
l
?" - ---------.------- --- -- - .-------\ -- --- --. - - -. -- -- - - - -'- -- -- ---.

,i f1rt!I~11dIIfuiITIIII ml !
---- -- -----------\ - ---------- --. _./

0')
o
ib

"

WHITE OAK LABORATORY

A COMPARATIVE DESCRIPTION OF SEVERAL HIGH LEVEL COMPUTER Lt\NGUi~GES

,BY
C. Nicholas Pryor

NAVAL SURFACE WEAPONS CENTER
WHITE OAK LABORATORY
SILVER SPRING, MARYLAND 20910

• Approved for public release; distribution unlimited

NAVAL SURFACE WEAPONS CENTER

9 JULY 1975

WHITE OAK, SILVER SPRING, MARYLAND 20910

UNCLASSIFIED
SECURI TY CL ASSI FIC ATION 0 F THIS PAGE (When Detll Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

'- REPORT NUM8ER t GOVT ACCESSION NO. 3. ~ECIP'E"T'S CATALOG NU .. BER

,----1\
5_ TY~ECF-REPORT & PERIOO COVERED

NSWC/WOL/TR 75-109
4_ TITLE (8ndSubtftle)

A COMPARATIVE DESCRIPTION OF SEVERAL
HIGH LEVEL COMPUTER LANGUAGES 6. PEFltFORMING ORG. REPORT NUMBER

7, AUTHOR(s) a. CONTRACT OR GRANT NUMBER(s)

C. Nicholas Pryor

9, PERFORMIN G ORGANI Z AT ION NAME AND AODRESS 10. PFltOGRAM ELEMENT, PROJ ECT, TASK
AREA & WORK UNIT NUMBERS

Naval Surface Weapons Center
vlhite Oak La-!:)uratory
White Oak.t Silver Soring. Maryland 20910

11. CONTROLLING OFFICE NAME AND ADDRESS

14, MONIiORIN G AGENCy NAME &: ADDRESS(lt dHierent from ControlllnQ Oll/ce)

12.

13.

15,

REPORT OATE

Q .T 1) 1 v J._ 9.75 ""
NUMBER OF PAGES

48
SECURITY CL ASS. (ot tMs report)

UNCLASSIFIED
IS •. DECL ASSI FICATION/ DOWNGRADING

SCHEDULE

'6_ DISTRIBUTION STATEMENT (01 this R"pott)

AI?proved for puhlic releasp.; distribution unlimited

n. "OISTRIBUTION ST ATEMENT (of the abl/ttact ent.r.d In 'Block 20, If djfl.tent Irol11 Report)

IB, SUPPLEMENTARY NOTES

""-9-_ -1(-E-Y-W-O R-D-S-C C-on-t-ln-u-e-o-n-ltJ-v-e-rlJ-e-II"':",d-.-,~I-n-ec-.-II-"ery-..:.an-d~.d:-.n-.t~U:-y-:b-Y-:b-:-,O-c-:-k-n-uDl-b:-.--l)~-'"

Digital
Computer
Programming
Languages

20.' "':SST:,RACT (Continue on revelSe .Id. It neces •• ry and Identify by block nUalber)

. 'A nu~rriber of high level computer languages are in current' use or
IUnder'development for military applications. These include
tFORTRAN, BASIC, ALGOL, PL/l, PL/M, CMS-2, JOVIAL, CS-4, and
!SPL-l. These languages are compared by comparing similar
statement and declaration types in each language, and by an
example program written in each of the languages. The basic
facilities in each language are shown to be similar, with the~

DO FORM
, JAN 73 1473' UNCLASSIFIED EDITION OF' NOV 65 IS OBSOL.ETE

SIN 0102-014 0 6601
SECU"'ITY CL.ASSIFICATION OF THIS PAGE (When Oata, Bnt~~~~)

.~J·.~;;:'··.~;i;f.,'·}'·i·t;~ ". ,'0

UNCT.ASSIFIED
..... '_1J4ITY CLASSIFICATiON OF THIS PAGE(When Data enrered)

dIfferences mostly cosmetic in nature. A recommendation 1s made
that the languages under development be derived from a common
base, possibly a subset of the commercial language PL/l, to
avoid unnecessary variety.

19. FORTRAN
BA.SIC
Algol
PL/l
PL/M
CMS-2
JOVIAL
cs-4
SPL-l

..
II . UNCLASSIFIED

SECURITY ClASSI FICATION OF TMIS PAGE(When Dfltll Entered)

NSWC/WOL/TR 75-109

NSWC/WOL/TR 75-109 9 July 1975

PREFACE

This report describes and compares several high level computer
languages in use or considered for military applications. The
purpose is to provide in a single source a cursory overview of
several languag~s> without distracting detail on .any. Thus, it
provides an introduction to these languages and their cipabilities
for those generally familiar with computer languages, but not
with the specifics of the languages covered. While certain of
the languages discussed are commercial products, no endorsement
of these products or their parent companies is implied. This.
work was performed in support of overall DoD interest in military
computer languages.

1

NSWC/WOL/TR 75-109

TABLE OF CONTENTS

Page

INTROI)UCTION. 5

SOME (!AVEATS '. 5

HISTORICAL SUMMARY OF LANGUAGES STUDIED 7

COMPARISON OF BASIC LANGUAGE FEATURES 11

Block Structure ..•.......... ." •............ 13

Separation of Statements 14

Statement Labels.......................... 15
Data Types Supported•.............. 16

Da.ta Declarations , ...•........... 18
Assignment Statement 20

Expressions and Operators 22

Unconditional Branch Statement (GO TO) 24

Two-~ay Conditional Branch Statement (IF). 26

Multiple Case Branch Statement .(CASE)~ 28

Loop Control >Statements ..•................ 30

Pr-ocedure Calls 32
Subroutine' Procedure Declaration•.... 34
Function Procedure Decl~ration 36

UNIQUE ADDITIONAL FEATURES 38

AN EXAMPLE ~ 39

SUMMARY AND CONCLUSIONS....................... 45

2

NSWC/WOL/TR 75-109

LIST OF FIGURES AND TABLES

FIGURE Page

1. Ancestry of High Level Languages Studied 8

TABLES

1. Summary of Notations Used 12

2. Data Types Recognized by Languages 17

3. Forms of Variable and Array Declaration 19

4. Form of Assignment Statement 21

5. Notation Used for Operators 23
6. Forms of. Unconditional Branch Statement 25

7. Forms of Conditional Branch Statement 27

8. Forms of Multiple Case Branch Statement 29
9. Form of Loop Control Statements 31

10. Forms of Function Procedure Cal1 ... ~ 33
11. Forms for Subroutine Procedure Call "0 •••••• 33
12. Format of Subroutine Procedure Declaration 35
13. Format of Function Procedure Declaration 37
14. Example Programs for Interchange Sort 41-44

3,

NSWC/WOL/TR 75-24

A COMPARATIVE DESCRIPTION OF SEVERAL HIGH LEVEL COMPUTER LANGUAGES

Prepared by:

C. Nicholas" Pryor

INTRODUCTION

1.· There is considerable interest in the Department of Defense
at the present time in establishing a common high level program­
ming language for use across a wide range of computing applications.
A number of languages currently exist and are in use for scientific
or tactical computation. Some of these are proposed as candidates
for a common language; the alternati ve is to "define an entirely
new language based on the best features from existing languages.
Although each of the existing languages has some special features
peculiar to itself, the basic computation~l and sequence control
functions of all the languages are quite similar. The purpose
of this report is to investigate the basic statement types that
are common to all languages and to compare them on a side-by-side
basis for several commonly used or proposed languages. The
basic statements are found to be similar in functions among the
languages stUdied, with differences that are ~ore cosmetic than
fundamental. There is no attempt to make judgments concerning
the differences among the languages.

2. Three categories of languages are included. FORTRAN, BASIC,
ALGOL, and PL/l are existing commercial languages in wide appli­
cation, with PL/M being a simplified offshoot of PL/l. CMS-2
and JOVIAL are currently standard Navy and Air Force tactical
languages respectively. cs-4 and SPL-l are new languages currently
under development.

SOME CAVEATS

3. This report is intend~d to provide only a superficial level
of understanding of the differences between the languages, generally
at the level at which the unsophisticated programmer would be
interested. Thus some subtleties of the differences are not
discussed, and not all the options are shown. Absolute precision
or consistency of notation between languages was not attempted

P-receding page blank
5

NSWC/WOL/TR 75-109

where this might obscure the basic similarity between the languages.
Each language has certain statement types or capabilities which

are not discussed here, although the few statement types discussed
constitute the vast majority of all programs. Minimum emphasis
is placed on data types accepted by the language, on declarations
of variables or procedures, or on means of parameter passing to
procedures. These subjects are worthy of a separate effort.

4 .. It is surprisingly hard to find a single concise definition
of most languages. The older languages tend to have extensions
added by individual implementers, or to have evolved into several
distinct dialects under the same name. This is evidenced by the
difficulties encountered in transporting a program written in
"standard" FORTRAN from one machine to another. Newer languages
still ·in development tend to change more rapidly than their docu­
mentation, so one can at best get a snapshot of their descriptions.
Thus an attempt was made to check several sources where possible,
to sort out the"standard tt part of the language from the
implementation-dependent features.

5. Much of the material for this report came from references (1) and
(2) which contain brief histories and descriptions of many of the
languages, clrca 1967. More detailed material for each language
was drawn from references (3) through (11). Where several dialects
of a language exist, the information in thi~ report was drawn
primarily from the reference cited.

(1) Sammet, Jean E., Programming Languages: History and Funda~entals,
Prentice Hall, 1969.
(2) Rosen, Sa.ul, Programming Systems and Languages, McGraw-Hill, 1967.
(3) IBM 7090/7094 IBSYS Operating System; Version 13 FORTRAN IV
Language. IBM Sys. Ref. Lib. Form C28-6390-0.
(4) Kemeny, J. G. and Kurtz, T.E.; A Manual for Basic; Dartmouth
College, 1965 (printed by C-E-I-R Inc.).
(5) Nauer, Peter et al; Revised Report on the, Algorithmic Language
ALGOL 60; Communications of the ACM; Jan 1963 .
.< 6) Bat es, F. and Douglas, M. L., Programming Lan'guage/One,
Prentice-Hall, 1967.
(7) A Guide to pr.,/!ll Programming, Intel Corporation, Sep 1973.
(8) Users Reference Manual for Compiler-Monitor System (CMS-2)
for use with AN/UYK-7 Computer, Sperry-Univac, Oct 1973 revision
{prepared for NAVSHIPSYSCOM).
(9) Univac 1100 Series EXEC 8 JOVIAL Programmer Reference Manual,
Sperry~Univac Form UP-759B, undated.
(10) Cs-4 Lan ua e Reference Manual and 0 eratin S stem Interface,
Intermetrics, Inc. Dec 1 73.
(11) Cerny!':, J. J. and Smith, W. R., Baseline Def'ini tion of a Hlgh-
Level R~dl-Time Language for Digital Signal Processing (SPL/l), .
Naval Research Laboratory, 28 Feb 1975.

6

NSWC!WOL/TR 75-109

HISTORICAL SUMMARY OF LANGUAGES STUDIED

6. Development and widespread acceptance of high level languages
for computers began with the proprietary development of FORTRAN
by IBM in the 1950's, followed shortly by the international committee
definition of ALGOL apd the definition of the business language
COBOL. Most of the succeeding commercial or military languages
can be traced to these starts, and this ancestry is of some interest
in understanding a language and its supporters. Figure 1 is
an attempt to trace this ancestry for the languages 'studied here,
and the following paragraphs provide some more information on each.
Considerable additional information on the development of several
of these languages can be found in reference (1).

7. Figure 1 arbitrarily divides the languages into three generations.
The first generation languages were .developed fairly independently
in the 1950's, on a relatively small base of experience in high
level languages. The second g'e'neration languages are mostly
products of the 1960's or early 1970 t s and had opportunity to select
the best of the existing la~guage approaches. Improvements in run­
time software environments also made these languages more usable
in time-critical applications. The third generation languages
currently under development take additional advantage of modern
programming concepts such as structured programming and of advanced
hardware designed specifically to support the high level language
constructs.

FORTRAN

8. FORTRAN can be considered to be the first of the true high level
languages. It was first described by IBM in 1954 and was available
for use on the 704 computer by 1957. Since the language was
developed specifically for the 704, its original form was somewhat
machine dependent. These dependencies were largely eliminated with
the development of FORTRAN IV in 1962, which was, the first language
to be documented as an ANSI standard. FORTRAN is available for
virtually every production computer in the Uni t~.d States and is
almost universally known by scientific computer programmers.
Although FORTRAN has some faults that are widely condernrned by
computer sCientists, it is still firmly entrenched as the standard
computer language in the U.S. This can be attributed to the
large reservoir of FORTRAN programmers, widespread implementation
with very efficient compilers, and the excellent I/O facilities
built into the language. FORTRAN is also the language in which
the compilers for many other languages are implemented.

(1) Sammet, Jean E., Programming Languages: History and Fundamentals,
Prenti~e Hall, 1969.

7

(:1

2:
o
;:::
<C
a::
w
2
w
C!J
t­
el)

CC
LL.

2:
0
;::
<C
CC
w
2:
w
C!J
Q
2
0
tJ
w

""

2
0
;:::
<C
a::
w
2:
w
(!)

0
cc
i
t-

NSWC/WOL/TR 75-109

FORTRAN COBOL ALGOL

JOVIAL

BASIC

I 1
CMS-2 PL/·1

PL/M

........

CS-4 1

SPL-1

FIG. 1 ANCESTRY OF HIGH LEVEL LANGUAGES STUDIED

8

NSWC/WOL/TR 75-109

BASIC

10. The BASIC language is a simple language developed at Dartmouth
College in 1965 and is designed primarily for interactive use ~rom
remote terminals. BASIC is a simplified, easy-to-teach, derivative
of FORTRAN, although it is not a subset of FORTRAN. Currently,
BASIC is available on most time-sharing computer systems and on
many mini-computers. Because of its wide availability and ease of
use, it 1s now used nearly as much as FORTRAN for small-scale
sci-entific computing. While BASIC is not d.esigned as a real-
time control language, it is included here to show that it has many
of the same basic facilities as the more powerful languages.

ALGOL

11. ALGOL is also one of the early high level languages, based on
the work in 1958 of an international committee to define a standard
computer language. Further refinement of the' language in 1960
led to the definition of ALGOL 60, which is the version generally
implemented. ALGOL has received widespread support in Europe, where
it is nearly universally used in scientific computing. However,
FORTRAN had acquired enough momentum in the U. S. that most manufacturers
chose to implement FORTRAN compilers on their' hardware rather '
than risk introduction of ALGOL. Even today, ALGOL is only minimally
supported by most U.S. computer manufactur2rs.

PL/l

12. In 1963, IBM convened a committee of users to develop a
"major advance in FORTRAN," to provide a general purpose language
having the capabilities of FORTRAN, ALGOL, COBOL, and JOVIAL.
The result was PL/l, -introduced in 1966 along with the IBM 360 series
computers. Although the language has been defined as an ANSI
standard, it is still not widely implemented on' other than IBM
hardware. Originally it was considered that PL/1 would rapidly
replace FORTRAN, but today after some ten years of availability it
has made little progress. Long term prospects for PL/l are still
good however, since it is able to satisy both FORTRAN and ALGOL
devotees and it contains most features considered important in a
high level language. -In faci, some ~omplain that it 1s too capable,
since run-time inefficiencies can result if all its facilities are
implemented.

PL/M

13. PL/M is a simplified high level language developed in 1973
by the Intel Corporation to support its line of microprocessors.
The language is nearly a subset of PL/I and contains only those
features necessary to support small process-control type systems.
The purpose for including PL/M in this study is to illustrate
the feasibility of using a subset of a more powerful language to
develop a simple language with most of the same basic func~ions.

9

NSWC/WOL/TR 75-109

CMS-2
14. The C~S-·2 programming language was developed by Univac beginning
in about 1970, to be used in conjunction with the Navy standardUYK-7
computer. This language is currently the Navy standard high level
language for tactical data systems and is, or soon will be, available
ror the standard UYK-7 and UYK-20 computers. While many programmers
have raised objections to various features of CM8-2, its basic
features are generally similar to other languages studied. Some of
these objections may be not so much to the language itself, but to .
the implementation or the compiler and the run-time operating system
and to the fact that its use was mandated before support software
was fully available.

JOVIAL

15. The JOVIAL language is the,result of effort at System Development
Corportation in 1958 to develop a s~andard language for use in
Air Forceprojects. JOVIAL was under development at the time of
~he initial ALGOL conference, and its definition was strongly
influenced by this early AbGOL-work. A JOVIAL compiler was operating
by 1960, and JOVIAL became an Air Force standard lang,uage for command
and control about 1967. JOVIAL is also supported to some extent
on commercial computers.

cs-4
16. CS-4 is the major new language designed to accompany the intro­
duction of the Navy "All Applications Digital Computer" in the early
1980's. It is intended primarily as a data processing language, and
its featu~es are designed to be compatible with the advanced hard­
ware concepts of the AADC program. CS-4 supposedly contains a core
language called METAPLEX, with extensions to provide the full data
processing capabilities of c8-4. Other extensions of METAPLEX were
intended to form various special purposes languages such as for
system control and signal processing. Major development of cs-4
took place beginning in about 1972 under an NELC contract to
Intermetrics. The language development is now in a state of limbo
due to a major restructuring of the overall AADC program.

SPL-l

17. SPL-l is a special purpose signal processing language, originally
intended to be part of the c8-4 family of languages within the AADC
program. Thj.s language was developed by NRL and Intermetrics,
pri,marily during 1974, and is the high level language currently
intended for the Navy Advanced Signal Processor program. Even though
this language is for a special application and has special features
for control of external processes, the basic internal functions of
the language are quite similar to those of the general purpose
languages. However, in spite of the original attempts to provide
a common base for CS-4 and SPL-I, some minor differences have developed

10

NSWC/WOL/TR 75-109

COMPARISON OF BASIC LANGUAGE FEATURES

18. In order to display the similarities and differences among
the languages studied, this section compares the handling of
features common to the languages. The first subsections compare
the basic program structure, labeling and separation of statements,
and the data types recognized by each language. Then a comparison
is made among languages for each of the following general statement
types, which comprise most of the statements in a typical program:

Assignment statements

Unconditional Branch Statements (GO TO)

Conditional (two-way) Branch Statements (IF)

Multiple Case Branch Statements (CASE)

Loop Control Statements

Procedure Call Statements

Means of declaring variables and their attributes and forms for
procedure declarations are also compared.

19. Table 1 summarizes some definitions and'the notation used
in this report for presenting the format of the various statement
and declaration types.

11

aexp

attributes

dim

exp

label

lexp

name

nurn

packing

statement

statement
list

storage.

s\'mame

type

value

var

[]

NSWC/WOL/TR 75-109

TABLE 1. ·SUMMARY OF NOTATIONS USED

represents an arithmetic expression, which has
a numericel value

attributes of a data v~riable including type,
storage method, range, dimensions, etc.

specification of dimensions of an array

represents an expression which may be either
arithmetic or logical

represents a label (alphanumeric or numeric
depending on language) corresponding to that
used to identify a statement elsewhere 1n
the program

repre~ents a logicalexpress~on, having the
value true or false

represents the name of a subroutine or
function procedure

represents a numeric constant

an array data attribute determining the packing
of data items into computer words

represents a single program statement, or a
compound statement or block which functions
as a single statement

represents a sequence of one or more statements,
where the length 1s not specified

a data attribute indicating the type of storage
(e.g., static or dynamic) used for a variable

represents the name used to identify a switch
declaration

a data att~ibute representing the data type,
su~h as Integer, Real, or Logical

the initial value to which a variable is set

represents the name used to identify a variable

represents optional repetition of the same form

represents an optional clause

12

NSWC/WOL/TR 75-199

Block Structure

20. Block structure in a computer program supports the desirable top­
down approach to computer prograw~ing by allowing each functional
segment of a program to be viewed as a block, perhaps containing
several blocks of more detailed coding. If the program is partitioned
properly, a programmer at each level only need~ to know the function
performed by a given block without needing to know the implementation
within the block. Similarly, programming or modification within a
block should not be apparent to other blocks in the program.

21. Block structure is accomplished in a language by defining that a
block of statements enclosed by BEGIN ..• END (or equivalent) key words
appears to the outside exactly like a single statement, and can be
used in place of any statement. Thus each block internally functions
as a simple list of statements, even though some of these "statements"
may actually be blocks nested to several levels.

22. Sometimes it is necessary to define additional variables or to
label some statements within a block. In order to make programming
of blocks independent, these variable and label definitions are
known only within the blo'ck and any other blocko it contains. They
are not visible outside the block in which they are defined. Some
languages distinguish between blocks and compound statements, where
the difference is that no new variables may-be declared in a compound
statement. The compound statement 15 somewhat more efficient to
execute at run time. The degree to which block structure is supported
by each of the languages studied is listed here:

FORTRAN:

BASIC:

ALGOL:

PL/l:

PL/M:

CMS-2:

JOVIAL:

CS-4:

SPL-l:

No block structure defined. However nested
subroutine calls and common storage provide
many equivalent features.

Block structure not supported.
Blocks are compound statements enclosed by
BEGIN •.•. END structure.
Blocks and enclosed by BEGIN• END structure, wh~le
compound statements are enclosed by DO ...• END structure.

Blocks and compound statements are enclosed by
DO .•.. END structure
Blocks and compound statements are enclosed by
BEGIN ...• END structure.
Blocks and compound statements are enclosed
by BEGIN END structure.
Blocks and compound statements are enclosed
by BEGIN END structure.
Blocks and compound statements are enclosed
by BEGIN END structure and must be labeled.

13

NSWC!WOL!TR 75-109

Separation of Statements

23. Each program is composed of a number of statements and declara­
tions (non-executable statements) which must be separated in
some way. The method used in each language to identify the end of
one statement and the beginning of the next is summarized below:

FORTRAN:

BASIC:
ALGOL:

PL/l:

PL!M:

CMS-2:

JOVIAL:

CS-4:

SPL-l:

One statement per card (input line) of
essentially fixed format. End of card
represents end of statement unless a
a special continuation card symbol used.
One statement per input line, flexible format.
Free format. Statement terminated by a
semicolon. Multiple statements per line allowed.
Free format. Statement terminated by a
semicolon. Multiple statements per line allowed.

Free format. Statement terminated by a
semicolon. Multiple statements per line allowed.
Free format. Statement terminated by a
dollar sign. Multiple statements per line allowed.
Free format. Statement terminated by a dollar
sign. Mul t Iple 3 t at ement s per· line allowed.
Free format. Statement terminated by a semicolon.
Multiple statements per line allowed.

Free format. Statement terminated by a semicolon.
Multiple statements per line allowed.

All of the block structured languages (that is, excluding FORTRAN
and BASIC) are thus similar in this respect except for the trivial
substitution of the dollar sign for the semicolon in CMS-2 and
JOVIAL.

14

NSWC/WOL/TR 15-109

Statement Labels

24. It is occasionally necessary in one part of a program to
refer to another point in the program, as in indicating the
destination of a GO TO or in-calling a procedure. (Note this
is different from referring to a variable.) Each language
therefore has some means of labeling statements. In each case,
the label comes before the remainder of the statement. The method
and requirement for labeling is described below for each
language studied:

FORTRAN:

BASIC:

ALGOL:

PL/l:

PL/M:

CMS-2:

JOVIAL:

cS-4:

SPL-l:

Any statement may be preceded by a numeric label.

Every statement must be .preceded by a numeric label.

Any statement (or block) may be preceded by one
or more alphanumeric labels, with each followed
by a colon.

Any statement (or block) may be preceded by one
or more alphanumeric labels, with each followed
by a colon.

Any statement (or block). may be preceded by
one or more alphanumeric labels, with each
followed by a colon.

Any statement (or block) may be preceded by
an alphanumeric label, followed by a period.

Any statement (or block) may be preceded by an
alphanumeric label having two to six characters
followed by a ·period.

Any block may be preceded by an alphanumeric
label, followed by a colon.

Any statement may be preceded by an alphanumeric
label, followed by a colon. Every block must
have a label.

15

NSWC/WOL/TR 75-109

Data Types Supported

25. One of the significant differences among the languages is
the variety of data types supported by each. These are summarized
in Table 2. Nearly universal types are Logical (representing
true or false), Fixed Point Integers, and Floating Point
Real numbers. Additional types are supported by some languages
for special purposes. These incl~de double precision arith-
metic for the scientific languages, complex fixed point arithmetic
to support signal processing operations, and fixed point
scaled (or mixed number) arithmetic for tactical languages with
navigation and similar functions to perform, Most languages also
support character string data types, useful for display and
operator interaction. The entry under arrays shows the maximum
number of array dimensions allowed by the language. Subtleties
such as the form in which each data type is stored or the
mixtures of types allowed in expressions are not covered here.

16

NSWC/WOL/TR 75-109

TABLE 2. DATA TYPES RECOGNIZED BY LANGUAGES

:z;
~
p:; 0
8 H
0:: tf.l
0 ~
!iI en

Logical
or Bit} (Boolean x

Integer
(Fixed Point) x

Mixed Number
(Fixed Point)

Real
(Floating Point) x x

Double Precision
(Floating Point) x

Complex
(Floating Point) x

Complex
(Fixed Point)

Character Strings

Arrays (number of
dimensions) 3 3

* implementation dependen4
n arbitrarily large

-....1
0
c.':5
H
~

x

x

x

I

x

n

17

H
C\J ~

....:--f ~ I H .:;;r-

"'- '" [/) P- I
H H ~ 0 tI)

~ Po. C> IJ (.)

x x x x x

x x x x x

x x x

x x x x

x

x x

x

x x x x x

32 1 7 10 n

H
I
~
Po.
CIJ

x

x

x

x

x

x

*

NSWC/WOL/TR 75-109

Data Declarations

26. Most languages require certain characteristics of each
data variable to be specified through a non-executable
Data Declaration, to provide information to the compiler on
allocation of storage and type of arithmetic operations
required. For single variables this information may be fairly
simple, while for arrays it is relatively complex. FORTRAN
and BASIC generally only require declaration of array variables,
while the remaining languages require each variable name to
appear in a declaration. Some languages allow data declaration
to be intermixed with executable statements in the program~
while others require all declarations in a given block to appear
before the executable program segment. Data names declared within
a block are defined only within that block or other blocks nested
within it, and in some cases storage is allocated only while
the block is executing.

27. Table 3 shows the basic form of the data declaration in
each language. Generally a declaration contains the variable
name (or a list of names) and certain attributes such as data
type, range~ storage, etc. In some languages the dimensions
of array variables are included in the basic declaration, while
in others a separate form of declaration is used for arrays.
Most of the newer languages also provide a m~an5 in the decla­
ration of setting the initial value of a variable. Details of
the attributes that can be specified for variables in the various
languages are beyond the scope of,thls report.

18

FORTRAN:

BASIC:

ALGOL:

PL/l:

PL/M:

CMS-2:

JOVIAL:

cS-4:

SPL-I:

NSWC/WOL/TR 75-109

TABLE 3. FORMS OF VARIABLE AND ARRAY DECLARATION

or

[TYPE] type var, ...

DIMENSION var(dim), ...

DIM var(dim), .•.

[OWN] type var, ...

[OWN] [type] ARRAY var, ... (dim), ...

DECLARE var[(dim)] [attributes] [INITIAL(value)], ...

DECLARE var [(dim)] type [INITIAL (value, · · ·)J

DECLARE (var [(dim) , ...)] type [INITIAL (val ue , ...)]

VRBL var type [P value]
or

or

VRBL (var, ...) type .[P value]

TABLE var storage packing [INDIRECT] dim

ITEM var attributes [value]

ARRAY var dim attributes

VARIABLE var IS .[ARRAY(dirn)] type [:= value]

VARIABLES var, •.. ARE [ARRAY(dim)] type [:= value]

VAR[storage] type var, ... [:=value}, ...

VAR [storage] type ARRAY var, ... (dim) [:= value]

19

NSWC/WOL/TR 75-109

Assignment Statement

28. The assignment is the basic statement used for actual
manipulations of data_ Generally its function is to set
the value of some variable equal to the value obtained by
evaluating -an expression. The forms used for the basic
assignment statement in the languages studied are shown
in Table 4. With the exception of the verbal as opposed to
algebraic form used in CMS-2, all languages use a generally
similar form. In some BASIC implementations, the LET key
word is optional. The major remaining difference is the use
in some languages of the := assignment operator to distinguish
it from the = used as a relational operator. However, this
does not seem to be required by the syntax, sincePL/I and
PL/M manage to use the = for both purposes,

29. Remaining differences not iliustrated here are that some
languages allow multiple assignments by naming several variables
on the left sides, and each language tends to have its own
rules for handling mixed-mode situations where left and right
parts or components of expressions do not agree in ~ode.

20

NSWC/WOL/TR 75-109

TABLE 4. FORM OF ASSIGNMENT STATEMENT

FORTRAN: var = exp

BASIC: LET var = exp

ALGOL: <var . exp

PL!l: 'var = exp

PL/M: var = exp

CMS-2: SET var TO exp

JOVIAL: var = exp

CS-4: var := exp

SPL-l: var .- exp .-

21

NSWC!WOL!TR 75-109

Expressions and Operators

30. In any of the languages studied, an expression consists
of one or more variable names or constants combined through the
use of various arithmetic, relational, or logical operators
according to the usual rules of algebraic notation, While
the definitions of expressions and order of precedence of
operations are similar in all the languages, some differences
occur in the notation used to re~resent the operators, Some
of this is caused by differences in the assumed input mediuID_.
For example the character set in Fortran is limited to the
47 characters available on an IBM 026 keypunch, while Basic
is able" to use other characters available on an ASR-33 teletype~

31, The common operators can be divided into three types as
follows. Arithmetic operators are those which combine two
arithmetic elements to yield an arithmetic value. Relational
operators are those which compare two arithmetic elements to
yield a logical (true or false) value, Logical operators
are those which combine two logical values to yield a logical
result. Some languages tend to permit mixed mode expressions
where algebraic and logical data elements can be su~stituted
for each other in express~ons, with the compiler making some
conversion, while others do not, Table 5 lists the common
operators along with the notation used in each of the languages
under study. In some languages either of two forms may be used
for some ope~ators, In these cases both forms are given in .
Table 5, with one above the other.

22

NSWC/WOL/TR 75-109

TABLE 5. NOTATION USED FOR OPERATORS

~ 01(~
U::I N <

~ H 0 ,....j ~ I H
s:r.: ~ t.!> ~ :>

ARITHMETIC OPERATORS 0 <::I::I::I ~ 0
tx... ~ < ~ ~ U 'J

Addition + + + + + + +

Subtraction (negation) - - - - - - -
Multiplication * * X * * * *

Division / / / / / / /

Exponentiation ** t t ** ** ** **

RELATIONAL OPERATORS

Equal .EQ. = = = = EQ EQ

><
:F

1= <> Not Equal .NE. NOT NQ <> NE
> Greater Than .GT. > > > GT GR GT

=> > >= Greater or Equal .GE. = >= GTEQ GQ >= GE

Less Than .LT. < LT LS < < LT <

=< < <=
Less or Equal .LE. = <= LTEQ LQ <= LE

LOGICAL OPERATORS

.NOT. -,
NOT .N .

,
NOT NOT CaMP NOT

AND
. AND.

/\
& AND AND P..ND

.A. AND

OR .OR.
V I OR OR OR

.0. OR

EXCLUSIVE OR XOR XOR

* ALGOL Reference Language. Actual compilers generally use
simpler forms, which vary from compiler to compiler.

23

,....j

~ I
I::I
~ ~
U ~

+ +

- -

* *
/ /

** **

= ==

-= II

> >

>= >=

< <

<= <=

- NOT

& AND

I OR

XGR

NSWC/WOL!TR 75-109

Unconditional Branch Statement (GO TO)

32. The unconditional branch statement makes it possible to modify
the sequence of execution. It has been shown that if the language
contains s~itable conditional and loop control statements, use of
the unconditional branch statement is unnecessary_ In fact, some
studies have shown that the difficulty encountered in debugging
8r updating programs increases directly with the proportion of
}O TO statements in the program, because of the additional obscurity
8f program flow. This is one basis of the structured programming
~oncept, which attempts to eliminate the use of the GO TO
statement. Nevertheless, all languages studied contained a form
Jf the unconditional branch statement, as shown in Table 6. Since
nany of the languages ignore blanks within key words, the distinction
Jetween the GOTO and GO TO forms is seldom important. Thus,
~he unconditional branch statement is essentially identical in all
Languages.

33. One difference not discussed here is the restrictions on use
)f the GO TO incorporated in some languages. In FORTRAN and
3ASIC the use of the GO TO is nearly unrestricted, while some other
languages do not permit a GO TO to branch across block boundaries.
~anguages with a restricted GO TO generally include an EXIT statement
qhich causes a jump- to the end of the current block. This capability
Ls necessary in pure structured programming.

24

NSWC/WOL/TR 75-109

TABLE 6. FORMS OF UNCONDITIONAL BRANCH STATEMENT

FORTRAN: GO TO label

BASIC: GOTO label

ALGOL: GO TO label

PL/l: GO TO label
or GOTO label

PL/M: GO TO label
or

GO':.'O label

CMS-2: GOTO label

JOVIAL: GOTO label

CS-4: GO TO label

SPL-l: GO TO label

25

NSWC!WOL!TR 75-109

Two-Way Conditional .Branc.h. St.atement(IF)

34. The conditional statement is the basic means of controlling
logical flow of the program, depending on data values. Some
expression 1s formed and tested, and the result of this test 1s
used to determine the succeeding operations to be for.med. The
forms of the conditional branch statement are shown in Table 7.
FORTRAN contains both an arithmetic IF statement and a logical
IF where execution of a statement occurs only if a logical expression
is true. The other lan~uages use only the logical form.

35. In the FORTRAN algebraic IF and in BASIC, control is
exercised by branching to some other labeled statement in the
program. This tends to inhibit well structured programming.
The remaining languages conditionally execute another statement
imbedded within the IF statement, and then proceed to the next
statement in sequence. Most also permit an ELSE· clause so that
either of two statements may be executed, depending on the result
of the logical test. JOVIAL also contains an IFEITH construction
which permits one of several instructions to be executed, depending
on the first logical test to be found true.

36. Among the block-structured languages, SPL-l 1s unique in
that each of the other languages assumes a single statement following
the THEN or ELSE clause. Of course in each case a block may be
used in place of the single statement,but it still functions as
a single statement. SPL-l expects a statement list after the
THEN or ELSE~ and thus requires an rEND after each IF statement
to terminate the list. Essentially this means that the THEN and
ELSE terms automatically open new blocks in SPL-I, even if only
one statement is to be used. Since SPL-l does not permit branches
outside of a block, this convention prohibits the "IF lexp THEN
GO TO label" form which 1s often seen in programs written in the
other languages.

26

FORTRAN:

BASIC:

ALGOL:

PL/l:

PL/M:

CMS-2:

JOVIAL:

CS-4:

SFL-l:

NSWC/WOL/TR 15-109

TABLE 7. FORMS OF CONDITIONAL BRANCH STATEMENT

or

or

IF (lexp) statement

IF (aexp) labell' labe12" labe1
3

IF lexp THEN label

IF lexp THEN state'ment [ELSE s'tatement]

IF lexp THEN statement [; ELSE ,statement]

IF lexp THEN statement [;ELSE statement]

IF lexp THEN statement [$ ELSE statement]

IF lexp $ statement

IFEITH lexPl $ statement l $
ORIF 1exP2 $ statement 2 $.. , ..
DRIF lexPn $ statementn ~

END

IF lexp THEN statement [ELSE statement]

IF'lexp THEN
statement list

~~!~ement list]
lEND

27

NSWC/WOL/TR 75-109 ,

Multiple Case Branch Statement (CASE)

37. The multiple case branch statement allows one of several
operations to be performed by a program, depending on the value
of some computed expression. It is thus a multi-choice decision,
as compared to the True-False decision of the conditional IF
statements. This type of statement is of particular use in compilers,
assemblers, and emulators and in operational programs where
multiple-mode selection is desired .. Table 8 shows the form used
for the multi-way branch in each of the languages studied.

38. Three rather distinct approaches are found in Table 8.
First is the type used in FORTRAN and BASIC, where a branch is
performed to one of n labeled statements elsewhere in the
program, depending on the numerical value of an integer variable
or expression. The second form is seen in ALGOL,
CMS-2, and JOVIAL. Each of these uses a SWITCH declaration to
list the branch destinations in the program, and the branch 1s
executed by a GO TO statement which provides the numerical value
to select the branch point. PL/l has no explicit multi-way branch
statement, but does allow indexing of an indirect branch through
a. table of pOinters. This is essentially equivalent to the ALGOL
approach. None of these approaches -satisfies structured programming
concepts, since the sequenti~l flow of the program is interrupted.

39. The third type of multi-way branch is found in PL/M, CS-4, and
~PL-l. Here the value of the expression computed by the CASE'
statement determines which one of the n statements immediately
following the CASE statement is executed. After execution of this
statement, control goes to the statement following the END, thus
preserving the sequential flow of the program. Of course each
statement between CASE and END may actually be a block, so no
restriction 1s placed on the complexity of each operation. This
form of the multi-way branch is now preferred because of its support
of structured programming. The optional labels in cs-4 allow
execution of a statement whose label matches a string expression,
providing a powerful means of writing compilers or interpreters.

40. We have not discussed here the differences in the way each
language handles out-of-bounds cases, where the value of the
computed expression exceeds the length of the list of choices. We
have also only discussed the index switch form of CMS-2 and JOVIAL.
Each also has an item switch form with slightly different capabilities.
A newer version of JOVIAL (J73) apparently has an executable SWITCH
statement which is similar to the CASE statement in the other languages.

28

FORTRAN:

BASIC:

ALGOL:

PL/l:

PL/M:

CMS-2:

JOVIAL

cS-4:

SPL-I:

NSWC/WOL/TR 75-109

TABLE 8. FORMS OF MULTIPLE CASE BRANCH STATEMENT

GO TO (labell, ,label), var
n·

ON aexp GOTO labell' ,labeln

SWITCH swname labell, .. ~.,labeln Cnon-executable
declaration)

GO TO swname (a~xp)

no explicit facility

DO CASE aexp
statement 1

statement n
END

SWITCH swname label
l

, ... ·, labeln
~,~ ,-' ~
GOTO swname aexp INVALID .label

(non-executable
d~~larat1on)

SWITCH swname=(labell, ..• ,label) (non-executable
~ .4& n declaration)
GOTO swname ($aexp$)

CASE exp
[label

l
:] statement 1

[labeln :] statement n
[OUTOFBOUNDS: statement]
END

DO CASE aexp OF
statement 1

statement n
[CELSE statement]
CEND

29

NSWC/WOL/TR 75-109

Loop Control Statements

41. It is common in programming to have a group of statements which
is to be repeated a number of times or until some test is satisfied.
This leads to a construction known as a loop, in which a test is
performed on each execution to determine whether to branch '
back and repeat the loop or to branch out and proceed to the next
step of the program. To avoid the explicit need to write out
the'increme~t, test, and branch,operations, each language has
developed a compact 'means of specifying such loops. These loop control
statements are shown in Table 9. Generally each language provides
a means of indexing a variable on each pass through the loop from
some initial value to some final value, with the option of setting
the step to some value other than one. Additionally, some languages
provide a WHILE test which causes the loop to r~peat as long as
the tested expression is true.

42. The first thing to notice from Table 9 is the lack of
consistency even of the key word used to identify a loop-control
statement. DO, FOR, VARY, and REPEAT are all used. There are
also three method~ used to identify the segment- of code to be
repeated within the loop. FORTRAN requires a specific label
reference in the DO statement, identifying the final statement
number to be included in the loop. This has been found to be
a rather error-prone technique.

43. ALGOL and CS-4 assume the loop consists of a single statement
to be repeated, and include this statement within the loop control
statement. Of course a block can be substituted for the single
statement, so there is no real restriction. The remaining
languages recognize that in most cases several statements are
required within the loop, so the loop control statement automatically
opens a pseudo-block which must be terminated by an END statement.
(The NEXT statement of BASIC is nearly equivalent to the END in the
other languages.) The languages vary in whether they allow branches
into or out of the statement list comprising the loop.

30

FORTRAN:

BASIC:

ALGOL:
or

PL/l:

or

PL/M:

or

CMS-2:

JOVIAL:

CS-4:
or

SPL-I:

NSWC/WOL/TR 75-109

TABLE 9. FORM OF LOOP CONTROL STATEMENTS

FOR var = aexP1 TO aexP2 [STEP aexP3]

NEXT var

FOR var:= aexP1 STEP aexP2 UNTIL aexP3
DO statement

FOR var :=exPl WHILE lexp DO statement

DO var =aexPl TO aexP2 [BY aexP3]
statement list
END

DO WHILE (lexp)
statement list
END

DO var =aexP1 TO aexP2 [BY aex?3]
statement list
END

DO vlHILE lexp
statement list
END

VARY var [FROM aexP1J THRU aexP2 [BY aexP3]
statement list
END

FOR var = aexPl' aexP2' aexP3 $
BEGIN
statement list
END

[FOR var][FROM aexP1][TO aeip2][BY aexP3] REPEAT statement

WHILE lexp REPEAT statement

FOR var FROM aexp ~O aexP2 [BY aexP3] DO
state~ent list 1
FEED

31

NSWC/WOL/TR 75-109

Procedure Calls

44. It is often desirable to write a single program segment which
can be used by several other parts of the program. These common
program segments ,are called procedures. It is necessary to provide
a means of branching to the desired procedure and then returning
to the calling point in the program when, the procedure is completed.
Since different parts of the progra~ may want the same computation
performed on different data, it is also necessary to provide a
list of parameters to the procedure when it is called.

45. Each ,language recognizes two basic types of procedure, a
function procedure and a subroutine. Functions are defined as those
procedures returning a single value to the calling program.
Examples are square root, trig functions, and the maximum value in
a list of data. As seen in Table 10, each language permits a
function procedure call by a simple reference to its procedure name
followed by a parameter list in parentheses. This call may
be imbedded In an expression, and the value of the function returned
is equivalent to any other named variable. Some languages permit
the function procedure to modify input parameters passed from the
calling program; others do not.

46. Forms used for calling subroutines are shown in Table 11.
In some languages the procedure name alone, followed by a parameter
list if needed, is used as a complete statement. In others, a,
CALL or GOSUB key word is required. Subroutines generally perform
some operation on some input parameters and modify the values
of the same or other output parameters. In some languages no
distinction l.s made between input and output parameters. In others,
input and output parameters are explicitly separated. This provides
some protection to the input parameters, since the subroutine is then
not allowed to change them.

47. We have not distinguished the methods used in various languages
for paSSing parameters between the calling program and the procedure
during execution. -Three basic methods are used and are termed
"call by location," "call by value''', and "call by name" respectively.
Call by location" is the least flexible but the most efficient in
execution, while, "Call by namett is the most flexible but the least
efficient to execute. Some languages permit the programmer to
specify the means of parameter passing desired. However, in most
cases, he has no control over, and little interest in, the method
used until it creates some strange side effect in his program.
The method is also compiler dependent in some languages.

32

-NWSC/WOL/TR 75-109

TABLE 10. FORMS OF FUNCTION PROCEDURE CALL -

FORTRAN: name(parlist)

BASIC: name (parlist)

ALGOL: name(parlist)

PL/l: name(parlist)

PL/M: name(parlist)

CMS-2: name (parlist)

JOVIAL: name(parlist)

CS-4 : name (parlist)

SPL-l: name(parlist)

TABLE 11. FORMS FOR SUBROUTINE PROCEDURE CALL

FORTRAN: CALL name(parlist)

BASIC GOSUB label

ALGOL: name(parlist)

PL/l: CALL name(parlist)

PL/M: CALL name(parlist)

CMS-2: name INPUT parlist OUTPUT parlist

JOVIAL: name(input parlist = output parlist)

CS-4: name(parlist)

SPL-l: name (parlist)

33

NSWC/WOL/TR 75-109

Subroutine Procedure Declaration

48. The operations to be performed by a subroutine or function
when it is called from another program are defined in a subprogram
or procedure declaration. This declaration must contain the
identity of the procedure, specification of a set of formal para­
meters corresponding to the actual parameters sent from the calling
program, the list of operations to be performed, and a means of
returning to the calling program.

b~. The formats of the subroutine procedure declarations are
shown in Table 12 for various languages. . With th.e exception of
BASIC where no parameter passing is possible, the first line in
each case names the procedure and contains a list ,of the formal
parameters. For each parameter passed to the subroutine, some
means must be provided to identify the parameter type or other
attributes and the means of passing'from the main program. In some
languages this information is contained within the parameter list
itself, while in others it is contained in data declaration statements
within the body of the subroutine. This can become a very complex
subject when several means of parameter passing are provided
and is beyond the scope of this report.

50. The statement list specifies the operations to be performed
by the subroutine and may contain additional data declarations
for variables to be used solely wi thin the subroutine. Note that
ALGOL assumes only a single statement in the procedure; this normally
would take the form of a complex block. Finally the RETURN
statement is used to cause a return to the calling program.
Reaching the END statement of the procedure in most cases is equivalent
to executing a RETURN.

34

NSWC/WOL/TR 75-109

TABLE 12. FORMAT OF SUBROUTINE PROCEDURE DECLARATION

FORTRAN: SUBROUTINE name(parlist)
statement list
END

BASIC: statement list
RETURN

ALGOL: PROCEDURE name(parlist); statement

PL/l: name: PROCEDURE(parlist)
statement list

PL/M:

CMS-2:

JOVIAL:

cS-4:

SPL-l:

RETURN
END name

name: PROCEDUR~(parlist)
statement list
RETURN
END name

PROCEDURE name INPUT parlist OUTPUT parlist
statement list
RETURN
END-FROe name

PRoe name (input parlist = output parlist)
BEGIN
statement list
[RETURN]
END

name: proc-type(parlist)
statement list
END

SUBROUTINE name(parlist)
statement list
END name

NSWC/WOL/TR 75-109

Function Procedure Declaration

51. Function procedures are similar to subroutines, except for
tneir need to identify a single value to be returned to the calling
program. Table 13 shows the form used for the Function declaration
in each language. Generally the type of the returned variable
is identified in the first line along with the function name.
In some languages the value to be returned is determined by an
expression in the RETURN statement. In others, it is produced
by an appearance of the function name on the left side of an
assignment statement within the procedure body.

52. BASIC has no true function procedure, just as it has no
true subroutine' facility. However, BASIC and FORTRAN both
provide for a one-line function statement which equates a
function name to a single expression.

36

FORTRAN:

BASIC:

ALGOL:

PL!l:

PL/M:

CMS-2:

JOVIAL:

cs-4:

SPL-l:

NSWC!WOL!TR 75-109

TABLE 13. FORMAT OF FUNCTION PROCEDURE DECLARATION

or

name(parliit) = exp (function statement)

[type] FUNCTION name(parlist)
statement list (external function)
END

DEF FNname (var) = exp

type PROCEDURE name(parlist)i statement

name: PROCEDURE(parlist) [attributes]
statement list
RETURN (exp)
END name

name: PROCEDURE(parlist) type
statement list
RETURN exp
END name

FUNCTION name(parlist) type
statement list
RETURN (exp)
END-FUNCTION name

PROC name(parlist)
BEGIN
statement list
RETURN
END

name: FUNCTION(parlist)
statement list
END

FUNCTION name(parlist) type
statement list
RErrURN exp
END name

37

NSWC/WOL/TR 75-109

UNIQUE ADDITIONAL FEATURES

53. In addition to the common data and statement types discussed in
this report, each of the languages studied has certain additional
features (or deficiencies) unique to the application. for which it
was designed. These may be considered to be special purpose
extensions of a basic language, but they are often the reason for
select~on of one language or another. Some of the special features
of the languages studied are listed below:

~ORTRAN: Very powerful formatted input/output provisions.

BASIC:

ALGOL:

PL/I:

PL/M:

CMS-2:

JOVIAL:

CS-4:

SPL-l:

Interpretive execution. Built-in matrix operations.

No input/output provisions in basic language.

Attempt at all-purpose language. Combines FORTRAN
input/output capability with COBOL string-handling
ability.

Designed as minimum high-level language for use with
microprocessors. Derived from PL/l.

Built-in data packing and shifting operations.
Capability for inserting direct machine code.

Extensive means of defining complex tabular data
formats.

Designed as an extensible language based on a core
language METAPLEX.

Provides for control and monitoring of external
processes in multi-processor environment.

38

NSWC/WOL/TR 75-109

AN EXAMPLE

54. Further insight into the similarities and differences among the
languages may be gained by comparing sample programs written in each
language. The example chosen here is a sorting program which sorts
a table of' data into ascending order. The algorithm chosen is the
"int~rchange sort" technique in which each adjacent pair of items in
the"·:!t.:~ble is compared, and the pair is interchanged if they are in the
wrori~~order. The entire table is scanned in this way as many times
as is necessary to produce the correct order throughout.

5S.. The necessary structure for the program is thus a loop which
scans the table, comparing the value of each entry with that of its
neighbor. If they are in the wrong order,' the two entries are
interchanged and a flag is set to indicate that a pair was swapped.
After each pass through the loop, this flag ~s sensed to determine
whether another pass is required. If the flag is found set, it is
reset and the loop is repeated. If the flag is found reset, the
sort operation is completed.

56. Table 14 shows the resulting programs in the nine languages.
considered. In each case the program is shown as a block of code
which could be inserted in-line (that is, as an open subroutine)
in a larger program. Thus, where appropriate; data declarations are
included for those variables (I, SWAP, and TEMP) which are used
internally by the sort algorithm. Although the flag SWAP could have
been defined as a logical variable in most of the languages, it was
treated as an integer in all cases. Often an algorithm such as this
wquld be written as a closed subroutine or procedure to be called
from another part of the program. In this case, a procedure
declaration would have to be added to each of the programs shown.
This procedure declaration must· include a means of passing the
location of the DATA array and· its length N as paramet~rs. The
various means of doing this in the languages studied are considered
beyond the scope of this report.

57. Although the algorithm is the same in each case, three different
forms of program resulted. In the FORTRAN and BASIC programs, there
is a single loop control statement used to scan the table on each
pass. Within this loop is a logical IF statement used,if the data
words are already in the right order, to jump around the statements
which interchange the data words and set the swap flag. Outside the
loop is another logical IF statement which tests the flag and causes
a jump back to the loop if another pass i.8 required.

58. The second form of program occurs with CMS-2, JOVIAL, and SPL-l,
which are block structured languages but do not have a DO WHILE
construct. In these languages the innermost IF statement contains
a four-statement block which is executed only if the test is
satisfied. At the end of the loop, a second IF statement is used
to cause a jump to the beginning of the loop if another pass is

39

NSWC/WOL/TR 75-109

required. This turns out to be an awkward problem in SPL-l, since
the THEN clause of an IF statement is not permitted to contain a
GO TO which branches outside the THEN clause. The solution finally
adopted was to enclose the entire sort program in :a block and use an
EXIT statement to get out if no further passes through the loop were
required. This seems to be a problem that' ~ill occur frequently with
SPL-l as now defined, forcing the programmer to find ways to defeat
the GO TO rules.

59. The third group of programs appears in the ALGOL, PL/l, PL/M, and
CS-4 languages which contain a DO WHILE construct. While the
program could have been written in each of these languages in the same
form that was used in the second group (or even the first group),
the DO WHILE was used to produce a pure structured (GO-TO-less)
program. Here the loop used to scan the table is contained within
a DO WHILE loop, which continues to execute as long as SWAP is set
during each pass through the table. Since the WHILE test is
evaluated at the beginning of the loop rather than at the end, SWAP
must be set before entering the loop the first time. This is
accomplished through the initialization option of the data declaration.
Note that in these languages the entire executable program is actually
contained within the DO WHILE statement structure.

60. No conclusions should be drawn from the slight differences in
length among the various programs. The block structured programs
were expanded and indented as much as possible 'in Table 14 to give
the reader the best view of the ,logical structure of the program.
Normally the programmer would compress the program somewhat, at
least to the point of putting BEGIN and END brackets in line with
other statements. As an example of (perhaps excessive) compression,
the PL/M program could have been written

DO; DECLARE (I,T) ADDRESS; DECLARE SWAP BYTE INITIAL(l)';
DO WHILE SWAP=l; SWAP=O; DO 1=1 TO N-l;
IF DATA(I) >DATA(I+l) THEN DO;
T=DATA(I); DATA(I)=DATA(I+l); DATA(I+I)=T; SWAP=l;
END; END; END; END;

Another misimpression that could be created by this example is
related to the fact that ALGOL and CS-4 expect only a single statement
following a loop control statement or an IF ... THEN construct, while
SPL-l automatically opens blocks in both cases. PL/l and PL/~_ __
assume Single statements after an IF ... THEN and open blocks arter DU
statements, since these are the most frequent requirements., However
it happens in this example that the inner loop contains only the
single IF statement, while the THEN clause of the IF statement
contains a four-statement block. Thus both of the PL/l assumptions
were violated, resulting in some additional DO or END brackets.

40

NSWC/WOL/TR 75-109

TABLE 14. EXAMPLE PROGRAMS FOR INTERCHANGE SORT

TABLE 14a. FORTRAN PROGRAM FOR INTERCHANGE SORT

INTEGER I, SWAP
REAL TEMP

10 SWAP = 0
DO 20 I = I,N-l
IF (DATA(I).LE.DATA(I+l)) GO TO 20
TEMP = DATA(I)
DATA(I) = DATA(I+l)
DATA(I+l) = TEMP
SWAP=1

20 CONTINUE
IF (SWAP.EQ.l) GO TO 10

TABLE 14b. BASIC PROGRAM FOR INTERCHANGE SORT

10 LET S = 0
20 FOR I = 1 TO N-l
30 IF D(I)< = D(I+l) THEN 80
40 LET T = D(I)
50 LET 0(1) = D(I+l)
60 LET D(I+l)= T
70 LET S = 1
80 NEXT I
90 IF S = 1 THEN 10

TABLE 14c. ALGOL PROGRAM FOR INTERCHANGE SORT

BEGIN
INTEGER I, SWAP;
REAL TEMP;
SWAP := 1;
FOR I := 1 WHILE SWAP = 1 DO

BEGIN
SWAP :=0;
FOR I := 1 STEP 1 UNTIL N-l DO

IF DATA[I]>DATA[I+l] THEN

END;
END;

BEGIN
TEMP := DATA[I];
DATA[I] := DATA[I+l];
DATA[I+1] := TEMP;
SWAP := 1;

END;

NSWC/WOL/TR 75-109

TABLE 14. EXAMPLE PROGRAMS FOR INTERCHANGE SORT (continued)

TABLE 14d. PL/l PROGRAM FOR INTERCHANGE SORT

BEGIN;
DECLARE I FIXED, SWAP FIXED INITIAL(l);
DECLARE TEMP FLOAT;
DO WHILE (SWAP = 1);

SWAP = 0;
DO I = 1 TO N-l;

IF DATA (I) > DATA(I+l) THEN

END;

DO;
TEMP = DATA(I);
DATA(I) = DATA(I+l);
DATA(I+l) = TEMP;

. SWAP = 1;
~ND;

END;
END;

TABLE 14e. PL/M PROGRAM FOR INTERCHANGE SORT

DO;
DECLARE (I,TEMP) ADDRESS;
DECLARE SWAP BYTE INITIAL (1);
DO WHILE SWAP = 1;

SWAP = 0;'
DO I = 1 TO N-l;

IF DATA(I) > DATA(I+l) THEN
DO;

TEMP = DATA(I);
DATA(I) = DATA(I+l);
DATA(I+l) = TEMP;
SWAP = 1;

END;
END;

END;
END;

42

NSWC/WOL/TR 75-109

TABLE 14. EXAMPLE PROGRAMS FOR INTERCHANGE SORT (continued)

TABLE 14f. CMS-2 PROGRAM FOR INTERCHANGE SORT

BEGIN $
VRBL (I SWAP) I 16 U $
VRBL TEMP F $
LOOP. SET SWAP TO 0 $

END $

VARY I FROM 1 THRU N-l $
IF DATA(I)- GT DATA(I+l) THEN

BEGIN $
SET TEMP' TO DATA(I) $
SET DATA(I) TO DATA(I+l) $
SET DATA(I+l) TO TEMP $
SET SWAP TO 1 $

END $
END $
IF SWAP EQ 1 THEN

GOTO LOOP $

TABLE 14g. JOVIAL PROGRAM FOR INTERCHANGE SORT

BEGIN
ITEM II I 16 U $
ITEM SWAP I 16 U $
ITEM TEMP F $
LOOP. SWAP = 0 $

END

FOR II = 1,1,NN-l $
BEGIN

IF DATA(II) GR DATA(II+l) $

END

BEGIN .
TEMP = DATA(II) $
DATA(II) = DATA(II+l) $
DATA(II+l) = TEMP $
SWAP = 1 $

END

IF SWAP EQ 1 $
GOTO LOOP $

NSWC/WOL/TR 75-109

TABLE 14. EXAMPLE 'PROGRAMS FOR INTERCHANGE SORT (continued)

TABLE 14h. CS-4 PROGRAM FOR INTERCHANGE SORT

BEGIN;
VARIABLES I,SWAP ARE INTEGER := 1;
VARIABLE TEMP IS REAL;
WHILE SWAP = 1 REPEAT

BEGIN;
SWAP := 0;
FOR I FROM 1 TO N-l REPEAT

IF DATA(I) > DATA(I+l) THEN

END;
END;

BEGIN;
TEMP ': = DATA(I);
DATA(I) := DATA(I+l);
DATA(I+1):= TEMP;
SWAP := 1;

END;

TABLE 141. SPL-1 PROGRAM FOR INTERCHANGE SORT

SORT: BEGIN
VAH INT I,SWAP;
VAH FLOAT TEMP;
LOOP: SWAP := 0;

FOR I FROM 1 TO N-l DO
IF DATA(I) > DATA(I+1) THEN

TEMP := DATA(I);
DATA(I) := DATA(I+l);
DATA(I+l) := TEMP;
SWAP := 1;

lEND;
FEND;
IF SWAP = 0 THEN

EXIT;
lEND;
GO TO LOOP;

END SORT;

44

NSWC/WOL/TR 75-109

SUMMARY AND CONCLUSIONS

61. As can be seen from the comparison of statement types and the
example programs, the languages studied are not fundamentally
different and offer quite similar capability, to the level of detail
considered in this report. This is particularly true of the newer
block structured languages, PL/l, PL/M, CS-4, and SPL-l. Since the
superficial differences in format do not change the basic functions
performed by each of the basic statement types, there seems to be
no valid reason for lack of commonality at this level.

62. Since the newer languages, CS-4, SPL-l, and perhaps JOVIAL (J73)
are not completely frozen, it would seem prudent for them to adopt
a common form for the basic statement and declaration types. This
could serve as the beginning of a truly common military language.
Since PL/l is a generally accepted existing commercial language
having similar basic capabilities to the proposed military languages,
this language provides an obvious model from which to derive a
common language. This is not to suggest that all features of PL/l
are desirable in a common military language, as a full implementation
may reduce efficiency in the portion actually needed. Rather a
subset of PL/I should be defined and extended as needed for military
applications. PL/M may in this respect serve as a good starting
point, since it essentially represents a,minimum subset of PL/I.

63. Given that a military language is to be derived by appropriate
extension of a PL/I subset, two distinct approaches are possible.
The first is to define a common subset, and to allow several special
purpose languages (such as a signal processing language, a command
and control language, and a scientific language) to be generated as
separate extensionsof the basic language. This is essentially the
approach begun with METAPLEX, from which CS-4 and SPL-I were to be
derived. The advantage is that each language is reasonably simple
and efficient for the application at hand. Room is also provided
for new specialized languages within the family or upgrading one
extension without affecting the others if the need occurs. The other
approach is to define one huge "umbrella" language, embodying all
the facilities required by all application categories. This is
essentially the approach originally taken by PL/l in the commercial
,field. It has the advantage of allowing the programmer to mix the
capabilities of several extensions where desired and assuring him
that one compiler can handle anything he writes. However it has the
effect of freezing the entire language, and it may actually become
too complex to teach fully or to compile efficiently.

