"

-8 r$... ~
T(only on lOt011

absolute} .. II'" .. 111 .. 111
!

1III. ,..

l:CY~~ICY-1 o~ Right Shift 110 .. Il. ~ .
III

~I Left Shift

.011 . .011 oC
111

.oil /3
1III" ~.

.oil .. 0 --
--- .

2 3 4 5 6 7 8 9 10 It 12 13 14 15 16 17 18 19 20 21

	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	014_
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	027_
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	038_
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	056_
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	070_
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	082_
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	095_a
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	114_
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	175_
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	220_
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	241_a
	241_b
	242
	243
	244
	244_
	245
	246
	247
	248
	249
	chart_a
	chart_b

