
L

MONO-OPERATIONS

POLY-OPERATIONS

DECLARATIVE OPERATIONS

CS-1 INPUT

MONO-OPERATIONS

Operation Page

ENter 3

SToRe 5

SToRe (Channel) 6

NO .. OP 7

CLear 8

Right SHift 9

Left SHift 10

ADD 11

SUBtract 12

MULtiply 13

DIVide 14

SQuare RooT 15

COMpare 16

ComPlement 18

SELective 19

RePlace 20

RePlace SElective 21

.JumP 23

Return JumP 26

B JumP 27

B SKip 28

RePeaT 29

INput (With or Without Monitoring) 31

OUTput (Witti or Without Monitoring) 32

EXternal COMmand 33

EXternal COMmand Multi Word 34

TERMinate Buffer 35

Set Interrupt Lockout 36

i of ii

MONO-OPERATIONS (Cont.)

Operation

Set Interrupt Lockout-EXternal

Remove Interrupt Lockout

Remove Interrupt Lockout-EXternal

Remove Interrupt Lockout and Jump

NORMalize

Enable Continuous Data Mode

Disable Continuous Data Mode

ii of ii

37

38

39

40

41

42

43

MONO·OPERATIONS

Operations which mnemonically express a machine instruction are mono-operations. Each

mono-operation in the source language (LO) is translated by CS-1 to one machine instruction

in the o~ject language (L4), i.e., the translation is one-to-one.

Mono-operations have a definite format:

w

• [operator] • [allied operand] • [y -operand] • [j -operand] ~

W gives a mono-code which defines a class of machine instructions, such as enter,

store, etc

Vo gives added information which further defines a machine instruction, thus is

called the allied operand. The allied operand may specify a register, r, or a

simple logical or arithmetic expression, e. It is absent in some operations

Some of the mono-codes are multipurpose. They form a class of operations. In such cases,

the allied operand combines with and modifies the operator to generate a distinct instruction

in the object language. An example is the selective operator, SEL. When combined with

the vo operand, SET t it generates a computer function code f of 50. Similarly, SEL • CP

generates an f of 51, SEL • CL generates an f of 52, and SEL • SU generates 53. An

other eXample of a multipurpose operator is ADD:

ADD • A

ADD • Q

ADD • LP

In each case the compiler generates a separate machine code instruction.

v -1 .
specifies either 1) a numeric value, 2) the address of a memory location, or

3) a register (A, Q, or Bn). The y-operand is a Read-class operand, a Store -class

operand, or a Replace-class operand (see COMPUTER-ORIENTED OPERA

TIONS, for a discussion of these). VIis absent in some operations

Note: Subsequent references to y include all of the above interpretations unless

otherwise speCified.

1 of 43

V 2 - specifies a j -operand which is primarily used for jump or skip determination

or for repeat status interpretation. The action caused by these may be condi

tional or unconditional as directed by the operand used. Seven j -operands are

applicable to the majority of mono-operations; these are called normal j-oper

ands. Certain operations require the usage of unique j-operands, called

special j -operands. These are explained in the discussions of those operations.

The j -operand is absent on other operations

Normal j-operands are as follows:

Operand,j

(blank)

SKIP

QPOS

QNEG

AZERO

ANOl

APOS

ANEG

Performance

Will not skip the next operation

Skip the next operation unconditionally

Skip the next operation if Q is positive

Skip the next operation if Q is negative

Skip the next operation if A is zero

Skip the next operation if A is non-zero

Skip the next operation if A is positive

Skip the next operation if A is negative

speciai j -operands are required for use with the following operations: Jump, Return Jump,

Divide, Repeat, Add Q, Subtract Q, and all non-mask Compares.

Mono-code operators, combining with allied operands in most cases, are capable of generat

ing all the irredundant instructions of the Unit Cpmputer's repertoire. Additional operations

such as "do nothing" operation, NO-OP, and "complement a register", CP, produce single

instructions which achieve such actions which are not apparent in the names of computer

function codes.

2 of 43

INTer Operation:

W Vo VI

.. ENT • [r or eJ • [y] •
The ENT operation either 1) first clears the register, r, and then transmits

the numerical value expressed by y to register r, or 2) performs the function

expressed by e and enters the result in A. The Y that appears in e refers to

the numerical value which y defines.

Vo designates the register into which the numerical value is entered; r can be:

A, Q, or GO through B7

or

Vo states one of several simple arithmetic or logical expressions, e , to be per

formed, which are then entered into A. These are:

Expression, e Performance

{I} LP LP (y) (Q)* .. A

(2) Y+Q y + Q .. A

(3) Y-Q y - Q .. A

V 1 gives a Read-class operand that defines y

V 2 specifies a normal j -operand; it is optional when V 0 is A, Q, Y +Q or Y - Q

or

V
2

specifies a j -operand when Vo is LP. In this case the operation permits all

normal j -operands except QPOS and QNEO. Substituted for QPOS and QNEG

are two special j -operands as follow: '.
EVEN - Even parity (even number of "ones" in A)
ODD - Odd parity (odd number of "ones" in A)

Note: If Vo is BO through B7, V 2 must be absent.

*LP (y) (Q) means the bit-by-bit product of (y) and (Q)

3 of 43

ENT

(
f: 10,11, 12\

13, 30, 31, 40)

Examples:

.. ENT • Y+Q • UX(SACK+B4) c:>

.. ENT • Q • X77776 • AZERO m>

.. ENT • LP • W(BAG9+3) • EVEN

4 of 43

ENT

(
f. 10, 11, 12)

13, 30, 31, 40

ST 0 R e Operation:

w

.. STR • •

The STR operation stores either 1) the content of register r , or 2) the result

of an expressi~n, e, in a storage location delegated by y •

. Vo - designates the register, r, whose content is stored in a memory location. Vo
can be:

A , Q , 80 through B7

or

Vo - states one of several simple arithmetic or logical expressions, e, to be per

formed, which are then stored in a memory location. These are:

v -1

Expression, e Performance

(1) LP LP(A)(Q)* • y

(2) A+Q A+Q .. y and A

(3) A-Q A-Q -> y and A

gives a Store-class operand that defines a memory location y

specifies a normal j -operand; it is optional
l

Note: If r is B,O through 87, V 2 must be absent.

Examples:

.. STR • B7 • L(PEN-S) ->

.. STR • A-Q • W(lNK) • QNEG ->

. *LP(A)(Q) means the bit-by-bit product of A and Q
;

5 of 43

STR

(
f: 14, 15, 16,) .
32, 33,47

STo Re (channel) Operation

w

.. STR • (Channe11 • [y 1 • . [sub-fUnCtiOn COde] •

This operation provides the interrupt word at the specified location.

. V 0 - Specifies the channel of the desired interrupt word. Channels CO - C7, CIO - CI7

are permitted. V 0 may specify a name which is identified by a MEANS operation

or a CHAN-SET tape

V 1 - Specifies the location at which the interrupt word is to be stored. This operand

may specify only the whole contents of a memory location

V 2 - Specifies the sub-function code:

(absent) * - means the contents of the appropriate address reserved for

interrupt word storage will be transferred to Y as specified by V 1'.

This instruction is necessary with new line equipment to reset

the Interrupt Request

FORCE

Examples:

- provides forcing the word on the line to be stored at Y as specified

by VI' Program will hold until the word is read causing an Input

Acknowledge signal (this is an abnormal mode used for testing

some equipment)

.. STR. C3 • W(CAT) ->

.. STR. SMPCHAN • W(DOG) • FORCE ...

*The Input Ackrtowledge is set automatically when the interrupt word is read into the special
address, which occurs in both old and new line equipment

6 of 43
STR (channel)

U: 17)

NO-OP Operation:

w

.. NO-OP •

The NO-OP operation is a "do nothing" operation. It generates a 12000 00000

in the object program, causing the computer to move on to the next operation.

7 of 43

NO-O?

(f: 12)

CL ear Operation:

w Va
.. CL • [r or y] ...

The CL operation clears the memory location specified by y or the register

specified by r.

Vo - designates the register to be cleared; r can be:

A , Q ,11 through 87

or

va - gives a Store-class operand that defines y

Examples:

• CL

.. CL

• Q ..

• L(GIMME) ..

8 of 43 CL
(f: 16, 10, 11, 12, 13)

light SH iit Operation:

w

.. ISH • • •

The ISH operation shifts the content of the register, r, to the right y bit posi

tions. As the information is shifted, the original sign bit replaces the higher

order bits of register r; the lower order bits are shifted off the end.

Only the lower-order 6-bits of yare recognized. The higher-order 24 bits are

ignored.

v 0 - deSignates the register that the operation shifts; r can be:

A, Q , or AQ

AQ represents the 60-bit register conSisting of A and Q

V 1 - gives a Read~class operand that defines y

V
2

- specifies a normal i-operand; it is optional

Examples:

.. ISH • AQ • 15D • AZERO ..

"RSH. A • L(FLlP+6) ..

RSH
9 of 43 (f: 01, 02, 03)

Left SHift Operations:

w

.. LSH • • •

The_ LSH operation shifts the content of the register, r, to the left y bit posi

tions. The shift is circular; the low-order bits of r are replaced by the upper

order bits. Only the lower-order 6 bits of yare recognized. The higher-order

24 bits are ignored.

v 0 - designates the register that the operation shifts; r can be:

A, Q, or AQ

AQ represents the 60-bit register consisting of A and Q

VI - gives a Read-class operand that defines y

V2 - specifies a normalj -operandi it is optional

Examples:

.. LSH • A • L(CAT) • QNEG ..

.. LSH • Q • 84 ..

LSH
10 of 43 (f: 05, 06, 07)

ADD Operation:

w

.. ADD • [r or e] • [y] •

The ADD operation either 1) adds the numeric value expressed by y to the

contents of r and replaces the result in r, or 2) performs the expression, e, and

then adds its result to A.

Vo - designates the register to which the numerical value is added

Register, r Performance

A A +y .. A

Q Q +y .. Q

or

v 0 - states a logical function, e

Expression, e Performance

LP A + LP(y)(Q)* -> A

V
l

- gives a Read-class operand that defines y

V2 - specifies a normal j-operand if % is A or LP • If Vo is Q. AZERO and

ANOT are not permitted; <?ZERO and QNOT are substituted instead. V2
is optional

Examples:

.. ADD • LP • W(BOOK) ->

.. ADD • Q • 12D • QZERO ..

*LP(Y)(Q) means the bit-by-bit product of y and Q

11 of 43 ADD
(f: 20, 26, 41)

SUI tract Operation:

w

.. SUI • [r or e] • [Y] •

. The SUI operation either 1) subtracts the numeric value expressed by y from

the contents of r and replaces the result in r,or 2) performs the expression, e I

and then subtracts its result from A.

Vo - deSignates the register from which the numerical value is subtracted

or

Register, r

A

Q

v 0 - states a logical function, e

Expression, e

LP

Performance

A - y .. A

Q - y .. Q

Performance

A - LP(Y)(Q)* .. A

VI - gives a Read-class operand that defines Y

. V 2 - specifies a normal j-operand if V 0 is A or LP. If Vo is Q, A Z E R 0 and

AN 0 T are not permitted. Q Z E R 0 and Q NOT are substituted instead. V 2

is optional

Examples:

... SUI • A • 12D ..

... SUI • Q • 16 ..

*LP(y)(Q) means the bit-by-bit product of Y and Q

12 of 43
SUB

(f: 21, 27, 42)

MUL tiply Operation:

w

.. MUL • [absent] • [y] •

The MUL operation multiplies Q by the numerical value expressed by Y, leaving

the double length product in AQ. All numbers involved are treated as integers.

Vo - always absent

V 1 - gives a Read-class operand that defines y. A is not permitted

V 2 - specifies a normal j-operand

The actual multiplication is performed with positive numbers only; therefore,

if the original sign bits of y and Q are not Similar, an end correction is made

by complementing the product. The branch condition j -operand is interpreted

prior to the end correction, thus ANEG has no effect and APOS always gives

an unconditional skip.

Examples:

.. MUL •

.. MUL •

L(PAPER-2) ..

4"

13 of 43
MUL

(f: 22)

DIY ide Operation:

w

.. DIY • [absent] • [Y] •

The DIY operation divides' AQ by the numerical value expressed by y, leaving

the quotient in the Q register and the remainder in the A register. The remainder

bear s the same sign as the quotient.

Vo - always absent

VI - gives a Read-class operand that defines Y. A is not permitted

V 2 - specifies a skip-the-next-operation condition

Operand,j

(blank)

SKIP

OF

NOOF

AZERO

ANOT

APOS

ANEG

Condition

Does not skip on divide

Unconditional skip

Skip if there is an overflow

Skip if there is no overflow

Skip if A = 0

Skip if A ~ 0

Skip if A is positive

Skip if A is negative

Note: There is no indicator on the console to represent a divide fault. However,

by cOding each operation .with a j of OF, a program test for a divide fault is

automatic. With this selection for j, a skip of the next operation occurs if the

divide fault exists. The skip would be made to a JP operation which provides

remedial means of noting the error or of correcting it. Therefore, the opera

tion which follows the DIV operation should have a j-operanq."of SKIP in

order to preclude the JP operation whenever the divide sequence ,culminates in

a correct answer. A divide fault can be detected also if the DIV operation is
I

executed with a j of NOOF. In this case, a correct answer is indicated when

a skip occurs. Since A is alw~ys positive at the time j is sensed, ANEG becomes

meaningless.

Examples:
.. DIV. W(PAD+82) • OF ->
.. DIV. 86 ..

14 of 43
DIV

(f:23)

SQuare looT Operation:

W Vo V 1 V 2

.. SQRT • [absent] • [absent] ., [j] ..

The SQIT operation finds JiQI and places it in Q. The remainder goes

to A, always destroying the previous contents. The radix point of (Q) is assumed

to be at the low order end of the register.

v 0 always absent

V 1 - always absent

V 2 - specifies a skip-the -next-instruction condition

Operand, Condition

(blank) Doe s not skip

SKIP Always skip

REM Skip if A 1= 0

NO REM Skip if A = 0

Examples:

.. SQRT ..

.. SQIT. NO REM ..

15 of 43
SQii{f

(f: 23)

COM pare Operation:

Type A

Type B

W Vo VI V
2 .. COM • [r] • [Y] • [iJ ..

W Vo VI V
2 .. COM • MASK • [Y] • [j] ...

Type A:

The COM operation compares the value' expressed by y with r. A skip of the

next operation takes place if the condition specified by j is satisfied. The content

of r is not changed.

Vo - designates the register with which the numeric value 'is compared

Register, r

A

Q

AQ*

Performance

A: y

Q: y

. A: y and Q: y

V 1 - gives a Read-alass operand that defines y

V
2

- specifies a skip condition; it must be present. The special meanings of j are:

Operand,j

YLESS

YMORE

YIN

YOUT

Condition

{
Skip if the value expressed by y S Q

Skip if the value expressed by y S A

{
Skip if the value expressed by y > Q

Skip if the value expressed by y ... > A

{

Skip if Q ~ value expressed by y and the value

expressed by y > A. Q ~ y > A

{
Skip if Q < value expressed by y or the value

expressed by y S A. Q < Y S A

• Use only with j -operands YIN or YOUT. y is compared with A and Q as
individual 30 bit registers

16 of 43
COM

(f: 04, 43)

Type B:

The COM. MASK operation compares A with the bit-by-bit product of the

values expressed by y and Q. A skip of the ne.xt operation takes place if the

condition specified by j is satisfied. The contents of A and Q are not changed.

Vo - ,says MASK

VI - gives a Read-class operand that defines y

V 2 - specifies a normal j -operandi it must be present. The condition of A is tested

after LP{y)(Q)*is subtracted from A. The LP(Y)(Q)*iS then added to A

Examples:

.. COM • AQ • W(TAI-2) • YIN ..

• COM • MASK • L(TAB) • AZERO ..

. *LP(},) (Q) means the bit-by-bit product of y and Q

17 of 43
COM

(f: 041 43)

Com P lement Operation:

w

.. CP •
The CP operation complements all bits of the'register specified by 'Y.

Vo - designates the register which is complemented; r can be:

A or Q

Example:

.. CP • Q .. (Gen: 14000 00000)

CP
18 of 43 (f: 51, 14)

IEL ective Operation:

w

.. SEL • [e] • •
The SEL operation performs logical manipulations specified by e on the content

of A. A string of bits expressed by y controls these manipulations.

Vo - states one of several logical functions. These are:

Expression, e

SET

CP

CL

SU

Performance

Sets the individual bits of register A corre

sponding to ones in the numeric value expressed

by y, leaving the remaining bits of A unaltered

Complements the individual bits of register A

corresponding to ones in the numeric value ex

pressed by y, leaving the remaining bits' of A

unaltered

Clears the individual bits of register A corre

sponding to ones in the numeric value expressed

by y, leaving the remaining bits of A unaltered

Replaces the bits of A with bits of the numeric

value expressed~by y correspondingt'o ones in Q

VI - gives a Read-class operand that definesy. A is not permitted

V
2

- specifies a normal j -operand; it is optional

Examples:

"SEL • CP • X77774 ..

.. SEL • SET • W(CLlP) • AZERO ..

SEL

19 of 43 (f: 50, 51, 52, 53)

RePLace Operation:

w Yo ~ V2 ·

RPL • [e] • [y] • [j]

The RPL operation performs the function expressed bye, and stores the result

in A and in a memory location established by y. The Y that appears in e re

fers to the numerical value which y defines.

Vo . states a simple arithmetic or logical expression to be performed. These are:

Expression, e Performance

(1) A+Y A + Y .. Y and A

(2) A-Y A - Y ->- Y and A

(3) Y+Q Y + Q -> y and A

(4) Y-Q Y - Q am> y and A

(5) Y+l Y + 1 -> Y and A

(6) Y-l Y - 1 .. Y and A

(7) LP LP (y) (Q)*&;;> y and A

(8) A+LP A + LP (y) (Q) .. y and A

(9) A-LP . A - LP (y) (Q) II» y and A

VI gives a Replace-class operand which defines address y

Va specifies a normal i -operand; this is valid with all V 0 operands except LP

or

V
2

specifies the j -operand when Vo is LP. In this case the operation permits a~l

normal j -operands except QPOS and QNEG. Substituted for QPOS and QNEG

are two special j-operands as follows:

EVEN - Even parity (even number of "ones" in A)

ODD - Odd parity (odd number of "ones" in A)

Examples:

.. RPL • A+LP • W(CRUNCH) • QNEG ~

.. RPL • Y-Q • UX (HOPTO+B6) ->

.. RPL • LP • W (DOP+B4) • ODD ->
*LP (y) (Q) means the bit-by-bit product of (y) and (Q)

20 of 43

RPL

(
f: 24, 25, 34, 35)

36, 37, 44, 45, 46

Replace 5E lective Operation:

w

.. aSE • [eJ •
The aSE operation performs logical manipulations specified by e on the con

tent of A, and then stores A in the memory location whose address is expressed

by y. A string of bits in the same memory location controls these manipulations

before the store takes place.

Vo - states one of several logical functions. These are:

Expression, e

SET

CP

CL

SU

Performance

Sets the individual bits of register A to one

corresponding to ones in the numeric value ex

pressed by y, leaving the' .remaining bits of A

unaltered, then stores A at the storage address

expressed by y

Complements the individual bits of register A

corresponding to ones in the numeric value ex

pressed by y, lea ving th~ remaining bits of A

unaltered, then stores A at the storage address

expressed by y

Clears the individual bits of register A corre

sponding to ones in the numeric value expressed

by y, leaving the remaining bits of A unaltered,

then stores A at the storage address expressed

by y

Replaces the bits of A with. bits of the numeric

value expressed by y corresponding to ones in

Q, then stores A at the storage address ex

pressed by y

VI - gives a Replace-class operand that defines y

RSE

21 of 43 . (f: 54, 55, 56, 57)

V
2

specifies a normal ;-operand; it is optional

Examples:

.. RSE • SU • W(COVER+B4) ->

.. RSE • CL • LX(POW5) ..

RSE

22 of 43 (f: 54, 55, 56, 57)

JumP Operation:

w

~ JP • [absent] •

The JP operation clears the program address register P, and enters the ad

dress designated by y in P for certain conditions specified by j. Thus y be

comes the address of the next operation and the beginning of a new program

sequence. If a jump condition is not .satisfied, the next sequential operation in

the current sequence is executed in the normal manner.

Vo always absent

VI· gives a Read-class operand which defines address y

V
2

specifies a jump condition

Operand j

QPOS

QNEG

AZERO

ANOT

APOS

ANEG

(blank)

KEYl

KEY2

KEY3

STOP

STOPS

STOP6

STOP7

C
n

ACTIVEIN

Cn ACTIVEOUT

Condition

Jump if Q is positive

Jump if Q is negative

Jump if A is ,equal to zero

Jump if A is not equal to zero

Jump if A is positive

Jump if A is negative

Unconditional jump

Jump if Key 1 is set

Jump if Key 2 is set

Jump if Key 3 is set

Jump and then stop

Jump and then stop if Key 5·is set

Jump and then stop·if Key 6 is set

Jump and then stop if Key 7 is set

{see next page for condition description

• If j is CnACTIVEIN or CnACTIVEOUT, an operand code of X, LX, UX,
and A is not permitted

JP
23 of 43 (f: 60, 61, 62, 63)

CnACTIVEIN'·

Cn ACTIVEOUT'·

Examples: .. JP • TRACE ..

Jump if the input buffer mode on channel n is

active (n = 0, -, 17)

Jump if the output buffer on channel n is active

(n = 0, -, i7)

... JP • L(TRIG + 82) • KEYl JP • ROAR • C14ACTIVEIN ..

* May be a name which is defined by a MEANS operation or a CHAN-SET tape

JP

24 of 43 (f: 60, 61, 62, 63)

JumP Operation

W Vo VI V2 V3

.. JP • [absent] • [location] • [channel] • COMACTIVE ...

This operation provides a means for determining whether an external function

command buffer is active.

v 0 - Always absent

VI - Specifies the location to which control is to be transferred if the specified external

function command buffer is active'
f

. This operand may contain only a tag or a

tag with a K designator of L

V 2 - Specifies the. channel on which the external command buffer is to be tested.

Channels CO-C7, CIO-C17 are permitted. V 2 may specify a name which is

identified by a MEANS operation or a CHAN-SET tape

V 3 - Specifies that this test is for an active external function command buffer

Examples:

.. JP. PTH • C10 • COMACTIVE ..

.. JP. PTH • TAPECHAN • COMACTIVE ..

JP

25 of 43 (f: 17)

Return JumP Operation:

W Va Tf .. RJP • [absent] • [Y]

The IJP operation performs the following steps if conditions specified by j are

satisfied: 1) it stores the content of the program address counter P, which is

the address of the IJP operation plus one, into the lower 15 bits of the memory

location which has the address specified by y, and 2) then it enters P with Y + 1.

Thus, Y + 1 becomes the address of the next operation and the beginning of a

new program sequence.

If the j condition is not satisfied, the next sequential operation in the current

sequence is executed in the normal manner.

Vo always absent

Vl gives a Read-class operand which defines address y

V
2

specifies a jump condition

Operand, j

QPOS

QNEG

QZERO

ANOT

APOS

ANEG

(blank)

KEYl

KEY2

KEY3

STOP

STOPS

STOP6

STOP7

Examples:

Condition

Return jump if Q is positive

Return jump if Q is negative

Return jump if A is equal to zero

Return jump if A is not equal to zero

Return jump if A is positive

Return jump if A is negative

Unconditional return jump

Return jump if Key 1 is set

Return jump if Key 2 is set

Return jump if Key 3 is set

Return jump and then stop

Return jump and then stop if Key 5 is set

Return jump and then stop if Key 6 is set

Return jump and then stop if Key 7 is set

.. .1.lP • TIACE • STOP •

.. IJP • U(FLAT+B7) ..

RJP

26 of 43 (f: 64, 65)

I JumP Operation:

w

.. IJP •

v
o

•

V
1

The IJP operation tests the content of the B register specified by r. If (r) is

zero, the normal sequence of operations continues. If (r) is non zero, (r) de

creases by one, and a new sequence of operations begins at the address ex

pressed by y.

v 0 - designates a B register: 11 through 17

VI - gives a Read-class operand that defines y

Note: A j-operand is not permitted.

Examples:

.. BJP • 85 • DESK •

• BJP • 11 • U(EXIT+B2) ..

. 27 of 43
SJP

(f: 72)

I SKip Operation:

w

.. ISK • •

The ISK operation tests the content of the B register specified by r. If (r}is

equal to the numeric value expressed by y, the control sequence skips the next

operation and(r) is cleared. If (r)is not equal to the numeric value expressed by

y, the normal sequence of operations continues, and (r) increases by one.

v 0 - designates a B register: 81 through 87

VI - gives a Read-class operand that defines y

Note: A j-operand is not permitted

Examples:

.. aSK • 83 • S6

.. aSK • 84 • 82 ..

28 of 43

BSK
(f: 71)

RePeaT Operation:

W Yo Vl

RPT • [absent] • [Y] •

The RPt operation initiates a repeat mode of control which causes execution of

the next sequential operation the number of times expressed by y, or until the

j -operand condition of the next operation is satisfied, whichever occurs first.

B 7 keeps count of the number of times execution is to take place. (B 7 decreases

by one after each execution.)

Vo always absent

VI gives a Read-class operand that defines y. If y is zero, the next instruction is

skipped

V2 specifies the mode of address modification of the repeated operation

Operand, j

(blank)

ADV

lACK

ADDB

R

ADVR

Control

Unmodified repeat of next operation

Advance the operand address of the repeated

operation by one after each individual execution

Decrease the operand address of the repeated

operation by one after each execution of the

I repeated operation

Adds cumulatively the B register indicated in

the repeated operation to its operand during

each execution
....

Increase the operand address of the repeated

Replace -class operation by the content of B6

for the s tore portion of the replace only

Increase the operand address of the repeated

Replace-class operation by the content of B
6

for

the store portion of the replace only; then in

crement the operand address of the repeated

operation by one after each execution

29 of 43
RPT

(f: 70)

Operand

BACKR

ADDBR

Control

Increase the operand address of the repeated

Replace-class operation by the content of B 6

for the store portion of the replace only; then

decrement the operand address of the repeated

operation by one after each execution

Adds cumulatively the B register indicated in

the repeated Replace-class operation to its

operand address during each execution; in ad

dition to the above, increase the operand ad

dress of the repeated operation by the content
6 of B only for s tore portion of the replace

Note: Usej -operands R, ADVR, BACKR, and ADDBR only when a RPL

operation follows the RPT operation.

Examples:

.. RPT • 39D ..

.. RPT • B7 • BACK ..

... RPT • L(TRADE3) • ADDBR

Note: All interrupts are locked out once the repeat mode has been initiated.

30 of 43

RPT

(f: 70)

INput Operation (With or Without Monitoring):

w Vo ~ V 2 .. IN • [channel] • [y] • [absent or MONITOR] ->

The IN operation establishes the control to transfer data from external equip

ment to the core memory via a specified channel. The address limits are de

fined by a numeric value expressed by y , which are transferred to memory ad

dress 00100+n, where n is the number of the channel. Subsequent to this opera

tion, but not as part of it, the individual buffer operations are executed at a rate

determined by the external device. The starting address, initially established

by this operation, is advanced by one following each individual buffer operation.

The next current address is maintained throughout the buffer process in the

lower order 15-bit positions of memory location with storage address 00100+n.

This mode continues until it is superseded by a subsequent initiation of an input

buffer via the same channel, or until the higher order half and the lower' order

half of storage address 00100+n contain equal quantities, whichever occurs first.

The first and last address of the memory area is specified in location 00100+n

Vo deSignates the Channel, Cn, through which buffering takes place:

CO, -, C17

VI gives an operand that defines y. If V
l

is a number of five digits or less, or has

an operand code of L, y replaces the lower half of address 00100+n. If VI is a

number of more, than five d~gits, or has an operand code of W, y replaces the

whole word of address 00100+n. Operand codes of X, U, LX, UX, or A, are

not permitted

V
2

specifies whether the buffer operation is to be monitored or not. Monitoring is

specified by V
2

being MONITOR. Otherwise V
2

is absent'"

A buffer operation is monitored if the main program is interrupted and control

is transferred to 00040+n when the buffer operation is ttTrminated by the control

addresses in address 00100+n becoming equal.

Examples:

.. IN • C5 • 52367 ..

.. IN • C14 • W(LIMIT) • MONITOR ..

IN

31 of 43 (f: 73, 75)

OUTput Operation (With or Without Monitoring):

w ~ V
2

OUT. [Channel] • [y] • [absent or MONITOR]"

The OUT operation establishes the control to transfer data to external equipment

from the core memory via a specified channel. The address limits are defined

by a numeric value expressed by y; these are transferred to memory address

OOl20+n, where n is the number of the channel. Subsequent to this operation,

but not as part of it, the individual buffer operations are executed at a rate de

termined by the external device. The starting address, initially established by

this operation, is advanced by one following each individual buffer operation.

The next current address is maintained throughout the buffer process in the

lower order l5-bit positions of memory location at storage address OOI20+n.

This mode continues until it is superseded by a subsequent initiation of an input

buffer via the same channel, or until the higher order half and the lower order

half of storage address OOl20+n contain equal quantities, whichever occurs first.

The first and last address of the memory area are specified in location OOl20+n

. V 0 deSignates the Channel, Cn, through which buffering takes place:

CO, -, C17

Vl gives an operand that defines y. If VI is a number of five digits or less, or has

an operand code of L, y replaces the lower half of address 00120+n. If V
l

is a

number of more than five digits, or has an operand code of W, y replaces the
l

whole word of address OOl20+n. Operand codes of X, U, LX, UX, or A are

not permitted

V 2 specifies whether the buffer operation is to be monitored or not. Monitoring is

specified by V 2 being MONITOR. Otherwise V 2 is absent

A buffer operation is monitored if the main program is interrupted and control

is transferred to 00060+n when the buffer operation is terminated by the control

addresses in address OOl20+n becoming equal

Examples:

.. out. C7 • 41456 ..

• OUT. C12 • L(LOC) • MONITOR ..

OUT
32 of 43 (f: 74, 76)

External-COMmand Operation:

W Vo V1 V2
... EX-COM • [Channel]. [external function Code] • [sub-function COde] =>

The EX-COM operation initiates a one word external function buffer

v 0 - Specifies the channel on which the external function code is transferred. Chan

nels CO - C7, C10 - C17 are permitted. V 0 may specify a name which is identified

by a MEANS operation or a CHAN-SET tape

V 1 - Function code, this may be a ten digit number or less, or the whole contents of

a memory location (i.e., operand code of w). Other operand codes are not

permitted. B-Box modification is not allowed if V 1 is a constant

V 2 - Specifies the sub-function code

(absent) - The external function command is sent without force or monitor

fORCE - Used when the communication is with external equipment which has

not been designed to send an "external function request" to the

computer. MONITOR may be used in conjunction with an EX-COM

with a V 2 operand of FORCE

MONITOR - Provides a transfer of control to location 00500+j when the buffer

of the external function word is completed

l

MONFORCE - Provides the combined capabilities of MONITOR and FORCE

Examples:

.. EX-COM • CO • 4300000016 • FORCE ..

.. EX-COM. C17 • W(EFUN) ..

.. EX-COM. ny • CHAN • W(EFT) • MONITOR ..

.. EX-COM. SPILL • W(EFF) • MONFORCE ..

33 of 43
eX-COfA

(f: 13)

EXternal-COMmand-Multi Word Operation

W Vo V1 V2

.. EX-COM-MW • [Channel] • fy] • [s~b-funCtiOn COde] ..

The EX-COM-MW operation sets up the appropriate external function buffer

control word (at 00140+j) and initiates output buffering of the specified external

function commands

v 0 - Specifies the channel on which the external function codes are sent. Channels

CO - C7, C10 - C17 are permitted. V 0 may specify a name which is identified

by a MEANS operation or a CHAN-SET tape

V 1 - Gives the buffer limits of the function codes to be transmitted. This may be the

contents of a whole memory location only (Le., operand code of w). Other

operand codes are not permitted. B register modification is not allowed if V 1

is a constant

V 2 - Specifies whether the buffering of the external function command words is to be

monitored. When monitored, the completion of the buffer will cause transfer

of control to external function buffer monitor interrupt entrance address 00500+J

Examples:

.. EX-COM-MW. C3 • W(FCCW) • MONITOR ..

.. EX-COM-MW. ·TAPECHAN • W(SFCC) ..

34 of 43
EX-COM-MW
(f: 74, 76)

TERMinate Buffer Operation

w Vo V1

.. TERM • [Channel number or ALL J • [buffer mOde] ..

The TERM function terminates input, output, external function command, or all

buffers as specified by the V 0 and V 1 operands.

v 0 - Specifies the channel on which buffering is to be terminated. Channels CO - C7,

ClO -Cl7 are permitted. Vo may specifyaname which is identified by a MEANS

operation or a CHAN-SET tape

ALL - Causes all buffering including that of external function commands, input

data, and output data to be halted. No V 1 operand is allowed when the

V 0 operand is ALL

V 1 - Specifies the mode of buffering to be terminated

(absent) - The V 1 operand must be omitted if the V 0 operand was ALL

COM - Terminates the buffering of external function commands on specified

channel

INPUT - Terminates the buffering of input data on specified channel

OUTPUT -Terminates the buffering of output data on speCified channel

Examples:

.. TERM. C6 • COM ..

.. TERM. ALL ..

.. TERM. C17 • OUTPUT ..

Example: (illegal)

.. TERM. ALL. INPUT ..

35 of 43

TER~l

(f: 66, 67)

Set Interrupt Lockout Operation

w Vo
.. SIL. ALL ..

The oper"tor SIL locks out both internal and external interrupts on al1 channels.

v 0 - The only Vo operand allowed is ALL

Examples:

.. SIL. ALL ..

Example: (illegal)

• SIL. C6 ..

36 of 43
SIL
(f: 66)

set Interrupt Lockout - EXternal Operation

W Vo

.. SIL-EX • [channel]"

The operator SIL-EX * sets external interrupt lockout for the specified channel.

v 0 - Specifies the channel on which external interrupts are to be locked out. Channels

CO - C7, ClO - Cl7 are permitted. V 0 may specify a name which is identified

by a MEANS operator or a CHAN-SET tape

ALL - Locks out external interrupts on all channels

Examples:

• SIL-EX. CIO ..

.. SIL-EX. ALL ..

.. SIL-EX. FLEXCHAN ..

* The interrupts locked out by SIL-EX, can be released only by the RIL-EX operation

37 of 43
SIL-EX
(f: 66)

Remove Interrupt Lockout Operation

w " Vo
.. IlL • [abse~t or ALL] ..

The operator RIL removes interrupt lockouts on all internal channels, and all

external channels not previously locked out by saL-EX operations.

v 0 - The effect on the computer is the same whether V 0 is ALL or absent

(absent) - If V 0 is absent an instruction of the type 600XX XXXXX will be

generated

ALL If V 0 is ALL an instruction of the type 66X10 XXXXX will be

generated

Examples:

... IlL ..

.. IlL. ALL ..

RIL

38 of 43 (f: 60, 66)

Remove Interrupt Lockout - EXternal Operation

w

.. RIL-EX •

Vo
[channel] ..

The op~rator RIL-EX * releases the interrupt lockout for external interrupts.

v 0 - Specifies the channel on which the external interrupt lockout is to be released.

Channels CO - ~7, C10 - C17 are permitted. V 0 may specify a name which is

identified by a MEANS operator or a CHAN-SET tape

ALL - Removes the external interrupt lockout on all channels

Examples:

.. RIL-EX. C10 ...

.. RIL-EX. ALL ..

.. RIL-EX. TTYCHAN •

* This ipstruction must be used to remove interrupt lockouts on channels previously
locked out by SIL-EX operations. RIL operations only release lockouts for external
interrupts not locked out by SIL-EX , and of course internal interrupts

39 of 43
RIL-EX

(f: 66)

Remove Interrupt Lockout and JumP Operation

w Vo
.. RILJP • [y]

The RILJP operation removes the interrupt lockout, thus allowing a subsequ~nt

interru~t, and jumps to address y unconditionally. The operation generates a

601nnnnnnn instruction.

Vo gives a Read-class operand which defines address y

40 of 43

RILJP
(f: 60)

NORMalize Operation:

w
.. NORM • [r]

The NORM operation shifts AQ left circularly until the upper two bits of A are

unequal or until AQ has been shifted 728 times.

v 0 - designates AQ

41 of 43
NOR;~~

f: (7707)

Enable Continuous Data M ode Operation:

W Vo VI
.. ECDM • [Channel] • [sub-function cOde]

The ECDM operation will automatically reinitiate a buffer when termination

occurs. Upon'termination, a new pair of control words are transferred to the

buffer control address for this channel and the buffer 're -activated. If a monitor

interrupt has been selected, it will occur at this time.

Vo - Specifies the CDM channel. Channels C0-C7, C10-C17 are permitted if they

have the necessary hardware modification. V 0 may specify a name which is

identified by a MEANS operation or a CHAN-SET tape

V I - Establishes direction of data transfer

INPUT

OUTPUT

Data transferred into the computer. Buffer Control Word

is located at address (00200 + Cn)

Data transferred to external equipment. Buffer Control Word

is located at address (00220 + Cn)

,42 of 43 ECDM

Disable Continuous Data Mode Operation:

w

... DCDM • [Channel] • [SUb-fU?ction COde]

The DCDM operation disables the CDM for a given channel

Vo Specifies the CDM channel. Channels C0-C7, C10-C17 are permitted. Vo may

specify a name which is identified by a MEANS operation or a CHAN-SET tape

INPUT Disables input CDM control

OUTPUT Disables output CDM control

43 of 43 DCDM

POLY-OPERATIONS

Operation Page

ENTRY 2

EXIT 3

CLEAR 5

PUT 6

MOVE 8

INCREMENT 10

Upper-TAG 12

PRINT 13

TYPEC 15

YYPET 18

PUNCHC 20

PUNCHT 23

TYPE-DECimal 25

PUNCH-DECimal 27

i of i

POLY·OPERATIONS

Quite frequently, a sequence of instructions appears iteratively in a program. This sequence

performs a specific job or function. It is possible in cases such as this to generate the se

quence of instructions with a single CS-l operation. This is the familiar one-to-nlany rela

tionship between instructions which shall be herein termed poly-coding, with the parent

instruction being called a poly-operation. A poly-operation is capable of generating within

the compiler system a unique sequence of computer instructions (in some cases a single

instruction) designed to perform the specific task required.

It is permissible during the coding of a routine to intermix mono- and poly-operations in any

order desired. However, the programer must not attempt to skip a poly-operation with the

j-operand of a mono-operation. The poly-operation usually results in the generation of more

than one instruction in the assembled object program; the computer skips the first of these

instead of the intended next mnemonic operation in the source program. The compiler-gen

erated computer instructions appear in the object program in the order specified by the

CS-l coding~

Poly-operations are capable of producing compiler-generated, unique labels and tags for

internal use during compiling. The Appendix gives a complete discussion of compiler-gen

e rated tags.

The computer frequently employs registers A, Q, and B 7 in object program instructions re

sulting from poly-operations. In so dOing, it destroys any previous information contained in

these registers. The programer should therefore exercise caution in trte use of these regis

ters in statements preceding poly-operations. In cases where their use is necessary and the

content of any of these registers is required later, the programer must save their content

by transfer to a temporary storage location for later reference.

1 of 28

ENTRY Operation:

L w

. [subroutine name] .. ENTRY • [stop COnditiOn] •

The ENTRY operation establishes a standard means of starting all subroutines.

It produces either a normal entry with no jump conditions or a jump capability

with Key Stop options. This operation is the first one in each subroutine; because

of this it must have a label which gives the subroutine name. Although each

ENTRY operation generates only one instruction, the variations which the in

struction can assume make it a poly-operation.

v 0 - names the key which must be set on the computer console if the programmer

wishes the computer to stop on exiting from the subroutine. If operand Vo is

absent (no key stop specified), the compiler generates a word of O's for the first

subroutine word in the object program. If Vo is present, the compiler generates

a 61 j 00 00000, where j is determined by the Vo operand. The allowable entries

for Vo are:

5TOP5 j = 5

5TOP6 j = 6

5TOP7 j = 7

Example a:

L W Vo
TYPEC .. ENTRY ~ 5TOP6",

Generated: Mnemonic Equivalent

161 600 00000 I JP • 0 • 5TOP6

Example b:

L W
TYPET .. ENTRY

Generated: Mnemonic Equivalent

100000 00000) None

2 of 28
ENTRY

EXIT Operation:

Vo -

L w

[optional label J.. EXIT • [jump condition] .. -

The EXIT operation provides a means of exiting normally from a subroutine,

i.e., it generates a jump back to the ENTRY operation of the . subroutine and

thence to the main routine. The EXIT operation is used at every place in the

subroutine where an exit from it is desired; hence, any number of exits is per

mitted. The label is optional.

Although the compiler generates only one instruction per EXIT operation, the

generated instruction can assume a variety of formats. The format depends on

1) whether the Vo operand of the foregoing ENTRY of the subroutine is present

or absent, and 2} the EXIT V 0 operand itself. Because of these variations this

operation is classed as a poly-operation. If the Vo operand of the preceding

ENTRY operation is absent, the compiler generates a 61j.!.0 nnnnn or a 60j !O
nnnnn. If the V 0 operand of the preceding ENTRY operation is present, the

compiler generates either 61 j QO nnnnn or 60 j QO nnnnn. The address assigned

to the preceding ENTRY position is nnnnn. The compiler looks for this address,

then inserts it in the tag position, nnnnn, of the EXIT operation.

determines j in the instruction generated by the EXIT operations as follows:

If the EXIT Vo is: The generated instruction is:

j k b y

Absent 61 0 (lor 0)· 0 nnnnn

QPOS 60 2

QNEG 60 3

AZERO 60 4

ANOT 60 5

APOS 60 6

ANEG 60 7

. *If V 0 of previous ENTRY is absent, k = l .
If V 0 of previous ENTRY is present, k = 0

3 of 28 EXIT

If the EXIT Vo is:

KEY1
\

KEY2

KEY3

STOP

STOP5

STOP6

5TOP7

The generated instruction is:

61

61

61

61

61

61

61

j

1

2

3

4

5

6

7

k

(1 or ~)*

b

o
y

nnnnn

Examples:

*u Vo of previous ENTRY is absent, k = 1

If Vo of previous ENTRY is present, k = 0

a. Previous ENTRY Vo absent

L w Vo

1) MAP2 .. EXIT • KEY3 ..

Generated: Mnemonic Equivalent

161310 nnnnn I . JP • L(nnnnn) • KEY3

• EXIT ..

Generated: Mnemonic Equivalent

161010 nnnnn I JP • L(nnnnn)

b. Previous ENTRY Vo present

w Vo
1) .. EXIT • ANOT •

Generated: Mnemonic Equivalent

160500 nnnnn ~ JP • nnnnn • ANOT

L w

2) MAP3 .. EXIT •
Generated: Mnemonic Equivalent

160300 . nnnnn I JP • . nnnnn. QNEG

4 of 28

CLEAI Operation:

w

... CLEAR • [number of words J • [sta~ting address J ...
The CLEAR operation clears (fills with 0' s) a number of words of an area of

core memory.

Vo - specifies the number of words to be cleared. This is a Read-class operand;

however, the operand code A is not permitted. If a value of 0 is used, the op

eration is a "do nothing" instruction which causes a delay of the computer. If a

1 is specified, the end result is the same as that of a mono-code C L operation

V 1 - gives the starting address of the area to be cleared. This may be a constant of

maximum five digits, a tag, a tag with an increment, or a tag with an increment

and a B-register deSignation

Example:

... CLEAR • 6 • CAT+B6-2 ..

Generated:

70100 00006

16036 nnnnn·

Mnemonic Equivalent

RPT • 6 • ADV

5TI • 80 • W(CAT+16-2)

.nnnnn = constant specified by CAT -2

5 of 28
CLEAR

PUT Operation:

w

+ PUT • [the word] • [destination address] ..

The PUT operation places a single word or. half word in a designated storage

address.

Vo - expresses a Read-class· operand; it may be a tag, a constant, or the content of an

address. This represents the source information

VI - specifies the address in memory at which the word or half word is to be stored.

This is a Store -class operand; it gives a constant, a B register, a tag, a tag with

increment, or a tag with increment and B -register designation preceded by an

appropriate operand code. A and Q are not permitted

Since register Q is used for the movement of the word, its original content is

destroyed by this operation. The programer must provide for preservation of

the initial contents if desired

Example a:

+ PUT • L(CAT+86) • U(DOG+B3-2) ..

Generated:

10016 nnnnn*

14023 nnrum

Example b:

Mnemonic Equivalent

ENT • Q • L(CAT+B6)

5TI • Q • U(DOG+13-2)

+ PUT • -0 • W(B6) ..

Generated:

10040 77777

14036 00000

Mnemonic Equivalent

ENT. Q •

5TI· Q •

-0

W(B6)

*nnnnn is an allocated address corresponding: to a tag

6 of 28 PUT

Example c:

.. PUT • 77342106 • W(DOG) ..

Generated:

10030 nnnnn*

14030 nnnnn

ENT • Q • W(Alllllnnnn)·

STR • Q • W(DOG)

*A 11111 nnnn 1s a compiler-generated tag (see Appendix); nnnnn is an allocated address cor ..

responding to a tag

7 of 28

MOVE Operation:

w

... MOVE • [number of words]. [from a~dress] • [to address] •

The MOVE operation moves masses of data from one area to another. The

computer moves the words of information sequentially through the Q register

and may use B 7 for indexing. It does not reinstate the original content to either
7 the B or the Q register; the programer must save and restore such informa-

tion if he wishes to retain it.

Vo - specifies the number of words to be moved; the programer inserts a Read

class operand to indicate the number of words to be transferred; however, the

operand cod~ X, LX, UX, or A are not permitted

VI - indicates the initial address of the area from which data will be moved; it can be

an absolute address, a B register, a tag, or a tag with an increment and/or a

B register designation

V
2

- states the initial address of the area to which data will be transferred; it can be

an absolute address, a B register, a tag, or a tag with an increment and/or a

B register designation

The compiler generates instructions in numbers varying from 2 to lO,depending

upon 1) the number of words to be moved, 2) whether the Vo operand is mnemonic

or not, and 3) whether Bn deSignations appear in VI and/or V 2. If only one word

is moved, the minimum number of'instructions generated is two; if Vo is mne

moniC, the minimum is five instructions. Since the use of B-register designa

tions in operands VI and V 2 changes the number of instructions generated by the

compiler, two examples are given below. The first shows an operation with no

Bn
in either operand VI or V

2
; the second contains a Bn in both op.erands.

Example a:

... MOVE. 4 • CAT • DOG ..

Generated: Mnemonic Equivalent

12700 00003 ENT • 87 • 3

10037 nnnnn ENT • Q • W(CAT+87)

14037 nnnnn STR • Q • W(DOG+17)

[a] 72700 [a -2] a IJP • 17 • a-2

8 of 28 MOVE

Example b:

... MOVE. 85. CAT+84. DOG+87-3 ..

Generated: Mnemonic Equivalent

10004 nnnnn ENT. Q • CAT+B4

14010 [Q -2] STR • Q • L(a-2)

10007 nnnnn ENT • Q • DOG+17-3

14010 [Q -1] STR • Q • L(a-l)

12705 00000 ENT .17 • B5

72700 [a -2J IJP. 17 .a-2

61000 [a +1] JP • a+l

10037 [000000] ENT. Q • W(O+17)

14037 (000000] STI. Q • W(O+87)

. [a J 72700 [a -2 J a IJP. B7 • a -2

9 of 28

INCREMENT Operation:

w

... INtREMENT. [B register] • [increment] ..

The INCREMENT . operation provides a means to either increase the number

contained in a B regjster (Bn) by a fixed increment or decrease the number in

Bn by a fixed decrement.

Vo - specifies the B register to b~ incremented

VI - states the value of the increment by which the content of the B register is to be

altered. The increment is defined by a Read-class operand

Example a:

... INCREMENT • 12. -1 ..

Generated: Mnemonic Equivalent

[a] 72 200 [a + 1] a IJP • 12 • a +1

[a + 1] Next Instruction a + 1 Next Instruction

Example b:

.. INCREMENT·. 15. 32D ..

Generated: Mnemonic Equivalent
4

112 505 00040 I ENT • 15 • 15+32D

Example c:

.. INCREMENT. 13. -12 ..

Generated:

11 003 00000

20 040 77765

Mnemonic Equivalent

ENT. A • 83

ADD. A • X(77765)

ENT. 13. A

10 of 28 INCREMENT

Example d:

.. INCREMENT. 84. L(CAT+6+82) ..

Generated =

11 004 00000

20 052 nnnnn*

12 470 00000

Mnemonic Equivalent

ENT. A • 84

ADD. A • LX(CAT+6+82)

ENT. 14. A

This poly-operation generates a variable number of object language instructions

depending on the nature of the VI operand. A positive constant in VI causes a

single instruction to be generated, a negative constant causes two instructions,

and a symbolic name results in three instructions.

A special case occurs when the VI 'value is: -1. A B register can be decre

mented by one to reach zero, but not through zero; i.e., a B register containing

zero, if decremented by one, remains zero.

The programer should note that the A register is used in some cases and is

not restored. If he wishes to preserve the previous content of register A for

later use, he must provide for its storage in another location.

*nnnnn: The value allocated to the tag CA T+6 by the compiler

11 of 28

Upper- TAG. Operation:

w

... U-TAG • [upper tag name]. [lower tag name, constant, or zero] ..

The U-TAG operation provides the programer with a means of expressing

the upper half of a storage address by means of a symbolic tag. This is the only

method by wnich this may be done. The programer has the option of specify

ing a tag in the lower half of the word also. This operation is useful for such

purposes as the preparation of jump tables and the specification of upper and

lower buffering limits.

Vo - gives the name of the upper tag. A constant is not permitted

V1 - gives the name of a lower tag if desired. U no tag is desired, this must be 0

(see exampleb, below)

Example a:

DOG16 .. U-TAG. CAT4 • MOUSE7 ..

Tags CAT4 and MOUSE7 represent the upper and lower 15 bits respectively of

the storage lqcation represented by the label DOG16. Assume that the following

allocation values are given on an allocation tape:

MOUSE7 .. 563

CAT4

DOG16

.. 53210 .c 3000

The computer word produced as' a result of the U-TAG poly-operation is:

03000 53210 00563.
j

Example b:

RAT 13 .. U-TAG. DCON. o· ..

The tag DCaN represents 'the upper 15 bits of the storage location represented

by the label iRA n3. The V
l

operand of 0 causes the lower half of the word pro

duced to be filled with 00000.

12 of 28 U-TAG

PRINT Operation:

W Vo

.. PRINT. [base address of print buffer ({3)] •

V
1

[jump COndition] ..

The PRINT operation provides the programer with a method of activating the

print out of information on the High-Speed Printer. The operation initiates a

subroutine, PRINTS, which causes the content of a 24D-word core buffer area

(in printer code) with a base address, /3, to be transferred to the High-Speed

Printer as a 120D-character line of print. The PRINTB subroutine is capable

of transferring the content of the buffer area either directly to the High-Speed

Printer (on-line), or to a tape unit for subsequent off-line printing. The pro-

gramer must, however, enable the printer once in his routine before using

the PRINT operation.

{j+23:

Printer

Code
24D-word buffer in core memory
{3 = base address of buffer area

Figure 1. B~fer Area Format

v 0 - specifies the base address of the core memory buffer area. It permits a Read

class operand without an operand code or with operand codes L or U

'"
V

1
- refers to the j -operands; these have the speci~ j-operand meanings of the RJP

operation. The use of this ope rand is optional

Example a:

GOGO .. PRINT. 86 • ANOT ..

13 of 28 PRINT

Generated:

12 706 00000

64 500 nnnnn

Mnemonic Equivalent

ENT. B7 • B6

RJP • PRINTB • ANOT

nnnnn: The address allocated to the PRINT B subroutine entry

Example b:

... PRINT. HAW2 ...

Generated:

12 700 [a]

65 000 nnnnn

Mnemonic Equivalent 0.

ENT • B7 • HAW2

RJP • PRINTB

a : the address expressed by HA W2

nnnnn: the address allocated to the PRINTB subroutine entry

Example c:

... PRINT. L(NUT+84-6). KEY2 ..

Generated:

12 714 [a]
65 200 nnnnn

Mnemonic Equivalent

ENT • 87 • L(NUT+B4-6)

RJP. PRINTI • KEY2

a : the address expressed by NUT _6'

nnnnn: The address allocated to the PRINT B subroutine entry

14 of 28

TYPEC Operation:

w - Vo-

TYPEC • [information to be .typedJ ..

The TYPEC operation causes the content (in octal) of A, Q, any B register, or

any storage location to be typed by the on-line -t ypewriter. In addition to speci

fying that the numerical information in any of the above registers be typed, the

programer may issue special commands to the typewriter. These commands,

used as operands in the special format· described below, may cause the type

writer to do the following three things:

Operand

• ICRI •
• ISpl •
• ITABI •

Performance

Causes the typewriter to do a carriage return

Causes the typewriter to skip a space

Causes the typewriter to move to the next

tabulation .stop

By properly inserting these commands as operands between the operands denot

ing the information to be typed, the programer can control the format (spacing

and lines) of the information typed. The vertical bars are the special control

symbols for indicating that the operand is an order directing the typewriter.

Each of these three special operands must begin with and end with a vertical

bar, and must each be separated by pOint separators from other operands.

- Vo - specifies the operands in the operand position in the order in which they are to

be read and/or executed. These operands are of four types: PI, P2, P3, and P4.

They may appear in any order, depending on the programer's desires or needs.

Point separator s must separate each operand. ..
PI gives the locator of a value to be typed; it. consists of an operand code

ofL, U, or W together with a normal Read operand in parentheses. The

parentheses may contain a tag, B-register designation, or increment, or

any combination of these

P2 gives a tag or label allocation value, without operand code, whj.ch the

typewriter will type

P 3 specifies a constant, of five digits or less, to be typed

15 of 28 TYPIEC

L

Exception: The value, zero, will not be typed if expressed as an operand. Zeros

may be obtained by using the TYPET operation.

P 4 - states a special typewriter command symbol. Valid symbols are

ICRI, Ispl, and ITABI; these command symbols cause the typewriter

to perform a carriage return, to skip a space, and to move to a tabu

lator stop re specti vely

Example:

w

FIRST • TYPEC - U(BETA + 13-6)- 2576 -ICRI. A • Ispi • Q. BETA ..
pI p3 p4 pi p4 pi p2

LAST .. STR - Q • W (GAMMA) ..

The FIRST operation above causes the following equivalent instructions and

codes to be generated (except for the LAST operation):

FIRST .. RJP • TYPEC) .. 00023 • BETA - 6 J .. 00000 • 02576 I .. 77450 • 00000 J .. 00070 • 00000 J .. 77040 • 00000 ~ .. 00000 • 00000.4 .. 00000 • BOA ~

LAST .. STR • Q • W(GAMMA) ..
'.

The TYPEC subroutine checks the first two characters of each of tlie opera

tions following the Return Jump to TYPEC subroutine. If these are 00, it re

places them with 100r 20; if they are 77, it interprets the characters following as

commands to the typewriter (type P 4 operands).

The op~rat~on labeled LAST is not a part of the TYPEC performance. It

illustrates that the programer must follOW the TYPEC operation with an

16 of 28

operation which will not cause the generation of a word of O's in the object pro

gram. ,In other words, the next instruction in the obj ect program must have a

legitimate computer instruction code.

The compiled object program uses the TYPEC subroutine to produce the type

out. In general this poly-operation generates a Return Jump to the TYPEC

subroutine, followed by an operation statement for each operand, directing the

computer either to type the information as specified or to perform the com-

mand given. The TYPEC subroutine stores the contents of the registers it

uses and restores them upon completion of the typeout.

NOTE: Because a 77 in the function code position has special meaning to the

TYPEC routine,Odo not follow a TYPEC statement with a function code

of 77.

17 of 28

TYPET Operation:

w -vo-

.. TYPET • [text and typewriter commandS] ...

The TYPET operation generates a section of object language program which,

when run on the computer, causes the typewriter to type the message given by

the - VO- operand of the TYPET operation. No point separators appear between

the parts of the Vo operand. The commands to the typewriter, viz., carriage

return, space, and tab, intersperse with the text according to the needs and

desires of the programer. These typewriter commands separate from the

text by means of a vertical bar, I , before and after each command:

• text I SP I text I CR I text I TAB I text ..

Exception: Where a space is desired between characters of the typed text, a

space code symbol, l::t., may substitute for the command, I SP 1.* The above ex

ample would then be:

• text l::t. text I CR I text I TABI text ..

The programer can use either symbol for a space. Where a tab follows a

carriage return, the format should be I CR I I TAil

• text l::t. text ICR IITABI text ..

- Vo - specifies the text to be typed, interspersed with the typewriter commands

needed to produce the text format desired by the programer .. The typewriter

commands and their symbols are:

Carriage Return: ICRI

Tab: I TABI

Space: I SP I or l::t.

*Only four consecutive space codes permitted (~~~~)

18 of 28 TYPET

Example:

FIRST .. TYPET • ABC I CR I DE I TAB J ..

.. TYPET • FGH I CR II TAB I I ~ J ..

produces the object language program:

FI~T .. RJp. TYPET

65000 TYPET

tAB C ~

47302 31645

DE ... STOP

22205 17700

RJP • TYPET

65000 TYPET

t F G H)

47261 30545

~ I 6 J STOP

51140 43277

. During the running of the object program, the TYPET subroutine then uses the

above object language program to produce the typewriter printout. ,

Any number of space commands can precede or follow the I CR I and 1 TAB I

commands without affecting the text. Putting more than one space command

between parts of the text has the effect of spreading these parts of the text far-
'. ther apart on the typewritten page.

There is no provision for controlling the case of the characters in the output

message. Alphabetical information is typed in upper case, numerical informa

tion in lower case. The TYPET subroutine, which unpacks the codes taken

'from the object language program, recognizes the end of the message by de

tecting the Code, 77.

19 of 28

w - Va-
• PUNCHC. [parameters for information and/o~ typewriter . commandS] •

The PUNCHC operation causes the content (in octal) of A, Q, any B register,

or any storage ~ocation to be punched by the High-Speed Punch. In addition to

directing that the numeric information in any of the above registers be punched,

the programer may write three special command symbols. These three sym

bols are typewriter commands which, when the punched paper tape is on a

typewriter, will direct the typewriter to perform certain carriage operations.

These operations control the format of the typewriter typeout; they include:

Operand

• ICRI •
• 15pI •

• ITABI •

Performance

Causes the typewriter to do a carriage return

Causes the typewriter to skip a space

Causes the typewriter to move to the next

tabulation stop

By properly inserting these commands as operands between the operands denot

ing the information be typed, the programer can control the forlnat (spacing

and lines) of the information typed. The vertical bars are the special control

symbols for indicating that the operand is an order directing the typewriter.

Each of these three special operands must begin with and end with a vertical bar,

and each must be separated by point separators from other operands.

- Vo - - specifies the operands in the operand position in the order in which they are to

be read and/or executed. These operands are of four types: PI,'Pt, p3, and P4.

They may appear in any order, depending on the programer's desires or needs.

Point separators must separate each operand.

PI gives the locator address of a value to be typed; it consists of a normal

Read-class operand

p2 gives a tag or label allocation value, without operand code, which the

typewriter 'Will type

20 of 28 PUNCHC

Example:

L

FIRST ..

P 3 specifies a constant, of five digits or less, to be typed

Exception: The value, zero, will not be typed if expressed as an operand.

Zeros may be obtained by using the PUNCHT operation.

P 4 - states a special typewriter command symbol. Valid symbols are

ICRI , Ispl, and ITABI; these command symb,ols cause the type

writer to perform a carriage return, to skip a space, and to move to a

tabulator stop respectively

W - v: -0

PUNCHC • Q • ICRI. L (ALPHA + B3) • ITABI • 50 • Ispi • INST 4

pI p4 p1 p4 p3 p4 p2

NEXT .. ENT • A • U (GAMMA) ..

The FIRST operation above causes the following equivalent (in some cases, incomplete)

operations to be generated:

FIRST .. RJP • PUNCHC J
.. 00000 • 00000 J
.. 77450 • 00000)

.. 00013 • A~PHAJ

.. 77510 • 00000 I

.. 00000 • 00050 J.

.. 77040 • 00000)-

.. 00000 • INST4)

The PUNCHC subroutine checks the first two characters of each of the operations following

the Return Jump to PUNCHC subroutine. If these are 00, it replaces them with 10; if they are

77, it interprets the characters following as commands to the typewriter (type P4 operanc~s).

The operation labeled NEXT is not a part of the PUNCHC performance. It illustrates that

the programer must follow the PUNCHC operation with an operation which will not cause

21 of 28

the generation of a word of O's in the object program. In other words, the next instruction in

the object program must have a legitimate computer instruction code.

The compiler object program uses the' PUNCHC subroutine to produce the typeout. In general

this poly-operation generates a Return Jump to the PUNCHC subroutine, followed by an

operation statement for ~ach operand, directing the computer either to type the information

as specified or to perform the command given.

NOTE: Because a 77 in the function code position has special meaning to the PUNCHC

routine, do not follow a PUNCHC statement with a function code of 77.

22 of 28

PUNCHT Operation:

w -~-

... PUNCHT • [text and/or typewriter commands] ..

The PUNCHT operation causes the High-Speed Punch to punch the text(s) which

the programer has written in the - Vo - operand position of the PUNCHT opera

tion. It also punch~s the codes for SP, CR, and TAB, which con

trol the typewriter carriage movements during a listing of the punched tape.

The programer controls the format .of the typewriter listing by interspersing

the carriage control symbols between his texts as he desires. No point sepa

rators appear between the parts of the - Vo - operand. Each carriage control

symbol must have a vertical bar, I, before and after it.

Exception: Where a space is desired between characters of the typed text, a

space code symbol, 6, may substitute for the command, 1 spl~

Example: a.... PUNCHT • text Ispi text ICRI text ITABI text ..

b." PUNCHT • text 6 text ICRI text ITABI text ..

Where 2 carriage control symbols appear consecutively, each one must have

vertical bars before and after it.

Example:

.. PUNCHT • text ICRI ITABI text ..
4

- Vo - - specifies the text to be typed, interspersed with the typewriter commands

needed to produce the format desired by the programer.

If the text is' too long to put into one LO PUNCHT operation, .suc~essive opera

tions can be written. Labels on these operations are optional.

Example:

FIRST .. PUNCHT • PAY 6 TAX ICRI ON ITABI •
.. PUNCHT • OCT Ispi 15 \eRI ..

*Only four consecutive space codes permitted (6.6.6.6.)

23 of 28 PUNCHT

The operations and codes generated in the running program by the above poly-operations
\

are:

FIRST .. RJP • PUNCHT

65000 PUNCHT

l' P A Y II

47153 02504

T A X ~ 0

01302 74503

N STOP

06517 70000

RJP • PUNCHT

65000 PUNCHT

OCT II +
03160 10457

1 5 ~ STOP

52524 57700

When the running program is subsequently performed, the PUNCHT subroutine then causes

the High-Speed Punch to punch out octal codes above.

Any number of space comm~nds can appear consecutively anywhere in the text. The effect is

to vary the spacing between parts of the texts on the hard copy.

There is no provision for controlling the case of the characters in the output message. Alpha

betic ihiormation appears in upper case, numeric in lower case. The PUNCHT subroutine, ...
which translates sequentially the codes taken from the object language program, recog-·

nizes the end of the message by detecting the code 77.

24 of 28

TYPE-DEC ima~ Ope ration:

w - Vo-
.. TYPE-DEC • [information to be typed] ..

The TYPE-DEC operation causes the content (in decimal) of A, Q, any B register,

or any storage location to be typed by the on-line typewriter. In addition to

specifying that the numerical information in any of the above registers be typed,

the programer may issue special commands to the typewriter. These com

mands, used as operands in the special format described below, may cause the

typewriter to do the following three things:

Operand

• I CR I •
• I SP I •
• ITAII •

Performance

Causes t~e typewriter to do a carriage return

Causes the typewriter to skip a space

Causes the typewriter to move to the next tab

ulation stop

By properly inserting these commands as operands between the operands de

noting the information to be typed, the programer can control the format

(spacing and lines) of the information typed. The vertical bars are the special

control symbols for indicating that the operand is an order directing the type

writer. Each of these three special operands must begin with and end with a

vertical bar, and must each be separated by point separators from other operands.

- Vo - specifies the operands in the operan~ position in the order in which they are to

be read and/or executed. These operands are of four types: pl, p2, p3, and p4.

They may appear in any order, depending on the programer's desires or needs.

Point separators must separate each operand

pI - gives the locator of a value to be typed; it consists of ·.an operand code to

gether with a normal Read operand in parentheses. The parentheses may

contain a tag, B-register designation, or increment, or any combination

of these

p2 - gives a tag or label allocation value, without operand code, which the

typewriter will type

p3 - sPecifies a constant of five digits or less to be typed

25 of 28 TYPE-DEC

L

'Exception: The value, zero, will not be typed if expressed as an operand.

Zeros may be obtained by using the TYPET operation.

p4 - states a special typewriter command symbol. Valid symbols are I CR I,
Ispl', and ITABI; these command symbols cause the typewriter to perform

a carriage return, to skip a space, and to move to a tabulator stop respec

tively

Example:

W -va -
FIRST .. TYPE-DEC - U(BETA+B3-6) - 2576 -lCRI- A -ISp I- Q - BETA ..

pI p3 p4 pI p4 pI p2

NOTE: Because a 77 in the function code position has special meaning to the

TYPE-DEC routine, do not follow a TYPE-DEC statement with a func

tion code of 77.

26 of 28

PUNCH·DEC imal Operation:

w - Vo -
.. PUNCH-DEC. ~arameters for information and/or typewriter command~ ..

The PUNCH-DEC operation causes the content (in decimal) of A, Q, any B reg

ister, or any storage location to be punched by the High-Speed Punch. In addition

to directing that the numeric information in any of the above registers be punched,

the programer may write three special command symbols. These three symbols

are typewriter commands which, when the punched paper tape is on a type

writer, will direct the typewriter to perform certain carriage operations.

These operat~ons control the format- of the typewriter typeout; They include:

Operand

.1 CR I.

.1 5P I.
·ITABI·

Causes the typewriter to do a carriage return

Causes the typewriter to skip a space

Causes the typewriter to move to the next tab

ulation stop

By properly inserting these commands as operands between the operands de

noting the information be typed, the programer can control the format (spacing

and lines) of the information typed. The vertical bars are the special control

symbols for indicating t~at the operand is an order directing the tyPewriter.

Each of these three special operands must begin with and end with a vertical

bar, and each must be separated by point separators from other operands.
I

- V 0 - specifies the operands in the operand position in the order in which they are to

to be read and/or executed. These operands are of four types: pl, p2, p3, and

p4. They may appear in any order, depending on the programer's . desires or

needs. Point separators must separate each operand.

pI - gives the -locator address of a value to be typed; it consists of a normal

Read-class operand

p2 - gives a tag or label allocation value, without operand code, which the

typewriter will type

27 of 28 PUNCH-DEC

L

p3 - specifies a constant, of five digits or less, to be typed

Exception: The value, zero, will not be typed if expressed as in operand.

Zeros may be obtained by using the PUNCHT operation.

p4 - states a special typewriter command symbol. Valid symbols are I CR I,
I SP I, and \TABI j these command symbols cause the typewriter to per

form a carriage return, to skip a space, and to move to a tabulator stop

respectively

Example

W

FIRST .. PUNCH-DEC - Q - I CR I -
- Vo-

L(ALPHA+B3) - ITAB ,- 50 -I SP I- INST 4 ..
pI p4 p1 p4 p3 p4 p2

NOTE: Because a 77 in the function code position has special meaning to the

PUNCH-DEC routine, do not follow a PUNCH-DEC statement with a

function code of 77.

28 of 28

Operation

EQUALS

MEANS

RESERVE

COMMENT

DECLARATIVE OPERATIONS

i of i

2

4

6

7

DECLARATIVE OPERATIONS

The programer frequently wishes to supply to the compiler certain information for use in

the compiling process which does not generate an instruction. The information may be in

volved in subsequent operations in constructing a machine-code instruction; or it may be

substituted for already existing data or information, thereby extending the scope and power of

the operation. This is especially true where, by changing one operand in an operation, the

operation may perform a variety of similar tasks.

Declarative operations, therefore, are operations which do not result in the generation of

instructions in the object program; they rather 1) give information about relationships, such

as equality between data and/or symbolic names, 2) make assertions, and 3) define a pro

cedure. Declarative operations state facts andprovide information which the compiler either

utilizes, or stores and later incorporates into the object program instructions it generates.

In all cases, the programer must state the declarative operation at some place ahead of the

action operation which is to use it. These operations can intermingle with action operations

anywhere in the program, provided they comply with the above priority restriction. It is often

worthwhile for the programer to place the declarative statements on a separate PROGRA.M

tape or punched cards, to be read into the compiler before the main program.

1 of 7

EQUALS Operation:

w

[unknown tag] .. EQUALS. [known val~e: lab/tag ± i, or a constant].

The EQUALS operation establishes an equivalence between one expression, L,

whose allocatiori value is unknown and another expression, V
O

' for which the

allocation value is known. This provides the programer with a versatile al

location aid whereby he can transfer an allocation value from one label or tag to

another tag. Since this operator is concerned solely with allocation, a compiler

function, it generates no instructions in the internal program.

This operation permits addition, +; subtraction, -; multiplication, () (); or

division, /, with known values. A term in the arithmetic process may be a

constant or a tag (± increment is permitted); a factor is an expression made up

of terms connected by + or - signs; it corresponds to an address. Computations

progress sequentially upon/factors, with the t~rms in each factor accumulated

separately before multiplication and/or division. Thus the computations are

essentially multiplications and/or divisions of addresses

L gives the name of the unknown tag to which a numeric value is to be assigned

- Vo -' - gives: a) the constant which the programer wishes to assIgn, or b) the label

or tag whose value is known, with or without an increment, or c) a combination

of labels, tags, and/or constants in an arithmetic relationship. Each value may

consist of one or more of the following: 1) a number; 2) a label or tag; 3) a

numeric increment; 4) a numeric decrement; 5) a tag with increment; or 6) a tag

with decrement. Two or more of these may be joined together by either succes

sive multiplications or by successive divisions, but not a combin~tion of the two

processes. The expression may also be an accumulation of two or more addi

tions and/or subtractions of known values. In expressions combining addition or

subtraction with either multiplication or division, the addends or subtrahends are

treated as increments or decrements to the factor with which they are immedi-

a.tely associated

2 of 7 EQUALS

Examples

NUI-4/CHOP-5 + COl

(NUI-4) serves as the dividend, and CHOP·5 + COl are combined into a

single divisor value. Regardless of how ... ~ - is expressed, a single absolute

allocation value for the entire expression must be known by the compiler. The

compiler stores this value for later use when the unkno,wn tag, L, is referenced.

B-register designations are not permitted in the - Vo - operand position.

Example a:

CAT .. EQUALS • DOG + 2 • H'ORSE ..

(e.g., if DOG = 300 and HORSE = 100; CAT = 202.)

Example b:

'SR3 .. EQUALS • SR4· 33D + 44 + RATS ..

'E~mple c:

TMAX .. EQUALS • 45600 ..

, Example d: '

PECE .. EQUALS • (DOVE + 2) (MANY) ..

Example e:

CRUMP .. EQUALS • RACER-4/BOOL 15 ..
. l '

In this example, the computer subtracts 4from the value represented by RACER,

divides this result 'by the value allocated to BOOL, then divides this result by

. 5; it then assigns this value to CRUMP., The EQUALS operation thus has the
.....

power to perform arithmetic computations within the compiler.

Note: In cases of multiplication, if the product exceeds five characters, an

,error printout occurs.

In cases of diviSion, if the quotient is not an integer, an 'error printout

occurs.

3 of 7

MEANS Operation:

L r arbitrary, name] L to be replaced

w

MEANS •
Vo

[
mnemonically expressedl ..
input/ output information J

The MEANS operation replaces an arbitrary name in the label, L, position with

input/output information expressed in mne monics. It pe rmits programs to be

written with complete flexibility concerning the assignment of channels to

external equipment. By holding the assignment of external equipment open until

needed, the programer can at that time determine which of the specific

channels are available for use. He then replaces the general assignment

with the one he desires by entering a MEANS statement in the La program

prior, to the operation performing the input/output function. The computer

then takes what is in -Va - and replaces in the subsequent I/O operation the

value assigned to L in the MEANS operation. Thus the programer can assign

an external equipment to any Input/Output or Function channel. La operations

which may contain replaceable general operands include: STR, JP, TERM, IN, OUT,

EX-COM, EX-COM-MW, SIL-EX,RIL-EX, ECDM, AND DCDM.

This operation does not generate any internal compiler instruction; it makes

the indicated substitution, then drops out. The Input/Output operation(s) sub

sequently involved in the transfer then function as usual, using the substituted

operand.

The MEANS operation is applical?le only to the assignment of input/output

parameters. It cannot be used interchangeably with EQUALS, nor can EQUALS

be used to perform the task .assigned to MEANS.

L gives an arbitrary name to be replaced. This has normal label format; Le.,

there are no special restrictions regarding the symbols entered in L

Yo states the specific input/output assignment to be substituted for L. Entries in

this operand position are presently restricted to information regarding Input/

Output specifications. They may consist, therefore, of any unique external

eqUipment aSSignment, e.g., C12ACTIVEIN; C5; or a function constant

4 of 7 MEANS

Example MEANS operations:

a) LOI .. MEANS • C12

b) PITCH .. MEANS • C15ACTIVEOUT

c) CUT .. MEANS • CO

Examples of Input/Output operations with which the foregoing examples may be

used:

a) .. EX-FCT • LOB • 426

b) .. JP • POST • PITCH

c) .. OUT • CUT • W(SNAP) • MONITOR

d) .. TERM • LOB • INPUT

Note: MEANS operations appear either within an LO program or as separate

input under a PROGRAM header. In both cases the MEANS operations

become a part of the compiler's Ll table storage.

5 of 7

RESERVE Operation:

w
.. RESERVE •

Vo
[numbe r of wordS] ..

The RESERVE operation sets aside a block of memory locations in the running

(object) program. It does so by adding the number expressed by the V 0 operand

to the current allocation address and storing the next generated instruction at

the incremented address. Thus the reservation of space begins at the location

following that of the· previously generated instruction and includes the V 0 num

ber of continuous locations. The compiler does not clear these locations; it

merely by-passes them during allocation. Some of the special reasons for

reserving such an area include:

1. Setting aside a specific area for the storage of parameters

2. Leaving an area open for working storage

3. Reserving space, e.g., at the end of the program, for expansion pur

poses

4. Subsequent insertion of other program instructions

Vo specifies the number of words to be reserved. The programer may enter only

a constant in this operand location·

Example:

CAT .. RESERVE • 4 ..

Result:

[a] .. [preViOUSlY generated instrUCtion] ..
CAT .. ------

[a +5] ~ext generated instruction] ..
The use of a label to identify the first word of the reserved area permits the

referencing of the entire area or of any word location in it. The programer

may. gain access to any word of information in the area by referencing the label,

OJ;" the lal?el plus the increment required to designate the desired word. The

operation; ENT. A. W(CAT+3); for example, reads in the A register the content of

the fourth word in the reserved area in the example above.

6 of 7 RESERVE

COMMENT Operation:

.. COMMENT. [message] #

The COMMENT operation permits the programer to place a message(s) within

the input program to provide added information for edited records of the prob

lem definition. This operation is declarative; it has no dynamic meaning to

the input language.·

Example:

.. COMMENT • THIS 6 SUB·PROCEDURE 6 CONTAINS II

TYPE·X 6 LISTING 6 TECHNIQUES)l

• COMMENT is not a true poly-operation since it does not generate machine

instructions

7 of 7
COMMfNT

CS-I INPUT

Input to the CS-1 Compiler (programs, allocations or corrections) is in two media; paper tape

and aO-column cards. The user selects the input medium available.

Paper tape input is in standard paper tape codes. (FD, ASCII, FLEX, etc.). Card input

is on standard aO-column cards. An Off-Line Card-to-Tape process transfers the data from

cards to magnetic tape; therefore, the actual input to the computer is via magnetic tape. In

addition to the input media types heretofore mentioned, certain data may be manually entered

via console registers during compilation runs. This consists only of minor entries of data

such as selecting outputs.

The programer uses a uniform set of symbols as separators in all coding. See Table 1

Separator interpretation differs between card and paper tape input media as described in their

respective subsections.

Symbol ..
TABLE 1. CS-l CODING SEPARATORS

Coding Significance

Delimits the statement. Must always precede the statement operator. Must

pr,cede notes; omit if notes not given.

~ Signifies end of operation. Must precede header operations.

• Separates statement components

() 1) Indicates contents of a storage location

()()

/

+

A

I

2) Specifies data unit subname or subscript

Separates item from word or field in a data name.

Specifies multiplication

Specifies division

Specifies addition

Sp~cifies subtraction

Specifies space

Special control character

Input to CS-1 (program, allocation, or correction) requires an initial header operation for

identification purposes. A header consists of the program name in the L coding position, a

header-type operator in the W position and two identifying operands, V 0 and V l' in which the

1 of 17

programer specifies his name and the date. The examples below illustrate four typical

headers:

L W Vo VI
~

COUNTONES .. PROGRAM - SMITH -100CT63 iI
.JI

COUNTO~ES .. ALLOCATION - SMITH -100CT63 ~

.4 COUNTONES .. CORRECT-L1-SMITH_100CT63~

~ COUNTONES .. SYSTEM-SMITH-100CT63 ~

CS-1 requires a limited amount of input arrangement. Information to the compiler always

precedes the routine being compiled. The programer usually places information to the

compiler under a C-CONTROL header. Subordinate to the C-CONTROL header are minor

headers followed by their respective ope-rations. Independent contr.ol operations also follow.

The C-CONTROL header merely categorizes control information to the compiler under a

single header; its use is optional since the minor headers and independent control operations

can be given independently. (See COMPILER CONTROL OPERATIONS.)

The extent of compiler control as CS-l input is optional. The programer may control all

compiling activity by paper tape or cards, or he may instruct the compiler operator to control

much of the compiling at the console.

The routine or routines, being compiled requir~ one of four headers, PROGRAM, SYSTEM,

SYS-DD, or SYS·PROC. The PROGRAM header identifies a standard Computer-Oriented

routine for compiling. The SYSTEM header ide'ntifies a Problem-Oriented routine for com

piling. CS-l requires the SYSTEM header whenever it is to select data designs and/or pro

cedures from a User Library. It then compiles these'with the LO program. ,,£:S-1 permits

Problem-Oriented input routines with initial headers of SYS-DD or SYS·PROC only welen

no User Library data is required.

The correcting process requires a separate correction run. The' correction tape or cards

used contains pairs of input operations for the purpose of making corrections to the LO input

routine(s). The, header operation for this tape, COR~~CT-L1, requires a label and two

operands (programer's name and current date). The programer can receive a corrected

La on either paper tape ori magnetic tape. The corrected La tape is then used as input in sub

sequent compiling runs. See CS-l OUTPUT.

2 of 17

A LIBRARY header informs CS-l of an oncoming library manipulation or library listing re

quests. Nothing must precede this header. Data following this header inserts, replaces, or

deletes library information. In addition, the data may also call for listings of data designs,

procedures, or the library directory. (See CS-l LIBRARIAN.)

The following skeleton program samples illustrate typical CS-l read-in arrangement.

Sample 1. (Compile a simple routine)

Read-in-orcler

1.

2.

[label] .. ALLOCATION • [programer's name] • [date]

.. (Ref. ALLOCATION) ..
[label] .. PROGRAM. [programer's name] • [date] ...

Mono-operations and Poly-operations
(Ref. COMPUTER -ORIENTED OPERATIONS)

.. ..

.. END-DATA (for card input only)

,
Instructions to compiler operator

1) Read-in LO

2) Output types desired

3 of 17

Sample 2. (Correct a simple routine)

Read-in order
[label] • COR.RECT- L1 • [programer's name] • [current date]

1. (Ref. PROGRAM CORRECTIONS)

[label] .. PROGRAM • [programer's name] • [date]

2. .. > Mono-operations and Poly-operations
(Ref. COMPUTER-ORIENTED OPERATIONS)

••
.. END-DATA (for card i~put only)

Instructions to compiler operator

1) Read-in LO

2) Outputs desired

4 of 17

Sample 3. (Compile single routine under compiler control)

Read-in oreler

1.

. 2.

3.

[label] .. C-CONTROL • [programer's name] • [date]

... OUTPUTS. [n] • [nn] • [nnn]

.. . ALLOCATION

(Ref. ALLOCATION)

[label] .. PROGRAM. [programer's name] • [date]
Mono-operations and Poly-operations

(Ref. COMPU;rER-ORIENTED
OPERATIONS)

.. END-DATA (for card input only)

5 of 17

Sample 4. (Compile a System Procedure)

Read-in order
[label J .. C-CONTROL • [programer's name] • [date]

.. OUTPUTS • [n] • [n] .
1. (Ref. COMPILER CONTROL OPERATIONS)

.. ALLOCATION

BASE .. 30500

[label Y] .. SYS-PROC .. LOC-DD END-LOC-DD .. PROCEDURE • [aJ 2. .. (Ref. DATA DESIGN OPERATIONS and

CS-1 LIBRARIAN) .. END-PROC • [a] .. PROCEDURE • [y] END-PROC • [y]

6 of 17

Sample 5. (Compile a System Routine)

Read-in order
[label] .. C-CONTROL • [programer's name] • [date]

.. ,OUTPUTS • [n] • [nn J • [nnn J

.. ALLOCATION (Ref. COMPILER CONTROL
1.

BASE .. 2000 OPERATIONS)

ENTRANCE .. [8J

[label] .. SYSTEM • [programer's name] • [date] .. SEL-DD • [label]

2. ..- (Ref. CS-1 LIBRARIAN) .. SEL-SYS • [keyJ [non-unique labels only J .. SEL-PROC • [label, key J • [non-UniqUe labels Only]

[label] .. SYS-DD .. (Ref. PROBLEM-ORIENTED OPERATIONS and

~ CS-1 LIBRARIAN) END-SYS-DD

[label 8 J .. SYS-PROC .. LOC-DD
(

3. END-LOC-DD .. PROCEDURE • [a] .. (Ref. DATA DESIGN OPERATIONS and ... END-PROC • [a] CS -1 LIBRARIAN) .. PROCEDURE • [8] END-PROC • [8]

7 of 17

Sample 6. (Replace a data design and insert a procedure in a Us~r Library)

Read-in order

l.

2.

3.

[label] .. LIBRARY • [programe r' s name] • [date]

(Ref. CS-1 LIBRARIAN)

[a]

[a]

.. RPL-DD • [a]. [programer's name] • [date 1

.. INS-PROC· [a, key] • [programer's name J • [date]

... SYS-DD

(Ref. PROBLEM-ORIENTED OPERATIONS and

CS-1 LIBRARIAN)

... END-SYS-DD

... SYS-PROC .. LOC-DD END-LOC-DD (Ref. DATA DESIGN OPERATIONS and

~ PROCEDURE • [8,J CS -1 LIBRARIAN)
... END-PROC • [8]

Note: No C-CONTROL operations are required since librarian operations direct compiler
action.

8 of 17

PAPER TAPE INPUT

Paper tape is a meQium of input for program, allocation, or correction data to the CS-1

compiler. Standard code characters provide format control. Input requirements permit

either upper- or lower-case characters for all input with the exception of separators. Upper

case characters, however, are recommended for all input except those that specifically

require lower-case characters (refer to TABLE II.)

TAl3LE II. EQUIVALENT INPUT FORMAT CODING SYMBOLS-PAPER TAPE INPUT

Software Software Flexowriter Field Data Symbol Field Data ASCII
name Symbol Codes Substitution Codes Codes

Carriage Return ~ 45 04 03 15 12

Shift Up t 47 01 -
Shift Down J 57 02 -
Tab .. 51 Special CJ 76 137

Point Separator • 44 Apostrophe , 72 52

Double Period •• 57 42 42 75 75 56 56

Space ~ 04 05 40
I

Comma , 57 46 47 56 54

Vertical Bar I 57 50 47 Exclamation r 55 41

Plus + 57 54 47 42 53 '.
Minus - 56 41 55 ,

9 of 17

I

;
:

A double lower case period in the L coding position indicates the end of tape read-in. This 1s

a special control symbol used only with paper tape to terminate input. Therefore, each paper

tape begins with a header and ends with a double-period end symbol.

The following oxamples illustrate the basic format for program operations and the common

usage of separators therein.

L w N

CAT4 .. ENT. Q • W(RAT3-2+16). QNEG .. RATCHECK~

.. RPT· 36 • BACK.4

Notice that it is essential to use a straight arrow before each operator even when a label is

not given. The second straight arrow is used only when notes are given. The point symbol

separates the components of the statement. Parenthesis symbols indicate contents of a stor

age location modified by an operand code. Also within the parenthesis symbols are data unit

subnames and subscripts or multiplication factors. Spaces are permitted throughout the opera

tion. The curved arrow indicates the end of the operation, or of the notes if present.

Coding forms are used to prepare CS-l LO programs for paper tape input. Figure 1 is

a typical coded program for paper tape input preparation.

10 of 17

TITLE COuNT ONES

PAGE of CODING FORM PLT I EXT 786 MS 120

DATE IS OCT 63

UNIVAC CS-l PROORAMER WALEEN SMITH

LABEL 1 OPERATOR I OPERANDS AND NOTES
f4' H[AOER TYPE

COUNT ONES .. PROGRAM · SMITH • 10 OCT &3

CTONES IT .. CL · 82 • -- SET WORO INf)£X ..JI

CTONES 1 .. ENT · 81 • 35 - SET SHIFT IN[)EX" .. CL · A • - SET SU"., ~ TO ZERO'" .. ENT · (J • W{WORO (1 + 8 Z) .J
CTONES 2 .. LSH · f) • I • QPOS - TEST EACH BIT FOR 0 OR 1 ./ .. ADO · A • 1 - INeRE A 5£ SUM IF 1 mUNO .;I . .. BJP · 81 • CTONES Z./ .. STR · A • W(SUM g + 821 ~ SUM STORAGE .;I

.. l3SK · 82 • NWOROS ./ .. JP · CTONES' • STOP 5 CONTINUE COMPUTING. SuMS ~

CTONES 3 .. JP · CTONES 3 • STOP - ENO

•• .. · .. · .. · .. · .. · .. · .. · .. , · .. • .. · .. · _.- .. · .. · ~..:. -

Figure 1. Typical Coded Program for Paper Tape Input Preparation

CARD INPUT

Punched cards are a medium of input to the CS-1 Compiling System. Data are first key

punched on standard 80-column cards. Computer input is via magnetic tape (card-to-tape

conversion) or direct card read-in.

Basically the coding format is similar for either card or paper tape input. A four-digit card ,
number is sequentially ~ssigned to each operation and insert corrections are given two addi-

tional digit assignments. The card coding form provides space for the card and insert

numbers; it also provides space for a four-character deck identifier on each coding sheet.

This alphanumeric deck identifier is unique for each program.

Interpretation of coding separator symbols for card input is given in TABLE III.

TABLE III. CODING SYMBOLS - CARD INPUT

Symbol Key Rows Punched
-.. (start state ment) 8 (none) .. (end statement) 0 4, 8

~ S (none)

I CD 11,3, 8

• CD 11, 4, 8
,

CD (0, 4, 8

+ CD 12. 3, 8

, CD 0, 3., 8

) G) 12, 4, 8
4
1

CD / ' 0, 1

+ CD 12

- @ 11
I

12 of 17

The straight coding arrow is interpreted according to its format position; it represents a

SKIP Key at the beginning of a statement and three dashes at the end of a statement. The

point coding separator is represented by the "*" key in all card input. (See Figure 2).

CARD CONTROL: The END-DATA operation indicates the end of a data-read-in segment.

This stops the read-in process and allows the computer operator to initiate compiling action

on the segment of input. (See Figure 3).

a .. PROGRAM • KRAK • 2FE863 /3 .. PROGRAM. KRAK • 3FE863 END-DATA .. r .. PROGRAM. LARRY • 2JAN63 • END-DATA .. fl .. PROGRAM • LKRAK • 4JULY63 .. END·DATA • •
-> .. END-DATA

Figure 2. Single Program Input Figure 3. Multiple Program Input

13 of 17

CODING FORMA T: The following examples illustrate the basic coding format for card input

with typical operations:

DECK ID.

Ie H 3 1\
Card Ins L W ~ ~ ~ N

Ie H 3 11 0016 eAT4 .. ENT • Q • W(RAT3- 2+86) • QNEG .. RATCHEC~

"Ie H 3 11 0017 .. RPT. 36 • BACKJI

The programer should notice that identical deck identifiers are punched with each operation

of a given program, as indicated in the above rectangles. This identifier is therefore sp~ci

fied only once per coding sheet. It is essential to use a straight arrow before each operator

even when a label is not used.· The second straight arrow is used only when notes are given.

The point separates components of the statement. Parenthesis symbols indicate contents of a

storage location modified by an operand code. Also within parenthesis symbols are data unit

subnames and subscripts or multiplication factors. Spaces are permitted throughout the

operation. The curved arrow indicates the end of the operation, or of notes if present.

Figure 4 is a typical coded program for card input preparation.

14 of 17

.....
c.n
o
I-+>

.....
~

CARD INS LABEL
" 00 a I SOIlCHEI<' I QO ooZ I lUST 0

iii 0 o oj
II ... 00 oj. li
II~ 00 05 : ;j

00
. I I

0·6 ' Ii 'l!C

II~ 00 o17li i
lQo 0811 I' i

i

7~
cnQ::
00

La..

O(!)
c:(z
>-0
ZO
:::>0

1
00 [09' i [;

() 0 a , 0

11')0 0'1,1 ;1

... 0 0112,

~o 0,1 !3 11 : ;.

~o 01 it , I L
~o 0 151 I I

I

I 00 116:! ; I

00[' :T' ; 0:

I:) 0101 ' 8
It) 010 I 'g

... °iOiZiO

~,Olo,l:'
~ OiaZ Z

~ 0,0.2 .3 I

O'O:Z -I

0,0;zI5

~~
I

I<) 0:0'21
f-- f--~

~ ;002 8

u'o'OZ 9

li: i '
~l.
a

Ii.
-'01' .•

SPSIl 0

SPSR I

SPSR 2

SPSR .3

SPSR 4-

SPSR 5

I .. ---... -... ...
...
...
..
.~
~ -..

OPERATOR ! OPERANDS AND NOTES
.... 0'. ,,, ..

PR06RAH • CLYDE ALLEN . Z4-FE863

eNr • 85 • 0 -- ~ESTORE 85#

JP · -c-- ENTRIINCE i
5TR • BT • L(SPSq 3) -- srO~E 6ASE AODRESSi

ENT · .4 · X 87-1 - DECREASE 84SE ADDRESS 6Y 2 "

ENT · 87 • U(87) -- REPEAT COUVT TO 87 ~
STR · 4~ • L(REST 0))

ENr · 85. J)
ENT · Q · LV (86) -- IDENTIFIER TO t)~

STR · -4 · i(SPS~ 2)- SET ADDRESS FOR REP£' AT INSTRUCTION j

RPT · 87. -40DB~

ENT · Y-Q • W(8S) . AZERo JI
JP · JUSTO -- MISS EXIT '" -ENT · Q · (J (0) -HIT COUNT TO Q,/

SuB · Q • 47 COUNT tV/NUS REPE4r COUNT)

HUL · J,J

AOD · Q · L(SPSR 3).)

STI? · Q . l (SPSR 5) - STORE NEW BASE ADDRESSI

suB · Q · Ii.
STR · Q . L (SPSR 4) -- SET NEW SEARCH ,;

ENT · Q W{86 +1) -- NEW 10 TO ()~ !
ENT · Y-Q. W(O) . 4IERO ,;

JP · SP51lS -+MISS ON SEARCH)

~=d EIIT · lJJ • L(SPSR I.) --HIT ADDRESS TO 87 j

Eta · 85 • L(IlE5T 0)) -

./p · L(87+IJj II
----1i

CL · 4) ;\
JP · .1

SPSR I; .,

· I
I

· I

· -f · · -j

Figure 4. Typical Coded Program for Card Input Preparation

CARD FORMAT: The card formatutilizest~epunchcolumns as follows: 1-4, deck identifier;

5-8, card number; 9-10, insert card no.; 11-20, label; 21-79, statement and notes; and 80,

overflow card character (OV). The statement and notes start at column 11 for the overflow

cards (see Figure 5).

1+--+4 5+-+8 9 -10 1144------.~ 20 214 .. ----------.~ 79 80

Deck Card INS LABEL STATEMENT - - - NOTES OV Id. No.

Figure 5. Card Format

The DECK ID. and CARD NO. each require four alphanumeric characters. The keypunch

operator duplicates a unique DECK ID on each card. CARD NO. 's are sequential throughout

the deck with the exception of insert and overflow cards; numbering starts with 0001. The

INS (insert) number provides for insertions to the deck. An insertion card has the same CARD

NO. as its preceding card and contains a non-zero two-digit insert number. In all other

cases the INS number is blank. A triple dash (- - -) always follows the statement, with or

without notes (see Figure 6).

Example:

DECK ID.

CH34

CH34

CH34

CH34

CH34

CARD NO.

0092

0093

0093

0093

0094

INS

01 . (first insert card). .

02 . (second insert card). .

Operations containing q'lore than 59 characters in their combined Statement and Notes area

require .the use of an overflow card(s); two overflow cards are permitted. A "1" in column 80

indicates an overflow condition; a blank eightieth column indicates no overflow. An overflow

card contains the same card number as its preceding card and a 2 or 3 placecl in the eightieth

column. The keypunch operator handles overflow conditions. The programer need not de

termine whether or not his statement will fit on one card.

Example:

DECK ID

CH44

CH44

CH44

CH44

CH44

CARD NO.

0119)

0120
0120

0120

0,121

· .. (data overflows this card)

· . . (first card receiving overflow). .

· . . (second card receiving overflow.

16 of 17

OV

(blank)

1

2

3

(blank)

The column-skip feature on the keypunch provides a convenient means to bypass unused col

umns reserved for the Label. The keypunch operator begins a label with column 11 and skips

any unused columns between the end of the label and column 21. If no label is present, the

operator hits the SKIP key and the card is automatically positioned at column 21.

The statement begins at column 21 on the first card only and at column 11 on all overflow

cards. A triple dash separates the Statement from the Notes. The REL (release) key ends

each operation.

~333000G OTON£SZ LSH-QW1-QPOS---TEST EACH BIT rOR 0 OR 1
I I I I I 1I11 II I

II I III 1111 II II
OOOGIIIOO~UIOooloooaolooooaOOGOIDOOIOIIOOOOOOOOIOOOOOIOOOOCOOOOOOOOJoonooooooooo
1 7 1 • 5 i I I ~ lr 11 11 11 Ii 15 I, ~I II Ii l. 71 11 Zll: ;~ :. 2; 21 a :to 11 ;, lj ;1 :is l~ :1 ~, ;3 10 il i2 Cl .. i\ is il " i' It 51 'I !J ,i ~5 !~ !1 5. \9 60.1 LllJ 6. 65 && " .. 51 I~ II 71 Il,. I; ;; 11 illS W

: 1 11 I 11 I 1 I 1 I 111 1 I 111 1111 I 1 111 1 111 11 I ; I I I 11111 11 I 1 I 111 I I 11 111111 111111111111111111

~ 2 2 2 2 2 2 n 2 2 2 ~ 2 2 2112 2 2 212 2 2 2 2 2 2 2 212 2 2 7 21 27 72 2 2 212 2 2 2 2 2 2 2Z 2
II

2 11113 3 33 n 113 3 3 3 3 n 3133 3 3 3 3 3 3 3 2 J 3 3 31 3 31 3 3 31 3 3 3 31 3 n 3 3 3 :;3
Q:

f 44444.444444 •• 4444444441 4141444.:111 4 444 4 Q 4 J 1444 .. 4 4 4 4444444" 4 4 4 4 4 4 4 4 4 4' 4 4 4 4 4 4 ~ 4 ~

" ~ 5S5555555555511555~S5555555555~5555~15S51555555555555555555555555555555555555555
Q:

• 66666661666616666666666666666616666656C6666F.66G66116G661GG6666666666666666S6G6G6

~ 71771717171711777771777777117117117171177777771777177777777777777177777777777777

! 88888888888888;888888811118118881118888888818888888888S3S8S8888888sa88893S888888
:J

1991999919999199999999999399999999999
I I 3 4 S , , I , 1311 Ill. 14 1~ il 11 15 192'111 II 21 2i 2~ " 21 211 ")0,1 32 'J} ; •• 5 l& ;7 ,J 39 AI: 41 '1 il .. is i6 ~I i8 n so $1 .2 .15455 s •• 1 $I 556061 6253 6i i. " oi .1 i! l~ 71 117374 IS 1& Ii 71 Ii 10

Figure 6. Typical CS-1 Operation on 80 Column Card

The following illustrates aHigh-Speed Printer listing of a typical CS-l card deck:

C3330001
C3330002
C3330003
C3330004
C3330005
C3330006
C3330007
C3330008
C3330009
C3330010
C3330011
C3330012
C3330013
C3330014

COUNTONES PROGRAM*SMITH*100CT63
CTONESO CL*B2 SET WORD INDEX
CTONESI ENT*B1*35 SET SHIFT INDEX

CTONES2

CTONES3

CL*A SET SUM TO ZERO
ENT*Q*W%WORDO&B2:
LSH*Q* 1 *QPOS TEST EACH BIT FOR 0 OR 1
ADD*A* 1 INCREASE SUM IF 1 FOUND
BJP*Bl *CTONES2
STR*A*W%SUMO&B2:
BSK*B2*NWORDS
JP*CTONESI *STOP5
JP*CTONES3*STOP
END-PROG
END-DATA

17 of 17

SUM STORAGE

CONTINUE COMPUTING SUMS
END

	000
	001
	002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	2-001
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	3-001
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17

