
CS-1 COMPILING SYSTEM

OpERATING INSTRUCTIONS

AND

USE OF SPECIAL OPERATORS

MAY 68

Written By~
R. J ~ Hornyak 7

TABLE OF CONTENTS

INTRODUCTION • 1

CS-1 COMPILING SYSTEMS (Illus.)................... 2

PREPARATIONS FOR A CS-1 COMPILE •••••••••••••••••• 3

INPUT SPECIFICATIONS ••••••••••••••••••••••••••••• 5

OPERATING THE COMPILER •••••••••••••••••••••••••• 12

SPECIAL CS-1 COMPILER STARTING ADDRESSES ••••••••• 14

OUTPUTS •• . 1 5

SPECIAL CAPABILITIES ••••••••••••••••••••••••••••• 17

USE OF L1-MERGE OPERATOR •••••••••••••••••••••••• 19

USE OF THE DATAX OPERATOR •••••••••••••••••••••••• 20A

USE OF THE DATAF OPERATOR •••••••••••••••••••••••• 20C

FORMAT II MNEMONIC STATEMENTS •••••••••••••••••••• 21

APPENDIX A--DESCRIPTION OF 1230 FLOATING POINT
AND SPECIAL OPERATORS ••••••••••••••••••• 29

INTRODUCTION

The CS-1 compiler contains the following features:

• Computer-oriented and problem-oriented language processing
with refined generations.

• Large program capacity.

Compiler tables on magnetic tape.

• Program correction upon input of a compile run (L1-Merge
Operator) •

• Generation for Floating Point, Double Arithmetic, Normalize,
and Special RTC operators.

1

CS-1 COMPILING SYSTEMS

TWO SCRATCH
SYSTEM

C10 r-------

\ ~ 111 ,T~~~~T3,IT/, I
./

r - - _qL ~ 1230

I
I
I .
i

1232

I/O

THREE SCRATCH
SYSTEM

r -Q¢- -, r - - - ...Q1~
I I ~/_------_\~,

1240

'

I 1240 ~7J 1230 Lh5...
TT TT6 -i r- TT1,TT2,TT3,TT4

L,

-

I
I

1232

I/O

NOTE: 1299 SWITCH USED TO UTILIZE
1240 TWO HANDLER

2

- --,
I
i
I
I
I

1004

-,
I
I ,
I
I

1004

PREPARATIONS FOR A CS-1 COMPILE

*TAPE TRANSPORT REQUIREMENTS:

The CS-1 Compiler program is stored on magnetic tape and requires
a minimum of two additional scratch tapes to compile with a
fourth scratch tape assigned for input and/or output. The CS-1
Compiler program will accept a maximum system of three additional
scratch tapes to compile with a fourth and fifth scratch tape
assigned for input and/or output. The two or three scratch tapes
required are used by the CS-1 compiler for temporary table storage
areas. The additional tape transports are required if the L¢
program input is via mag tape, the printer output is off-line,
or if & 40, 41,226, or 46 outout is requ~Bted.

The minimal compiling system is described as being a "Two Scratch
System." When the two scratch system is utilized, a third scratch
tape is available for input and/or output. Under the present
input Control System, a two scratch compilation assumes that
the compiler tape is on logical transport one, that two scratch
tapes are available on logical transports two and three, and that
any mag tape input (if used) is on logical transport four. Trans­
port four may be used for any mag tape output after the compilation
is complete.

The maximum compiler system available is described as being a
"Three Scratch System." When the three scratch system is uti­
lized, a fifth and sixth scratch tape is available for input and/or
output. Under the present input control·· system, a three
scratch compilation assumes that the compiler tape is on logical
transport one, that three scratch tapes are available on logical
trans orts two three and four, and, that any mag tape input (if
used is on logical transport five. Transports four, five, and
six may be used for any mag tape output after the compilation
is complete.

* Transports five and six are actually transports one and two
(channel seven) respectively of the 1240 two handler.

3

MOUNTING THE MAGNETIC TAPES:

Before a CS-1 Compile can be undertaken magnetic tapes must be
mounted according to the following system requirements:

Two Scratch System:

Logical Transport 1 - CS-1 Compiler (write enabled)
Logical Transport 2 - Scratch tape (write enabled)
Logical Transport 3- Scratch tape (write enabled)
Logical Transport 4 - Input tape (if used)

Three Scratch System:

Logical Transport 1 - CS-1 Compiler (no write enable)
Logical Transport 2 - Scratch tape (write enabled)
Logical Transport 3 - Scratch tape (write enabled)
Logical Transport 4 - Scratch tape (write enabled)
Logical Transport 5 - Input tape (if used)
Logical Transport 6 - Output tape (if used)

NOTE: Logical transports 5 and 6 are logical transports 1 and 2
of the 1240 two handler.

4

INPUT SPECIFICATIONS:

Input for a CS-1 compile may be on paper tape, magnetic tape,
cards, or any combination of the three. All ~nputs to the CS-1
compiler program are specified by control cards. The control
~.cards. __ SJ;~LtJAfy"_thEtjj:vP~ __ of Scratch ~~pe system t~_Ee. tlt~!-i~.~~ ~~t
L:t!hEt.Q~!J!.1li.~~:r_._:R:r9g~~ __ tl1a:ettliyye~_~!~npf1?:~s. ~~Ot- ~_~ __ p~c>ceSE?~ds~~d~~n
: .. current_.cQ.m"p~la~~oI?:, an .' e Il-u:rll.~er __ 0 ~npu s. 0,. e pro.c:_ __ ____ :-
':._ cprrently. .AU_con_t.rQ~ c~~.4~_~~~~ ~~~~_e ~~ the fol~?~:L~g fo~~
~_specif_~C~~~9ns :

Column

5
5
5

Punch Required

2
3
4

Number Designation

Two Scratch System
Three Scratch System
Three Scratch System with Printer Off-Line

When a four (4) is punched in column five (5) the CS-1 Compiler
program assumes· a Three Scratch configuration and assigns the
Off-Line output to logical Transport Six (6). Printer Orf-Line
is not allowed on";a Two Scratch system.

Column

10
10
10
10
10

Punch Required

1
2
3
4
5

Number Designation

Paper Tape (26) Input
Card Inout
Mag Tap~ (46) Input
Mag Tape (226) Input
Mag Tape (8-1) Input

When a one (1), three (3), or four (4) is punched in column 10
the user should supplement his input with an Allocation card
deck since the 26, 46, and 226 outputs do not contain any com­
piler control cards such as C-CONTROL and OUTPUTS or ALLOCATION
cards.

Column

15
80

Punch Required

*
*

Number Designation

Indicates Multiple Input
Indicates-Control Card

NOTE: A two (2), three (3), or four (4) need be punched in Column
5 on the initial control card only. The type of system
specified will then be maintained until the compiler is
reloaded or until P is set, to 1403 for re-assignment of
tapes.

5

[g]

ill ,
I

f2l!
~I

0"-
@JI

I

!4l1
L.~I

!~I
L' I

i
,..._~ i

:~l!
"~,Ii

~I
r·-,I
:qj;

~
(1)

~

~
(I)

c+
(1)

S
.........
l\J

~ -...-

H
P

~'

~ ...,
c+ ...,.
'0
(1)

H

~
c+

'0 H
~ t:l
c+ p. ...,.
~ 0 o P> en p. c+

o (1) 0
CARD Ll\)'OU'T Ff}H\i

'1 "1
-.--~--. . ----.... _-- .. _---_. __ . __ ._---------- __ .. _------- ---- .-----.- .. _--_. __ ... _------_ .. -

a
o
p
c+
"1 o
(')
s» a
H

t:=' .
-!~~---If--·----l· -- --.. ---.-.---------.... -......... -.. - . .---.. --.... -.---.. -.---.----, ... --------. 1*1-

1
_l __ -L. " ___ L""\- .. ' __ L.,..l __ l. c. ,~- .. :-_L,J....-L.-l _J _ L_L.L l _. _. __ L_ i ___ L .L..I .L .. _L_,L I ..l __ 1._1._1 L __ .l L_l._L --J...L_'--_L-L_: .. _.: .. ~....J._L.--~,--l-L_...L..l ~_"':----1.......L ______ ;\

.LUIel-'- 2 'L'D'Jj' ,.'.' L''.c'''' ~ ',,'L ',,"',,, '," " .. '!>r., [!, r " ' ',ir ill:ill ~l ',' b" ".r"Hl(llL!, iJ:j,.Ld.",~c.;,: ",J!c'''t~l'1~!' i';, ""' 'I',,", 1""":'.'.1"1 ","~" ""'L " ' "'"~"'~"",D,' c'.d",,~ ""'L'Ci'",'o '. --, I

4
5 41

~~~~~~~~~~~~~~~~~~~~~!~!:!~!!!~!:!:!~~:~!!!!!!~!!!~:!!:~:~!~~~~~!~:!!~~~~~!~~~~I~ 
11111111111111111111111111111111111111111111111111111111111111111111111111111111 

2 2 2 21212 2 2 21212 2 2 21212 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ~ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 212 

3 3 3 31313 3 3 31313 3.3 3131 3 3 ~ 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 313 

4 4 4 41414 4 4 41414 4 4 41414 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 414 

555 51~5 5 5 51515 5 5 51515 5'5 5 5 5 5 5 5 5 5 5 5 5 ~ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 515 

666 61616 6 B 6161S 6 6 61616 6 666 6 6 6 6 S 6 5 0 6 B 6 6 6 6 6 6 6 6 6 6 6 6 6 6 666 6 6 6 6 S 6 6 6 6 6 6 6 6 666 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 618 

777 71TI7 7 7 71717 1 7 71n7 1 7 7 71.7 7 7 1 j 77] 7 j 7 7 7 7 7 7 7 7 7 7 7 7 7 777 7 7 1 7 7 7 7 7 177 7 7 7 7 7 7 717 7 7 7 7 1 7 1 177 7 717 

838 81-'2 8 8 81DI~ 8 B 81BI8 a 8 388 8 8 8 8 8 B B B g D 8 8 888 888 8 8 8 8 8 8 8 8 8 B 8 888 8 8 B 8 8 B 8 8 888 88 8 8 8 8 8 8 8 8 8 8 8 B 81S 

9 8 S ;)1 ~:I/:i 9 D t;1 ;;1:) 9 9 rJ ;.IJ U 9 8 9 g 9 9 9 9 9 9 9 Q 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 S 9.9 9 9 9 9 9 9 9 9 9 S 9 9 9 B 9 B D B fi 910 
1 2 3 4 5 G 7 8 9 10 1: ~2 L' ii L :817 1:: 19:20 ;~1 22 23 2~ 25 2S 27 22 2S '<132333-13) .}G 3738 39 ~o 41424344 4S ~6 47 48 49 ~'D 515253:"455 5E 57 58 ::~1 (,J Ci 62 C:' f4 ~5 66 67 63 6~! 711 71 n :374 is If, 7

' 
73 -;S :;' 

.'-_ .... _."- -" ~ _ .. -_.- --.-- _._._-,_. ----~ - ~.-~-.--.-.-- "-~ --"-~-'-~ 
- -~ •.• --~ •. ---- .•. - •• - - •• - •• ----~-. -_ •• - >. - ~-- --~~--.------.-



CONTROL CAR2, 

The control System is designed to facilitate input and 
tape assignment specifications to CS-1 for compiler op­
erations. The following card deck layouts illustrate the 
use of l~ont,rol cards f();, .b~th Two and Three Scratch­
System compiles as well as compiles -with--multiple--fnp-u-ts~ 

1. TWO SCRATCH SYSTEM - CARD INPUT ONLY 

BLANK 

CARD DECK 

2 2 * 
""'''''' "'" 

"'" 0 "" 0 
&.(\ r- r- to . . . . 
H r-i H H 
0 0 0 0 

C,) C,) C,) C,) 
.................... .......... 

Control Card: 

Column 5 - 2 Specifies Two Scratch System 
Column 10 - 2 Specifies Card Input 
Column 15 - Blank Specifies No More Inout 
Column 80 - * Specifies Control Card 

NOTE: Card deck layout identical for a Three Scratch System 
with the exception of a 3 being punched in column 5 of 
the control card. 

7 



CONTROL 
CARD #1

2 2 

....-.. 
ll\ . 
r-i 
0 

0 -

2. TWO SCRATCH SYSTEM - CARD AND 46 TAPE INPUT (MULTIPLE INPUTS) 

CONTROL CARD #2~ 

2 * 
....-......-.. 
0 1.(\ 

or- or-. . 
r-i r-i 
0 0 

0 0 --
Centrol Card #1: 

....-.. 
ll\ 

OARD 
DECK 

END-D 

Column 5 - 2 Specifies Two Scratch System 
Column 10 - 2 Specifies Card Input 
Column 15 - * Specifies More Input 
Column 80 - * Specifies 

Control Card #2: 

Column 5 - Blank (not needed) 

BLANK 

Column 10 - 3 Specifies 46 Mag tape Input On TT4. 
Column 15 - Blank Specifies No More Input 
Column 80 - *. Specifies Control Card 

* 

NOTE: Card deck layout identical for a Three Scratch System with 
two exceptions: firstly a 3 should be punched in Column 
5 of @~n.tr9J.._·card·-#1and,s~con-dlY~--'the~-46.~Mag-T~p~ -.­
Input will then be on TT5. 

8 



3. TWO SCRATCH SYSTEM - PAPER TAPE (26), CARDS, AND MAG TAPE 
INPUT (226). (MULTIPLE INPUTS) 

NK 

CONTROL CARD #3 ~,-... i ~ '* 
,-... 
o 
to 

-l.C'\ . 
r-i 
0 

0 -

* 
,-... ,-... 
0 l.C'\ 
~ ~ . • 
r-i r-i 
0 0 

0 0 - -
Control Card #1: 

l.C'\ ~ ~ - --
BLANK 

BLANK 

END-DATA 

CARD' 
DECK 

* -0 
to 

• 
r-i 
0 
r) --

Column 5 - 2 Specifies Two Scratch System 
Column 10 - 1 Specifies Paper Tape (26) Input 
Column 15 - * Specifies More Input 
Column 80 - * Specifies Control Card 

*Two Blank Cards must seper.ate' Control cards.* 

Control Card #2: 

Column 5 - Blank (not needed) 
Column 10 - 2 Specifies Card Input 
Column 15 - * Specifies More Input 
Column 80 - * Specifies Control ~ard 

Control Card #3: 

Column 5 - Blank (not needed) 
Column 10 - 3 Specifies 46 Mag Tape Input on TT4 
Column 15 -Blank Specifies No More Input 
Column 80 - * Specifies Control Card 

NOTE: Card deck layout identical for ~Three Scratch system with two exceptions; firstly a 3 
should be punched in Column 5 or/ ~o?tr.~~Card .#1 and secondly the 46 ~g Tape Input 
will then be on TT5. 9 



CONTROL 

4. THREE SCRATCH SYSTEM - PAPER TAPE (26) AND CARDS. (MULTIPLE INPUTS) 

BLANK 
BLANK 

END-DATA 

GARD 

DECK 

CARD #2 c.._ -0 \.C'\ 

CONTROL 
CARD #1 C 

\.C'\ ,.... ,.... 
......... ......... --

3 1 * - - -"" 0 "" ,.... ,.... . 
ri • . 
0 ri ri 
(.) 0 0 

(.) (.) --- --
Control Card #1: 

LANK 

BLANK 
* -o 
to . 
ri 
o 

(.) 
'-'" 

Column 5 - 3 Specifies Three Scratch System 
Column 10 - 1 Specifies Paper Tape (26) 
Column 15 - * Specifies More Input 
Column 80 - * Specifies·~·~nt.rol·CB:I'd 

*Two Blank cards must separate . Control ·Cards*---~_~-~:~~_._ .. 

Control Card #2: 

Column 5 - Blank (not needed) 
Column 10 - 2 Specifies Card Input 
Column 15 - Blank Specifies No More Input 
Column 80 - * Specifies!~-bon~~o~· C~!~=~~~_-_-=·-.~·---~· 

10 



5. THREE SCRATCH SYSTEM - CARDS AND 46 MAG TAPE (MULTIPLE INPUTS) 

BLANK 

CONTROL CARD #2 "C..r-'--_-3-_----~B~L:!!:A~NK~-----..._ 

CONTROL 

CARD #1 C 

o 1.1'\ 0, ,- ,- w 

3 2 * 

-- -1.1'\0 1.1'\ 
,- ,-. 

r-i . • 
0 r-t r-t 

(.) 0 0 
....- c..:> (.) ....- ....-

Control Card #1 : 

CARD 

DECK 

BLANK 

END-DATA 

-0 
00 . 
r-t 
0 

c..:> ....-

Column 5 - 3 Specifies Three Scratch System 
Column 10 - 2 Specifies Card Input 
Column 15 - * Specifies More Input 
Column 80 - * Specifies Control Card 

Control Card #2: 

Column 5 - Blank (not needed) 
Column 10 - 3 Specifies, 46 Mag Tape on ·TT5 
Column 15 - Blank Specifies No'More Input 
Column 80 - * Specifies, Control Card 

I N THE PRECEDING ILLUSTRATIONS THE CARD, "DECKS "l'1..AY CONTAIN 
COMPILER CONTROL CARDS, OUTPUTS CARDS, ALLOCATION CARDS, PROGRAMS, 
. AND L 1-MERGE ~~RD~ ~ .. .IT. ~HOULD. BE. JlOTEJ) 1Ii~'r_,.n~Q" ELA.!'UCCARPS MV..Sl., ' 

SEPARATE _ T}lO _G.Q~R.O:L __ Q,l\RD13 __ 0R_AN_:&\flb..bATA., .. C.ARD_AT .. TRE-.~ 
~0NTR.-qL.~·9~~ ... ~Q B11\~CJJtDS_ARE ... NE)4DED T.Q.SEPARATEA CONTROL 

CARD AND AN 'ALLOCATION OR PROGRAM DECK. 

11 



OPERATI NG THE COMPILER 

• Mount Compiler Tape on Logical Transport 1. 

• Mount scratch tapes and input tapes (if needed) according to type 
of system selected and-mode of input. 

• .v~!~fy .c?-~cl_ d~.ck adheres to Input Requirements and t~ t_pr~per _ 
Control ca:r:-df3_.~e _Pr.~f3E3?t a~ong with appropr~a ~e_ bl~t:l~._ 
cards. 

• Place card deck in 1004 Card reader-feed one card. 

• Master Clear The- Computer 

• Select Program Mode I - Mag tape bootstrap 

• Depress LOAD 

• Start 

Normal typeouts following are RTD, RIN, and INPUT. If Key 6 is 
set, the compiler will 6 stop before the next or current input is 
processed. 

Normal printouts during compiling are: 

• RLIB 

• INDENTIFY LIBRARIES HI-U(A) LO-L(A) 

• ¢*¢ 

• RT1 

• TRAN 1 - possibly followed by generator errors on output tape 
or printer. 

• RT2 

• TRAN2 - error typeouts also possible here 

RA 

• EQ1 

• EQ2 

• AA2 - all allocation errors are listed on the output magnetic 
tape or printer. 

12 



• Each programmer selected output will be typed out by number as 
given the last being followed by SELECT OUTPUTS in A and Q and 
a 4-STOP. Additional outputs may be selected now by entering 
U(A), L(A), U(Q), and L(Q) •. If an output to be listed off-line 
exceeds one reel, set Key 2 before writing off the end of 
tape. A sentinel will be written on the tape, the tape rewound, 
and the typeout "MOUNT NEW OUTPUT TAPE." When a new tape has 
been set up, release Key 2 and normal operation will continue. 
This method can be used to terminate an output tape at any 
time. 

• After all outputs have been taken a stop-code can be placed on 
the tape either by selecting an output 700 or by master clearing 
the console, setting P = 1404 and depressing START. 

SPECIAL INSTRUCTIONS 

• Stopping the compiler. The compiler may be stopped by setting 
Key 5. This capability is included so that the compiler may 
be stopped and minor operations such as inspect and change, 
core dumps, etc. accomplished at any point in a compiling run, 
·with recovery possible. To continue compiling after a 5-STOP, 
master clear, set P to 1407, and depress START. 

Special LIID Stop. The capability to stop the compiling run at 
a predetermined LIID during the translation and allocation passes 
has been included. To exercise this option, 5-stop the computer 
at the beginning of the desired pass (TRAN1, TRAN2, RA, or AA2), 
and inspect and change the upper of cell ¢1376 to the desired 
LIID. The compiler will 4-stop when that LIID and each succ~eding 
one are reached. 

• .. Control information missing .l{ d1iTing- input the compiler--
_types-c-ui- -"MISSING-Cjj=':IN SERT--CARD 'i~D-RESTART~-I1·--inser-t --_._- .---
missing control card in deck, replace cards in 1004 reader, and 
depress Start. If the compiler types out "SET AL TO INPUT MODE,II 
set AL to the next mode of input to be processed - Start. 

• Restarting a compile. A new compile may be reinitiated by 
setting P = 1400 if the next compile,adheres to the previous 
compiles scratch tape specifications. If a new assignment of 
scratch tapes and input tapes is necessary, set P = 1403 or 
reload the compiler. The card deck must be ready for processing 
prior to reinitiating,a compile. 

13 



COMMENTS: 

• The compiling process will go from start to finish witho~~ 
s topping unless a :- Control card missing or incorrect __ 
or an Outputs card is missIng-in which-case t.he compiler will 
stop and type out "SELECT OUTPUTS IN A AND Q." At this time 
the user maf select up to four outputs prior to compiling by 
setting- A(U), A(L), Q(U), Q(L) to the desired outputs and Starting. 

• All unallocated tags will automatically be allocated to zero 
(¢) during the compile and will be printed after the RA seg­
ment. The unallocated tags and references will also be listed 
at the end of the 151 output if selected. 

• If the first label in the program being compiled is unallocated 
(no base assigned), the compiler will automatically compile the 
program relatively (Base ¢). -

• Tape unit assignments for input and scratch tapes used by the 
compiler are automatic according to the type of system desig­
nated (2 or 3 scratch) by the initial-~??~_rol_~_~=-~~ __ . __ -_~ _.- -

• To change from a 2 scratch system to a 3 scratch sY:3~em(J~ ___ vice-_ 
versa the user must insert the appropriate Contr~l~ard 
in the beginning of his input deck and either reload the compiler 
or start at P = 1403. If a compile is restarted at P = 1400, 
the compiler will maintain the type of scratch tape system pre­
viously designated. 

SPECIAL CS-1 CDMPILER STARTING ADDRESSES: 

1400 - Start A Compile - Same Scratch Tape System As Previously 
Designated. 

1401 - Reselect Outputs Or Bypass Current Output. 
1403 - Designate New Scratch Tape System and Compile. 
1404 - Terminate Output Tape 
1407 - TCS 5-STOP Recovery 
1411 - Printer Core Dump - Set A to limits: A(L) Initial Limit-

A(U) Terminal -Lim~~ ~ 

620 - Paper Tape Verify 
620 - (Key 1) Paper Tape Load 
620 - (Key 2) Bioctal Dump 
621 - Inspect and Change 
622 - Store Q 

14 



OUTPUTS 

OUTPUTS AVAILABLE 

Code Number 

10 
12 
22 
24 
26 
27 
30 
31 
32 
33 
34 

Description 

Paper Tape 

Bioctal assembled program 
Absolute assembled program (source code) 
L1, L3 programs (L1 beside L4) 
Relative Bioctal 
Corrected L¢ 
Corrected L¢ (Selective) 
Labels and addresses 
Significant labels and addresses 
Numerically ordered addresses with labels 
Alphabetically ordered labels with addresses 
Relative Allocation 

Printer Listing 

1 ¢1 Iden tifica tion 
1¢4 L1 and L2 programs and notes (Allocation pass 

unnecessary) 
1¢5 L1 program and notes (Allocation and Translation 

passess unnecessary) 
114 L1, L3, programs (L1 beside L3) new page each 

major header 
12¢ L1, L3, and L3 programs 
122 L1, L3, programs (L1 over L3) 
125 L1, L3, programs (L1 beside L3) 
126 L¢ program before library additions 
130 Labels and addresses 
132 Sort of addresses and corresponding labels 
133 Sort of labels and corresponding addresses. 
137 L1 in documentation format 
151 Labels, addresses, and references 

??f C; 7· ___ ~ ____ T~.tt.~!~~~~ut~tape 
7 5 I Y Magnetic Tape . 

4¢ 
41 

226 

326 

Card 

Absolute assembled program 
Relative assembled program 
L¢ (with library additions) suitable for 
magnetic tape input or tape-to~card 
Unappended "(before library additions) L1 
table on magnetic tape 

L1 table converted to card (tape to card) 

15 



TAKING SPECIAL OUTPUTS 

• Outputs 40, 41, 226, and 46 may be selected by means of an OUTPUTS 
card however they must also specify tape transport. The format 
to be used is XXYYY where XX = Transport, YYY = Output. 

Example: OUTPUTS*125*151*4040*5046 

In the above example an output 40 is taken on logical TT4 and 
and output. 46 is taken on logical TT5. * 

• Outputs 40 and 41 may be take,it on one output tape. The user 
may request any number of 40 or 41 outputs on the same trans­
port in anyone compile or separate compiles. 

Outputs 226 and 46 must be taken on separate magnetic tapes. 
They may either be specified on the OUTPUTS card or selected 
manually. 

• Output 46 is checkread after being written on magnetic tape. As 
it is being checkread a new listing is provided the user with 
L1ID's corresponding exactly to those on the 46 tape. This listing 
is a necessity in order to use the L1-Merge operator to update a 
46 tape and compile if the user's program had library references 
i.e., TYPET, TYPEDEC~ If no library references were>made in the 
user's program the L1ID's on an Output 125 will correspond 
exactly to those on a 46 tape and may be used as a reference 
for L1-Merge operations. Key 5 may be set after the'46 tape is 
written and begins' rewinding. When the 5 stop occurs, set P = 1401 
and the ~hkread will be bypassed and the next output taken. 

COMMENTS 

• To recover if tape unit errors or ghec-kread errors occur during 
any output, master cle~r, set P = 1401, and depress start. The 
current output will be bypassed and may be reselected when all 
other outputs are complete. 

• Output 326 may be taken after any compile or directly from a 
46 output tape. If the user wishes a new card deck of his 
program, he may ~einitiate a compile with his updated 46 as 
input and select a 326 for his output. The 46 tape will be 
read, Table 1 built, and the output given without compiling. 

NOTE: If the users program (46 tape) had library references, 
the card decks .of these routines will also be punched 
unless the user selects an Output 7 as well as the 
Output 326. 

• Output 326 does not contain any compiler control cards i.e., 
C-CONTROL, OUTPUTS or any Allocation cards. The output 46 
begins with the first Program or System Header card and ends 
with the End-Data card. 

• Output 151 lists labels and references in the following order: 
Labels (alphabetically sorted), Indirect Allocations(in order 
they are processed), Unallocated Tags. 

* NOTE: For a two scratch system only TT4 is available for 
magnetic tape output. Fo~ a three scratch system only 
TT4, TT5, and TT6 are available for magnetic tap'e output. 

1h 



SPECIAL CAPABILITIES 

PAPER TAPE CHECKREAD 

• Description -'Check reads paper tape 

• Instructions - Master clear, set P = 620. Mount tape in reader, 
release all keys, depress START. If a checksum error occurs, 
CKSUM ERROR will be typed out, otherwise the computer will 4-STOP. 

PAPER TAPE LOAD 

• Description - Loads paper tape 

• Instructions - Master clear, set P = 620. Mount tape in reader, 
set Key 1. If relative tape is being loaded, set L(A) to begin­
ning address •. Depress START. If a checksum error occurs, CKSUM 
ERROR will be typed out, otherwise the computer will 4-stop indi­
cating satisfactory load. 

BIOCTAL DUMP 

• Description - Dumps contents of core onto paper tape in bioctal 
format with checksums. 

• Instructions - Master clear, set P = 620. Set Key 2. Set L(A) 
to initial address of area desired and U(A) to term~nal address. 
Depress START. After dump, tape may be checkread using Paper 
Tape Checkread. 

INSPECT AND CHANGE 

• Description - Allows any cell in core to be inspected and changed 
if desired, except ¢¢166 (B6). 

• Instructions - Master Clear, set P = 621, and depress START. I 
and C will be typed out and the computer will then accept an 
octal address keyed in from the 1232 I/O Console. To key in 
an address, the user may enter from one to five octal digits. 
If fewer than five digits are entered they must be followed by 
a period (.)s the input digits will then be right justified 
and treated as a five digit address. When an address has been 
keyed in, the contents of that address will be typed out and one 
of the following options may be exercised: 

(/) To change the value of the location whose contents have just 
been typed out, type a slash (/) and then type in the de­
sired value. Here again a period may be used if fewer than 
ten octal digits are typed. This value will be stored in 
memory and then allow a new control character to be typed. 

(SP).To inspect the contents ~f the next succeeding memory loca­
tion, depress the space bar. The succeeding address and its 
contents will be typed, after which a new control character 
will be accepted. 

(,) To alter the current sequence, type a comma (,). A Carriage 
Return will be executed after which a new address may be 
typed in. 

17 



STORE Q 

Description - Stores contents of Q at successive memory 
address between ~ny two limits. 

Instructions- Master clear, set P = 622. Set Q to the value 
to be stored; Set L(A) to initial address of storage area and 
U(A) to terminal address of area. Depress START. 

18 



USE OF THE L1 - MERGE OPERATOR 

Output 46 -

Output 46 consists of the unappended (before library additions) 
L1 table on magnetic tape in a format suitable to loading as 
input to a succeeding compile. In conjunction with the L1-
MERGE operation it allows a flexible system for correcting 
programs. 

Note: No C-CONTROL type operations are included on the output 
46 tape or listing. 

The program correction operation to be used with output 46 is 
L1-Merge. The corrections that are accepted are: 

1) delete 
2) replace 
3) insert 

**The L1 identifiers (L1ID) on the L1-MERGE cards must be in as­
cending numerical order.** 

L1-MERGE Operation V 
o 

L1-MERGE * L1 ID to commence 
merging 

* 
V1 

Last L1 ID to be 
deleted 

The L1-MERGE operation, a minor independent operator, specifies 
to the compiler that normal LO card input is to be combined with 
an output 46 magnetic tape to produce the L1 table. Statements 
to be merged follow the L1-MERGE header. 

Vo - The L1ID of .the output 46 to be modified at which merging is to 
commence. 

V, - If present, the L1ID of the last statement on the output 46 
which is to be deleted. If V1 is absent. no deletions are made. 

Examples: 

.. L1-MERGE * 100 

.. SET * I * TO * 0 

.. END-DATA 
This will cause the statement SET * I * 0 to be inserted 
following L1ID 100 when the output 46 is processed. 

19 



USE OF THE DATAX OPERATOR 

L W V~ 
(Label)ctDATAX * (Decimal Constant, Exponent, Scaling) 

The DATAX operation allows the progra~mer to specify a 
scaled octal constant which has the value represented by 
a decimal constant expressed in scientific notation with 
an exponent (10 to the exponent) and scaling. 

L This is the label (optional) of the scaled octal 
constant. 

W This is the operator DATAX. 

V¢ This decimal constant represents the octal value 
to be generated. The format of the V¢operand is as 
follows: 

(±.) x. YYYYYYYYYY, (±) EE, (±) SSS 

Where: 

1. "X. yyyyyyyyyy" is the decimal constant with a maximum 
of ten digits following the decimal point. The decimal 
point must follow the most significant digit. The most 
significant digit should be a digit other than zero (~). 

2. "EE" is the decimal exponent indicating 10 to the power 
EE. If the commas are present with no exponent, the 
exponent is assumed zero (¢).- The range of EE is 

. -99 S;- EE ~ + 99. 

'3. "SSS" is the decimally expressed binary scaling. If 
the commas are_~resent with no scaling, the scaling is 
assumed zero (~). 

4. The two commas specified in the DATAX for~~t should be 
present. The single exception is that the number ¢ 
(zero) may be specified by: DATAX * ¢ 
DATAX * ¢ will cause proper generation however, ·format 
error messages will be printed out. 

5. The use of the + sign is optional. If a sign is 
missing the value is assumed positive. 

Warnings will be given for: 

a. Underflow; SSS to small 

b. Overflow; SSS to large 

c. Commas missing 

20A 



If any of the above errors occur, the generated operand 
will be zero (¢). 

The generated operand will be a whole word (thirty bit) 
constant significant to the last bit. 

EXAMPLES: 

LABEL 
LABEL1 
PI 

DATAX*3.9999999999,¢,27 
DATAX*-1.25,¢,18 
DATAX*3.141592653,¢,26 

20B 

Generation 
37777 77777 
77765 77777 
14441 76652 



USE OF THE DATAF OPERATOR 

L W 
(Label) .. DATAF * 

V¢ 
(Decimal Constant, Exponent) 

The DATAF operation allows the programmer to specify a 
floating point constant which has the value represented by 
the decimal constant expressed in scientific notation with 
exponent (10 to the exponent). The floating point words 
conform to the 1230 Hardware Floating Point format and 
occupy two consecutive memory words. The first word is the 
characteristic with sign extension and the second word is 
the "mantissa. Refer to Appendix A for a more detailed 
description of the 1230 Hardware Floating Point forw~t. 

L This is the label (optional) assigned to the first 
word (characteristic) of the two con~ecutive floating 
point constant words. 

W This is the operator DATAF. 

V¢ This scientifically expressed decimal constant re­
presents the value of the floating point constant to 
be generated. It is in the form: 

Where: 

1. "X.YYYYYYYYYY" is the decimal constant with a 
maximum of ten digits following the decimal point. 
The decimal point should follow the most signifi~ 
cant digit which may be zero (¢). 

2. nEE" is the decimal exponent indicating 10 to the 
power EE. If the comma is present with no exponent, 
the exponent is assumed zero; proper generation will 
occur however an error message indicating "EXPONENT 
MISSING" will occur. The range of EE is -99< EE ~+99 .• 

3. The comma and decimal point specified in the DATAF 
format should be present. Constants expressed as 
DATAF*¢ or DATAF*5 will cause proper generation how­
ever, format error messages will be printed out. 

4. The use of the + sign is optional. If a sign is 
missing the value is assumed positive. 

Warnings will be given for any deviation in the prescribed 
format and proper generation mayor may not result depending 
on the type of error detected. 

20C 



EXAMPLE: 

LABEL eO DATAF*12,1 

(Error Printout) 

FORMAT ERROR 12,1 

DATAF*+/-X.YYYYYYYYYY,+I-EE 

DECIMAL POINT MISSING 

NO FRACTIONAL CHARS 

CARD 0001 
00036 LABEL DATAF*12,1 

Generation 
LABEL .. 00000 00007 

36000 00000 

The algorithm utilized to compute the floating point constant 
is designed to provide the programmer with extreme accuracy. 
Rounding of the mantissa takes place any time the bit to the 
right of the least significant bit is set. 

Example: • 4, 0 = • 3146314631463148. • • 

DATAF*¢.4,¢ 
Generation 

77777 77776 
31463 14632 

The generated operand will be two consecutive thirty bit words. 
The first word will contain the floating point characteristic 
with sign extension. The second word will contain the floating 
mantissa. 

Examples: 

LABEL" DATAF*1.¢,¢ 

DATAF*1 .5,1 

PI .. DATAF*3.141592653 

DATAF*1.¢,-63 

DATAF*-¢.4,-1 

20D 

Generation 
00000 00001 
20000 00000 
00000 00004 
36000 00000 
00000 . ~ 00002 
31103 75524 
77777 77456 
32247 76234 
77777 77773 
53412 17267 



.. L1-MERGE * 102 * 104 

.. CL * W(BDFLG) 

.. RPL * Y+1 * W(FLFLG) 

.. RETURN 

SETFLG·"" ENT * A * W (BDFLG ) 

.. L1-MERGE * 155'* 165 

.. END-DATA 
This input will delete L1ID's 102, 103, and 104 when the output 
46 is processed,· inserting the four statements between the 
L1-MERGE operations in their place. Additionally, L1-ID's 155 
through 165 will be deleted. 

Usi~g the above rules, basic operations are accomplished as follows: 

a. To delete one .statement -- Va equals L1ID to be deleted; 
V1 equals VQ; no statement between L1-MERGE operation 
and succeed1ng header: 

L1-MERGE * 7 * 7 

Ll-MERGE * etc. 

b. To replace one statement -- Vo equals L1ID to be re­
placed; V1 equals Va; new statement follows L-1MERGE 
operation: 

L1-MERGE * 12* 12 

ENT if B1 if 5 

L1-MmGE * etc. 

c. To insert one statement -- Va equals L1ID following 
which new statement is to be inserted; V1 absent; new 
statem~nt follows L1-MERGE operation: 

L1-MERGE * 25 

STR * Q * W(BDFLG) 

L1-MERGE * etc. 

To add statements at the end of the output 46, the L1ID of the 
last statement on the output 46 should be used as the Vo operand 
of the L1-MERGE operation. 

The L1-MERGE deck is terminated by an END-DATA card and must 
be placed at ·the end of the users· Input . deck. 

20 



FORMAT II MNEMONIC STATEMENTS 

The inclusion of the Hardware Floating Point Package adds eight 
new commands to the repertoire of the UNIVAC 1230 Computer that 
afford the capacity for double-precision arithmetic in addition 
to floating point operations. Optional interrupt ~atures are 
also available for more convenient use of the real-time clock (RTC). 

FORMAT II INSTRUCTION LAYOUT 

The added instructions are implemented in, a manner to avoid 
interfering with existing 1230 programs by using previously 
illegal function codes of 77. 

1J+4_-77---F-,_-.30 :itS----y---_---..j 
The function codes of the FORMAT II instructions are four digits 
(12 bits) long. The upper two digits of the function code are 
always 77 to denote a FORMAT II INSTRUCTION; thus f is des­
cribed as being 12 bits in length (bits 29 through 18). The 
specific FORMAT II instruction is denoted by the lower two 
digits (bits 23 through 18) of the function code. The normal 
three bits are available for B register modification and the 
operand Y is 5 digits (bits 14 through 0) in length. Due to 
the FORMAT II instruction a function code of 77 will no longer 
generate a fault interrupt; however, the following three func­
tion codes will generate fault interrupts: ¢¢, 77¢¢, 7777. 

21 



SPECIAL OPERATORS 

• The following mnemonics will generate the appropriate absolute 
instruction codes when compiled with the new CS-1 compiler: 

MN~ONIC 

DENT ( Dou b-le Enter) 
DSTR(Double Store) 
FADD(Flpt. Add) 
FSUB(Flpt. Subtract) 
FMUL(Flpt. Multiply) 
FDIV(Flpt. Divide) 
DADD(Double Length Add) 
DSUB(Double Length Subtract) 
ERTC*OF 
ERTC*MONITOR 
NORM*AQ 

TYPE II 
FCT CODE 

7711 
7715 
7720 
7721 
7722 
7723 
7724 
7725 
7706 
7726 
7707 

OPERATION PERFORMED 

(Y+1 (y) -> A,Q 
(A,Q)" Y+1 ,Y 
(A,Q) + (Y+1 ,Y)" A,Q Flpt. 
(A,Q) - (Y+1 ,Y)" A,Q Flpt. 
(A,Q) • (Y+1, Y)" A,Q Flpt. 
(A,Q) ~ (Y+1,Y)-.A,Q Flpt. 
(A,Q) .;. (Y+1,Y).A,Q 
(A,Q) - (Y+1 ,Y.)" A,;Q 
Enable RTC Overflow Interrupt 
Enable RTC Monitor Interrupt 
Shift AQ Left until bits 
A29 :/ A2S· Shift Count .. Y 

• The above mnemonics with the exception of ERTC*OF and' 
ERTC*MONITOR have a normal uread-y l1 operand with an automa,t+c 
K designation of W(Whole word). 

Example: MNEMONIC 
DENT *' ' 
DENT * 

read-y 
W(DATA+B2-)) 
DATA+B2-3 

Both of the above instructions will generate the same absolute 
coding since a K of W is assumed. The uread-yfl operand always 
specifies the first word of two consecutive memory words. 

• The ERTC instructions do not require a tlread-y" operand. 

• The NORM*AQ instruction's IIread-y" operand specifies one 
memory word. 

22 



DESCRIPTION OF OPERATIONS PERFORMED 

ERTC*OF 

NORM*AQ 

DENT 

DSTR 

FADD 

FSUB 

FMUL 

FDIV 

DADD 

77 06 - Enable Real-Time Clock Overflow Interruot Reouest. 
This instruction enables the real time clock overflow 
interrupt 'When the real time clock overflows from 77777 
77777 to 00000 00000. 

77 07 - Normalize. - Shift (AQ) left circularly until 
(A29) i (A28) or until k = O. The number of shifts 
that occurred is then store~ in storage location Y 
lower six-bits. 

77 11 - Double Length Enter. - Clear the A and Q regis­
ters, then transmit the contents of address Y to the 
Q register and the contents of address Y + 1 to the 
A register. 

77 15 - Double Length Store. - Store the contents of the 
Q register at address Y and the contents of the A reg­
ister at address Y + 1. 

77 20 - Floating Point Add. - This instruction shall add 
a floating point number whose mantissa is in A and char­
acteristic is in Q to a floating point number whose 
mantissa is in Y + 1 and characteristic is in Y. The 
final normalized mantissa shall be in A and'the final 
characteristic shall be in Q. 

77 21 - Floating Point Subtract. - This instruction shall 
subtract a floating point number whose mantissa is in 
Y + 1 and characteristic is in Y from a floating point 
number whose mantissa is in A and characteristic is 
in Q. The final normalized mantissa shall be in A 
and the final characteristic shall be in Q. 

77 22 - Floating Point Multiply. - This instruction 
shall multiply a floating point number whose mantissa 
is in A and the characteristic is in Q by a floating 
point number whose mantissa is in Y + 1 and charac­
teristic is in Y. The final normalized mantissa shall 
be in A and the final characteristic shall be in Q. 

77 23 - Floatine: Point Divide. - This instruction shall 
divide a floating point number whose mantissa is in A 
and characteristic in Q by a floating point n~~ber 
whose mantissa is in Y + 1 and characteristic is 
in Y. The final normalized mantissa shall be in A and 
the final characteristic shall be in Q. 

77 24 - Double Length Add.-This instruction shall add 
a 60-bit number in Y + 1 and Y to a 60-bit number in 
AQ. The sum shall be in AQ. 

23 



DSUB 

ERTC*MONITOR 

77 25 - Double Length Subtract. - This instruction 
shall subtract a 60-bit number in Y + 1 and Y from 
a 60-bit number in AQ. The difference shall be in AQ. 

77 26 - Enable Real-Time Clock-Monitor-Interrupt. - This 
instruction shall enable the real time clock monitor 
interrupt when the lower 17 bits of the real time 
clock are equal to the lower 17 bits of the Real Time 
Clock Monitor register. (Address 170) 

Floating Point Format and a Discussion of Floating 
Point and RTC interrupts is contained in Appendix A. 

24 



The fQllQwin~ are illustrations of generation which would 
result from the use of the prescribed mnemonics: 

• MNEMONIC read-y GENERATION 
DENT '* DATA+B2 77112*NNNNN 

(Example) Addr. Machine Instruction 
00162 00000 00000 
10000 DATA . 76777 54377 
10001 00001 43332 

• 0 0 
41> 0 0 
0 0 0 

20000 77112 10000 .. DENT 

After execution of the DENT instruction at addr. 20000, A and Q 
would look as follows: 

A Q 
00001 43332 76777 54377 

• MNEMONIC read~y GENERATION 
DSTR '* W(DATA+B2j 77152*NNNNN 

(Example) Addr. Machine Instruction 
00162 00000 00000 
10000 DATA 76777 54377 
10001 00001 43332 

o 
• o 

20000 

o 
Q 

o 

o 
o 
~ 

771 52 10000" DSTR 

After execution of the DSTR instruction at addr. 20000, DATA 
and DATA+1 would look as follows if A = 00176 47753 and 
Q = 77775 47776: 

10000 DATA 77775 47776 
10001 00176 47753 

• MNEMONIC read-y GENERATION 
FADD * W,(DATA+2) 77200*NNNNN 

(Example) Addr. Machine Instruction 
10000 DATA 00000 00004 .. Flpt. 12 
10001 24000 00000 
10002 DATA1 00000 00005 ~ Flpt. 24 
10003 24000 00000 

0 4) ,0 
0 0 0 
0 0 0 

20000 7711 0 10000" DENT 
20001 77200 10002 taO F ADD 

After execution of the DENT instruction at addr. 20000 and the 
FADD instruction at addr. 20~ A and Q would look as follows: 

A Q 
36000 00000 00000 00005 .. Flpt. 36 

25 



····!tNEMONIC read-y GENERATION 
FSUB * DATA-2 77210*NNNNN 

(Example) Addr. Machine Instruction 
10000 DATA1 00000 00004" Flpt. 12 
10001 24000 00000 
10002 DATA 00000 00005" Flpt. 34 
10003 34000 00000 

0 0 0 
0 0 c 
0 0 0 

20000 7711 0 10002 t$ DENT 
20001 77210 1 0000 ~ FSUB 

After execution of the DENT instruction at addr. 20000 and the 
FSUB instruction at addr. 20001, A and Q would look as follows: 

A Q 
22000 00000 00000 00005,. Flpt. 22 

• MNEMONIC read-y GENERATION 
77220*NNNNN FMUL * W(DATA) 

(Example) Addr. ~~chine Instruction 
10000 CONST 00000 00007 .. Flpt. 137 
10001 27600 00000 
10002 DATA 00000 00004" Flpt. 12 
10003 24000 00000 

o 0 D 
o 0 0 
o 0 GI 

20000 
20001 

77110 1 0000 .. DENT 
77220 10002" FMUL 

After execution of the DENT instruction at addr. 20000 and the 
FMUL instruction at addr. 20001, A and Q would look as follows: 

A 
35540 00000 

Q 
00000 00012 a.$ F lpt. 1666 

• MNEMONIC read-y GENERATION 
77230*NNNNN FDIV * DATA. 

(Example) Addr. Machine Instruction 
1 0000 CaNST 00000 00003" Flpt. 6 
10001 30000 OOCOO 
10002 DATA 00000 00001 .. Flpt. 1.4 
10003 30000 00000 

o Q 0 
000 
000 

20000 
20001 

7711 0 1 0000 q. DENT 
77230 10002" FDIV 

After execution of the DE~~ instruction at addr. 20000 and the 
FDIV instruction at addr. 20001, A and Q would look as follows: 

A Q 
20000 00000 00000 00003" Flpt. 4 

26 



• MNEMONIC read-y GENERATION 
77240*NNNNN DADD * DATA1 

(Example) Addr. Machine Instruction 
10000 DATA1 77777 65476 
10001 00000 00000 
10002 DATA2 00000 22301 
10003 00000 00000 

o 0 0 
o 0 c 
o 0 C 

20000 
20001 

7711 0 1 0002 c$ DENT 
77240 1 0000 ~ DADD 

After execution of the DENT instruction at addr. 20000 and the 
DADD instruction at addr. 20001, A and Q ~ould look as follo~s: 

A 
00000 00001 

• MNEMONIC read-y 
DSUB * DATA 

(Example) Addr. 
10000 DATA 
10001 
10002 DATA1 
10003 

o 
o 
o 

20000 
20001 

Q 
00000 07777 

GENERATION 
77250*NNNNN 

Machine Instruction 
77754 37776 
00000 01234 
01322 77665 
00001 13244 

o Q 
o Cfj 

o 0 

7711 a 1 0002 ~ DENT 
77250 1 0000 .. DSUB 

After execution of the DENT instruction at addr. 20000 and the 
DSUB instruction at addr. 20001, A and Q would look as follows: 

A Q 
00001 12007 01346 37667 

• MNEMONIC 
ERTG*OF 

read-y 
None 

• MNEMONIC read-y 
ERTC*MONITOR None 

GENERATION 
77060*00000 

GENERATION 
77260*00000 

27 



• MNEMONIC read-y GENERATION 
77070*NNNNN NORM*AQ * COUNT 

(Example) Addr. Machine Instruction 
10000 DATA 00000 05541 
10001 02111 00027 
10002 COUNT 00000 00000 

o 0 0 
000 
o 

20000 
20001 

o o 

7711 a 1 0000 .. DENT 
77070 10002" NORM 

After execution of the DENT instruction at addr. 20000 and the 
NORM instruction at addr. 20001, memory word COUNT will look 
as follows: 

10002 COUNT 00000 00003 

NOTE: The following values in A and Q will all result in the 
same number of shifts if normalized. 

A 
00000 00000 
77777 77777 
00000 00000 

Q 
OOOUO 00000 
77777 77777 
00000 00001 

Shift count will be 728 or 58,0. 

28 



APpgNDIX A 

1230 COMPUTER FLOATING POINT AND RTC INTERRUPT 

FLOATING POINT OPERATIONS. - The floating point format is "shovn below 
with each operand occupying 45 bits of a possible 60. Consecutive memory locations 
are indicated by Y, Y+1. 

k ~------------ 60 Bits ----------------~'>I 

(c) Characteristic 

K 30 bits --~--------------------- 30 bits--------------------~, 
k~------1 5 bi ts ------~>f 

S, = 1 bit algebraic sign 

M = 29 bits mantissa 

S2 = 1 bit algebraic sign 

C = 14 bits characteristic 

The number notation used is. one's complement. To obtain the algebraic complement 
of a floating point number, all 30 bits of the mantissa:"and algebraic word are 
complemented. 

The characteristic as shown above is a 14-bit plus sign, onels complement, un­
biased n~~3r held in the Q register or address Y. The characteristic values are 
from 2-1 ~ to 2+16383 with sign extended through the upper 15 bits of Q or Y. 

The mantissa is a 29-bit plus sign, fractional onets complement number held in the 
A register or address Y+1. The mantissa is normalized to be greater than or equal 
to ~ but less then 1. All floating point instructions norrr~lize the mantissa to 
be within this range. 

ZERO MANTISSA. 
a) When "the mantissa is zero, the characteristic is scaled to a binary zero (+2°). 

b) l,.J'hen doing a floating point add where one value :is zero the sum will result in 
in the other value. 

c) When doing a floating point subtract when the contents of A equals zero and 
11m 0, the result is the complement of the Y ~~ntissa. 11m = 0 also results 
in a zero difference. 

d) When doing a floating point multiply with a zero mantissa the product is zero. 

e) When doing a floating point divide by zero results in a floating point divide 
fault interrupt. 

f) When doing a floating point divide into zero the result is zero. 

29 



FLOATING POINT INTERRUPTS. - When any floating point operation results 
in any of "the following conditions it sets the interrupt bit in the priority soan 
for program interruption. These interrupts cannot be locked out. 

a) Characteristic overflow - This occurs when the decimal value of the charac­
teristic exceeds +16,383. 

b) Characteristic underflow - This occurs when the decimal value of the charac­
teristic is less than -16,383. 

c) Floating Point Divide Fault - This occurs whenever an attempt is made to 
divide a floating point number by zero in executing the floating point divide 
instruction. 

FLOATING POINT INSTRUCTION FORMAT. - The floating point instructions 
are Format II instructions and are described below -in Basic ~er~tio!'!s. 

30 bits 
y 

F = 6-bits Format II function code, B = 3-bits index registers, S = 2-bits 
address extension used, Y = 13-bits contains relative address. Effective 
address Y = Y (extended as per S) + B. 

BASIC OPERATIONS 

X N 10
m 

88.0 .88 102 

4.6 .46 101 

0 
.14 .14 10 

.0705 .705 10 
-1 

When performing any arithmetic functions it is rr~ndatory to properly position 
the decimal (or binary) point. The above chart shows a method of acaling the 
original number (X). N (.88) is the mantissa and the exponent (power of 10) is 
referred-·to as the characteristic. Now take the value 010.1100102 and see what 
happens when we use the power of 2. The most insignificant zero ~n the binary 
number is the sign bit; if the bin~ry point is shifted two binary places to the 
left, it becomes O. 10 1.10 010 x 2. The number • 000 000 0102 CQuld be stored as 
0.10 000 000 x 2-7• As can be seen, any binary number, no matter how large or 
small, can be expressed as some quantity times a power of 2. The number is stored 
in one location, and the power of 2 is stored in another location but is always 
identified with the number to which it belongs. 

a) FLOATING POINT ADD/SUBTRACT. - The floating:"point addition and 
subtraction are identical except for complementing of Y in the subtraction; 
therefore, only the addition "process will be explained. 

30 



Initially, A contains the augend in floating point format, and Y contains the 
addend in floating point format. The mantissa is the actual number to be added 
and the characteristic is the true binary exponent of the number, and the binary 
point is between S1 and M. The add instruction adds a floating point n~~ber ~hose 
mantissa is in Y+1 and characteristic is in Y. The final normalized mantissa is in 
A and the final characteristic is in Q. 

To manually perform floating point add do the following: 
1. Scale the first number. 

2. Put the scaled numbers into AQ. 

3. Set Format II F/F, put 15030 01000 in U register, clear sequencer, set 
repeat active, set up step mode, hit Start twice. 

4. Take the number to be added and scale it. 

5. Put scaled number manually into AQ. 

6. Perform the following to do a floating point add: Set Format II F/F, 
put 20 030 01000 in the U register. Clear sequencer, set repeat active, 
set op step mode, hit start twice. A floating point add has been per­
formed on the numbers in AQ plus the numbers in address Y(1000) & 
Y(1001 )+1. 

b) FLOATING POINT MULTIPLY. - Function code is F = 7722. ~lhen this is 
executed it will replace the contents of the AQ register with the normalized 
floating point product of AQ times (Y + 1, Y). The 29 most significant bits, 
after normalizing, plus sign of the result are found in the A register. 
See Section 5 for sequence timing. 

NOTE 

This instruction can cause a characteristic overflow or underflow interrupt. 

c) FLOATING POINT DIVIDE. - Function code is F = 7723. When this is 
executed the contents of AQ register is replace with the normalized floating point 
quotient of AQ divided by (Y + 1, Y). See Section 5 for sequence tuning. 

NOTE 

This instruction can cause a characteristic overflow or underflow interrupt 
or a floating point divide fault interrupt. 

REAL-TIME CLOCK. - When the real-time clock requests updating, the RTC 
flip-flop is set. A check is then made of priority to see if a functj.on cf equal 
priority has requested"priority. If no equal priority has been franted, the 
priority will be granted to the clock, the I/O sequence will be initiated, and the 
count in the clock register will be advanced by one. After the clock has been ad­
v~nced priority may then be granted to a function of equal or lower priority.. The 
clock circuits are shown in figure 8-75. The clock input may either be interr.al 
or external depending on whether the 4010 card is placed in location OJ52C or 
9J53C. 

a) REAL TIME CLOCK INTER.B.uPT. - This feature provides two basic RTC inter­
rupts: overflow and monitor (Delta Increment). These are prograIT~ble ~eal-Time 
Clock Interrupt features providing a wide range of internal, program-controlled 
timing/clocking of the computer programs and computer co~trolled related systems 

'31 



for such application as Real-Time Executive control systems, Real-Time batch 
processing, and Real-Time Time-Shared operations. 

b) REAL TIME CLOCK OVERFLOW INTERRUPT. - The RTC overflow interrupt occurs 
when the RTC switch is activated on the computer console and the following two 
conditions are satisfied: 

1 ) 

2) 

The "Enable RTC overflow interruot" instruction (F = 7706) has 
been executed by the computer (Fig. 8-316B). 

The RTC goes from 77777 77777 to 00000 00000. 

When the above two conditions are satisfied, an internal interrupt occurs. 
These two conditions must be repeated to allow another RTC overflow interrupt. 

The RTC may be programmed by means of the store instruction consisting of any 
desired initial v.alue so that the time-to-overflow, based on the RTC rate of 1024 
cps, may be controlled accurately. 

The maximum time between RTC overflow interrupts is (230_1) cycles of the 
real-time clock at 1024 cps or approximately 12 days. 

c) READ TIME CLOCK MONITOR INTERRUPT. - The RTC monitor interrupt will 
occur when the RTC switch is activated on the computer console and the following two. 
conditions are satisfied: 

1 ) 

2) 

The liEnable RTC monitor interruotl! instruction (F = 7726) has 
been executed by the computer (Fig. 8-316A and B). 

The lower 17-bits of the RTC register (Fig. 8-316B) are equal 
to the lower 17-bits of the RTC monitor register (Fig. 8-316B). 

1-lhen these two conditions are satisfied, an internal interrupt occurs. These 
two conditions must be repeated to allow another monitor interrupt to occur. 

d) RTC MONITOR INTERRUPT FOR SPECIFIC DELTA TINE INCREMENT X. - The 
programmer performs the following: 

1) Reads up the current contents of the RTC, 

2) Adds the Delta Time Increment X, 

3) Stores the resultant clock value in the RTC Monitor Register, and 

4) Executes and "Enable RTC ~onitor InterruptI! instruction F ::: 7726. 

The RTC Monitor Interrupt will occur after the passage of X time, based on 1024 
cycles per second. 

. ~ote the maximum time capable of being programmed between RTC ~onitor Interrupts 
~s (2 7 - 1) cycles of the RTC (at 1024 cps) of approximately 128 seconds. 

32 



I 

Address 
(Octal) 

(00000-00077) 

00000 

00001 

00002 

00003 

00004 

00006 

00007 
through 
00017 

00020 
through 
00037 

00040 
through 
00057 

00060 
through 
00077 

(00100-00277) 

00100 
through 
00117 

00120 
through 
00137 

00140 
through 
00157 

00160 

"' 

Memory Address Allocations 

Function 

Main Memory address allocation 

Fault Entrance Register (with Automatic 
Recovery Switch in Neutral Position) 
Floating Point Overflow Interrupt 
Entrance Register 
Floa ting Poin t Underf1,<>w Interrupt 
Entrance Register 
Floating Point Divide Fault Interrupt 
Entrance Register 
Real Time Clock Monitor Interrupt 
Entrance Register 

Real Time Clock Overflow Interrupt 
Entrance Register 

Memory Words 

External Interrupt Entrance Registers 
for Channel 0 through 17 

Input ~onitor Interrupt Entrance Registers 
for Input Channels 0 through 17 

Output ~onitor Interrupt Entrance 
Registers for Output Channels '0 through 17 

Control Memory address allocation 

Input Buffer Control words for Channels 
a through 17 

Output Buffer Control Words for Channels 
o through 17 

External Function Buffer Control 1,.Tords 
for Channels 0 through 17 

Real-Time Clock 

33 



00161 
t through 

00167 

00170 

00171 
through 
00177 

00200 
through 
00237 

00240 
through 
00257 

00260 
through 

00300 
through 
00477 

(00500-00537) 

00500 
through 
00517 

00520 
through 
00537 

(00540-00577) 

(00600-77777) 

00600 
through 
00617 

B Registers 

Real Time Clock Monitor Register 

Memory Storage 

ESI Input Buffer Termination Word or 
CDM Reload Word storage for Channels 
o through 17 

ESI External Function Buffer Termination 
Word Storage for Channels 0 through 17 

Memory Storage 

Reserved for the optional additional 
128 words of control memory 

Main Memory address Allocation 

External Function Monitor Interrupt 
Entrance Registers for Output Channels 
o through 17 

External Interrupt l~ord Storage Registers 
for Input Channels 0 through 17 

NDRO Bootstrap 

Main Memory address allocation 

Intercomputer Time-Out Entrance Register 
for Channels 0 through 17 

34 



; , 

. .., 
I , 

UNIVAC 
FEDERAL SYSTEMS ,DIVISION 

INTERCOMMUNICATION 

TO: Distribution FROM (NAME): M. L. Schwabel 

LOCATION & OATE: VAFB 12 May 1970 

DEPARTMENT: Systems Development 

C;ARBONS: SUBJECT: CS-1 Compiler 

A feature has been added to the CS-1 system to allow for the resequencing 

of a #46 output tape. A CS-1 program on a #46 tape may now be given a 

new DECK ID and sequence numbers without the generation of a· card deck. ' 

OPERATING INSTRUCTIONS: 

Bootstrap load the CS-1 system tape with KEY 2 set. 

The program will now type out the following instructions: 

46 on TT2, SCRATCH ON TT3 

(SET KEY 3 FOR 2 COPIES, 2ND COPY ON TT4) 

TYPE STARTING CARD NO. 

Now type in 4 numeric characters for the beginning card number. 

TYPE DECK ID 

Type in 4 characters for a DECK ID. Any alphabetic or numeric char­

acter may be typed in (no special characters). 

The resequenced #46 will be on TT3, and a second copy on TT4 if KEY 3 

was set. 

MLS:bg 

M. L. Schwabel 
Systems Developmen~ 

)/f.:I JJ~ 


	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20A
	20B
	20C
	20D
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	A-01

