


AUTOMATIC CODING FOR 

DIGITAL COMPUTERS 

A TALK PRESENTED AT 

THE HIGH SPEED COMPUTER 

CONFERENCE, LOUISIANA STATE 

UNIVERSITY, 16 FEBRUARY 1955 

BY 

DR. GRACE MURRAY HOPPER 

DIRECTOR OF PROGRAMMING RESEARCH 
ECKERT MAUCHLY DIVISION 



Automatic coding is a means for re
ducing problem costs and is one of 
the answers to a programmer's 
prayer. Since every ptoblem must 
be reduced to a series of elemen tary 
steps and transformed in to compu ter 
instruc tions, any method which will 
speed up and reduce the cost of 
this process is of importance. 

Each and every problem must go 
through the same stages: 

Analysis, 
Programming, 
Coding, 
Debugging, 
Production Running, 
Evaluation 

The process of analysis cannot be 
assisted by the computer itself. 
For scientific problems, mathema ti
calor engineering, the analysis 
includes selecting the method of 
approximation, setting up specifi
cations for accuracy of sub-routines, 
determining the influence of round
off errors, and finally presenting 
a list of -equations supplemented 
by definition of tolerances and a 
diagram of the operations. For 
the commercial problem, again a 
detailed statement describing the 
procedure and covering every even
tuality is required. This will 
usually be presented in English 
words and accompanied again by a 
flow diagram. 

The analysis is the responsibility 
of the mathematician or engineer, 
the methods or systems man. It 
defines the problem and no attempt 
should be made to use a computer 
until such an analysis is complete. 

The job of the programmer is that 
of adapting the problem definition 
to the abili ties and idiosyncracies 
of the particular computer. He 
will be vitally concerned with in
put and output and with the flow 

- 1 -

of operations through the computer. 
He must have a thorough knowledge 
of the computer components and 
their relative speeds and virtues. 
Receiving diagrams and equations 
or statements from the analysts, 
he will produce detailed flow 
charts for transmission to the 
coders. These will differ from the 
charts produced by the analysts in 
that they will be sui ted to aparti
cular computer and will contain 
more detail. In some cases, the 
analyst and programmer will be the 
same person. 

It is then the job of the coder to 
reduce the flow charts to the de
tailed list of computer instruc
tions. At this point, an exact and 
comprehensive knowledge of the 
computer, its code, coding tricks, 
details of sentinels and of pulse 
code are required. The computer 
is an extremely fast moron. It 
will, at the speed of light, do 
exactly what it is told to do--no 
more, no less. 

After the coder has completed the 
instructions, it must be "debugged". 
Few and far between and very rare 
are those coders, human beings, 
who can write programs, perhaps 
consisting of several hundred in
structions, perfectly, the first 
time. The analyzers, automonitors, 
and other mistake hunting routines 
that have been developed and re
ported on bear witness to the need 
of assistance in this area. When 
the program has been finally de
bugged, it is ready for production 
running and thereafter for evalua
tion or for use of the results. 

Automatic coding enters these 
operations at four points. First, 
it supplies to the analysts, in
formation about existing chunks of 
program, subroutines already tested 
and debugged, which he may choose 
to use in his problem. Second, it 



supplies the programmer with Slml
lar facilities not only with re
spect" to the mathematics or pro
cessing used, but alsO with re
spect to using the equipment. For 
example, a generator may be pro
vided to make editing routines to 
prepare data for printing, or a 
generator may be supplied to pro
duce sorting routines. 

It is in the third phase that auto
matic coding comes into its own, 
for here it can release the coder 
from most of the routine and drud
gery of producing the instruction 
code. It may, someday, replace 
the coder or release him to become 
a programmer. Haster or execu ti ve 
rou tines can be designed whi ch will 
withdraw subroutines and generators 
from a library of such routines 
and link them together to form a 
running program. 

If a routine is produced by a mas
ter routine from library components, 
it does not require the fourth 
phase--debugging--from the point 
of view of the coding. Since the 
library routines will all have 
been checked and the compiler 
checked, no errors in coding can be 
introduced into the program (all 
of which presupposes a completely 
checked computer). The only bugs 
that can remain to be detected and 
exposed are those in the logic of 
the original statement of the 
p rob lem. 

Thus, one advantage of automatic 
coding appears, the reduction of 
the computer time required for 
debugging. A still greater ad
vantage, however, is the replace
ment of the coder by the computer. 
It is here that the significant 
time reduction appears. The com
puter processes the uni ts of coding 
as it does any other units of data 
--accurately and rapidly. The 
elap sed time from a programmer I s 
flow chart to a running routine 

- 2 -

may be reduced from a matter of 
weeks to a mat ter of minutes. Thus, 
the need for some type of automa
tic coding is clear. 

Actually, it has been evident ever 
since the first digital computers 
first ran. Anyone who has been 
coding for more than a month has 
found himself wan ting to use pieces 
of one problem in another. Every 
programmer has detected like se
quences of operations. There is a 
ten year history of attemps to 
meet these needs. 

Th e sub ro uti n e, the pie ceo f cod i n g , 
required to calculate a particular 
function can be wired into the com
puter and an instruction added to 
the computer code. However, this 
construction in hardware is costly 
and only the most frequently used 
routines can be treated in this 
manner. Mark I at Harvard included 
several such routines -- sin x, 
loglOx, lOx. However, they had 
one fault, they were inflexible. 
Always, they delivered complete 
accuracy to twenty-two digits. 
Always, they treated the most 
general case. Other computers, 
Mark II and SEAC have included 
square roots and other subroutines 
partially or wholly built in. But 
such subroutines are costly and 
invariant and have come to be used 
only when speed without regard to 
cost is the primary consideration. 

It was in the ENIAC that the first 
use of programmed subroutines 
appeared. When a certain series 
of operations was completed, a 
test could be made to see whether 
or not it was necessary to repeat 
them and sequencing control could 
be transferred on the basis of 
this test, either to repeat the 
operationsorgo on to another set. 

At Harvard, Dr. Aiken had en
visioned libraries of subroutines. 
At Pennsylvania, Dr. Mauchly had 



discussed the techniques of in
structing the computer to program 
itself. At Princeton, Dr. von 
Neumman had pointed out that if 
the instructions were stored in 
the same fashion as the data, the 
computer could then operate on 
these instructions. However, it 
was not until 1951 that Wheeler, 
Wilkes, and Gill in England, pre
paring to run the EDSAC, first set 
up standards, created a library, 
and the required satelli te routines 
and wro te a book abou tit, "The 
Preparation of Programs for Elec
t ronic Digi tal Compu ters". In this 
country, comprehensive automatic 
techniques first appeared at MIT, 
where routines to facilitate the 
use of Whirlwind I by students of 
computers and programming were 
developed. 

Many different automatic coding 
systems have been developed - See
saw, Dual, Speed-Code, the Boeing 
Assembly, and others for the 701, 
the A--series of compilers for the 
UNIVAC, the Summer Session Compu ter 
for Whirlwind, MAGIC for the MIDAC 
and Transcode for the Ferran ti Com
puter at Toronto. The list is long 
and rapidly growing longer. In 
the process of development are 
Fortran for the 70~, BIOR and GP 
for the UNIVAC, a system for the 705, 
and many more. In fact, all manu
facturers now seem to be including 
an announcement of the form, 

II ali bra r y 0 f sub ro uti n e s for 
standard mathematical analysis 
operations is available to users", 

"interpretive subroutines, easy 
program debugging - .. , - auto
matic program assembly techniques 
can be used." 

The automatic routines fall into 
three major classes. Though some 
may exhibit characteristics of one 
or more, the classes may be so de
fined as to distinguish them. 

- 3 -

(1) Interpretive routines which 
translate a machine-like pseudo~ 
code into machine code, refer to 
stored subroutines and execute them 
as the computation proceeds -- the 
MIT Summer Session Computer, 701 
Speed-Code, UNIVAC Short-Code are 
examples. 

(2) Compiling routines, which also 
read apseudo-code, but which with
draw subroutines from a library and 
operate upon them, finally linking 
the pieces together to deliver, as 
output, acomplete specific program 
for future running -- UNIVAC A -
compilers, BIOR, and the NYU Com
piler System. 

(3) Generative routines may be 
called for by compilers, or may be 
independent routines. Thus, a 
compiler may call upon a generator 
to produce a specific input routine. 
Or, as in the sort-generator, the 
submission of the specifications 
such as item-size, posi tion of key
word, etc. instructs the generator 
top roduce a rou tine to perform 
the desired operation. The UNIVAC 
sort-generator, the work of Betty 
Holberton, was the first major 
automatic routine to be completed. 
It was finished in 1951 and has 
been in constant use ever since. 
At the University of California 
Radiation Laboratory, Livermore, 
an editing generator was developed 
by Merrit Ellmore--later a routine 
was added to even generate the 
pseudo-code. 

The type of automatic coding used 
for a particular computer is to 
some extent dependent upon the 
facilities of the computer itself. 
The early computers usually had 
but a single input-output device, 
sometimes even manually operated. 
It was customary to load the com
puter wi th program and data, per
mit it to "cook" on them, and when 
it signalled completion, the re
sults were unloaded. This pro-



cedure led to the development of 
the interpretive type of routine. 
SUbroutines were stored in closed 
form and a main program referred 
to them as they were requi red. Such 
a procedure conserved valuable in
ternal storage space and speeded 
the problem solution. 

With the production of computer 
systems, like the UNIVAC, having, 
for all practical purposes, in
finite storage under the computers 
own direction, new techniques be
came possible. A library of sub
routines could be stored on tape, 
readily available to the computer. 
Instead of looking up a sub
routine every time its operation 
was needed, it was possible to as
semble the required subroutines 
into a program for a specific pro
blem. Since most problems contain 
some repetitive elements, this was 
desirable in order to make the in
terpretive process a one-time 
operation. 

Among the earliest such routines 
were the A--series of compilers of 
which A-O first ran in May 1952. 
The A-2 compiler, as it stands at 
the moment, commands a library of 
mathematical and logical subroutines 
of floating decimal operations. It 
has been successfully applied to 
many di ff eren t mathematical problems. 
In some cases, it has produced 
finished, checked, and debugged 
programs in three minutes. Some 
problems have taken as long as 
eighteen minutes to code. It is, 
however, limited by its library 
which is not as complete as it 
should be and by the fact that 
since it produces a program entirely 
in floating decimal, it is some
times wasteful of computer time. 
However, mathematicians have been 
able rapidly to learn to use it. 
The elapsed time for problems-
the programming time plus the run
ning time--has been materially re
duced. Improvemen ts and techniques 
now known, derived from experience 

- 4 -

with the A--series, will make it 
possible to produce better compil
ing systems. Currently, under the 
direction of Dr. Herbert F. Mit
chell, Jr., the BIOR compiler is 
being checked out. This is the 
pioneer--the first of the true 
data-processing compilers. 

At present, the interpretive and 
compiling systems are as many and 
as different as were the computers 
five years ago. This is natural in 
the early stages of a development. 
It will be some time before anyone 
c an say th is is the way to p ro
duce automatic coding. 

Even the pseudo-codes vary widely. 
For mathematical problems, Laning 
and Zeirler at MIT have modified a 
Flexowriter and the pseudo-code in 
which they state problems clings 
very closely to the usual mathe
matical notation. Faced with the 
problem of coding for ENIAC, EDVAC 
and/or ORDVAC, Dr. Gorn at Aberdeen 
has been developing a "universal 
code". A problem stated in this 
universal pseudo-code can then be 
presented to an executive routine 
pertaining to the particular com
puter to be used to produce coding 
for that computer. Of the Bureau 
of Standards, Dr. Wegstein in 
Washington and Dr. Huskey on the 
West Coast have developed techniques 
and codes for describing a flow 
chart to a compiler. 

In each case, the effort has been 
three-fold: 

1) to expand the computer's vo
cabulary in the direction re
quired by its users. 

2) to simplify the preparation of 
programs bo th in order to re
duce the amount of information 
about a computer a user needed 
to learn, and to reduce the 
amount he needed to write. 

3) to make it easy, to avoid mis-



takes, to check for them, and 
to detec t them. 

The ultimate pseudo-code is not yet 
in sight. There probably will be 
at least two in common use; one 
for the scientific, mathematical 
and engineering problems using a 
pseudo-code closely approximating 
mathematical symbolism; and a 
second, for the data-processing, 
commercial, business and accoun t ing 
problems. In all likelihood, the 
latter will approximate plain 
English. 

The standardization of pseudo-code 
and corresponding subroutine is 
simple for mathematical problems. 
As a pseudo-code IIsin XII is prac
tical and sui table for II compu te the 
sine of x II, "PWTII is equally ob
vious for "compu t e Ph iladelph ia 
Wage Tax", but very few commercial 
subroutines can be standardized in 
such a fashion. It seems likely 
that a pseudo-code IIgross-pay" will 
call f or a differen t sub rou tine in 
every installation. In some cases, 
not even the vocabulary will be 
common since one computer will be 
producing pay checks and another 
maintaining an inventory. 

Thus, future compiling routines 
must be independent of the type 
of program to be produced. Just as 
there are now general-purpose com
puters, there will have to be gen
eral-purpose compilers. Auxiliary 
to the compilers will be vocabul
aries of pseudo-codes and corres
ponding volumes of subroutines. 
These volumes may differ from one 
installation to another and even 
within an installation. Thus, a 
compiler of the future will have a 
volume of floating-decimal mathe
matical subroutines, a volume of 
inventory routines, and a volume 
of payroll routines. While gross
pay may appear in the payroll vol
ume both at installation A and at 
installation B, the corresponding 
subroutine or standard input item 
may be completely different in the 
two volumes. Certain more general 
routines, such as input-output, 
editing, and sorting generators 

- 5 -

will remain common and therefore 
are the first that are being devel
oped. 

There is little doubt that the 
development of automatic coding 
will influence the design of com
puters. In fact, rt is already 
happening. Instructions will be 
added to facilitate such coding. 
Instructions added only for the 
convenience of the programmer will 
be omitted since the computer, 
rather than the programmer, will 
write the detailed coding. How
ever, all this will not be complet
ed tomorrow. There is much to be 
learned. So far as each group has 
completed an interpreter or com
piler, they have discovered in 
using it "what t hey really wan ted 
to doll. Each executive routine 
produced has lead to the writing 
of specifications for a better 
routine. 

1955 will mark the completion of 
several ambitious executive rou
tines. It will also see the 
specifications prepared by each 
group for much better and more ef
ficient routines since testing in 
use is necessary to discover these 
specifications. However, the rou
tines now being completed will 
materially reduce the time required 
for problem preparation; that is, 
the programming, coding, and debug
ging time. One warning must be 
sounded, these routines cannot de
fine a problem nor adapt it to a 
computer. They only eliminate the 
clerical part of the job. 

Analysis, programming, definition 
of a problem required 85%, coding 
and debugging 15%, of the pre
paration time. Automatic coding 
materially reduces the latter time. 
It assists the programmer by de
fining standard procedures which 
can be frequently used. Please 
remember, however, that automatic 
programming does not imply that it 
is now possible to walk up to a 
c ompu ter, say "wri te my payroll 
chec ks ", and push a but ton. Such 
efficiency isstill in the science
fiction future. 



ECD - 1 


	'Cover
	001
	01
	02
	03
	04
	05
	Back

