G. Bell, S. H. Fuller, and
D. Siewiorek, Editors |

Computer
Systems

The -Evolution of the
Sperry Univac 1100
Series: A History,
Analysis, and
Projection

‘B. R. Borgerson, M. L. Hanson, and P. A,

Hartley
Sperry Univac

The 1100 series systems are Sperry Univac’s large- _

scale mzinframe computer systems. Beginning with
the 1107 in 1962, the 11080 series has progressed
throagh & suecession of eight compatible computer
- models to the lsiest system, the 1100/80, introduced
in 1977. The 1100 series nardware architecture is
based on a 35-bit word, ones complement structure
which obtains one eperand from storage and one from
a high-speed register, or two operands from high-
speed registers. The 1100 Operating System is
designed to support # symmetrical mulliprocessor
configuration simuitaneounsly providing :
- maolliprogramined batch, timesharing, and transaction
- environmenis.
© Key Werds and Phrases: 1180 computer series,
Compiter architeciure, muitiprocessing,
multiprogramring, operating system, programming
languages, data management systems, end user
facilities, executive control sofiware
CR Catepories: 1.3, 4.0, 4.20, 4.30, 4.32, 4.33,
¢3:-,6G 5.21, 6.30

Cppyright © 1977, Association for Computing Machinery, Inc.

*. General fermussior to republish, but not fer profit, all er pan of

* this materind s granted provided that ACM's cupvrmht notice is
gn«en acd that reference is made to the puoltcatlon, to s date of
lssue, and to the fac that repriminy privileges were granted hy

étmss;cm of the Asscciaiions fer Campuiing Machinery.
Authors’ Aud«r.es.se:. 5. H. Barﬂcrwn. t-m.rr) Lirivac. P.O.
"lox 500 M9-114, Blue Bell, PA 194245 M. LT Hansen, Soerry
Univae, P.O. Box 13942 MS 4243, St. Paul, MN 331a5; P. A.
Hartley, Sperry Univac, P.Q. Box 3942 MS 4823, 5. Paul, MN
35163,

25

1. Inircdection

Although there are earlier Sperry Univac® systems
with the 1100 designation, the 1107 system represents
the first of the compatible 1100 series. The 1107
system, first delivered in 1962, marked the introduc-
tion of the basic structure of the current 1100 series
architecture. The only major features carried forward
from the pre-1107 systems were the 36-bit word and
the ones complement arithmetic. Although the basic
architecture has remainsd the same since the 1107,
the series has progressed through 4 architectural
classes, 8 unit-processor systems, and 23 different
processor/system configurations.. Over 1200 of the
1100 series processors had been delivered as of July
1977, These systems constitute a worldwide installed
base which at approximately 4 billion dollars, is second
in value cnly to the IBM 36(/270. The evolution of
the 1100 series is depicted in Figure 1 which shows the
date of introduction of each system. Figure 2 shows
the genealogy and depicts the four architectural classes.
_ Mostuser programs written on any post-1107 series .
system will run on any other 1100 series system without
modification. The primary exceptions are time-de pend-
ent programs and certain user generated, foreign de-
vice specific, assembly language code.

The 1107 was originally designed for bawch-oriented
scientific and engineering applications. The architec-

“tural and the operating system evolutions rteflect a

continuing push towards more effictent interactive and
business-oriented capabilities. The change in the rela-

* tive. percentages of scientific work versus business-

oriented work of current systems reflects this trend.
Substantially more than half the to:al curreni work
loads o 1100 systems are business oriénied.

One of the strongest features of the 1100 series is
its multiprocessor ‘capability. Multiprocessor configu-
rations have been in general use sinee the introduction
of the first 1'108Lm1:§tiprocessr}r system in 1263, We
belicve the 1108 was the first commercially available
general-purpose - computer to support a completely
symmetrical multiprocessor system; i.c., all processors
coequal in sharing the same memory, ifo channcls,
and a single copy of the Executive System. Early 1100

ultiprocessor systems did not yield the expected
performance improvement over unit processor config-
urations, and hardware and software stability problems
were encountered in the first systems. The feedback of
many years of experience has preduced solutions to
these early problems. As a result, high eficiency,
stability, and system availability are currentiy being
achieved with symunetrical muitiprocessing configura-
tions. As indicated in Figure !, ihe multiprocessor
configurations of the 8 base systems idcrease the total
number of systems in the 1100 series tg 23,

Jo limit the length of this paper 2ad to focus more oy
eharpl}, on the 1100 series architecture and operating ~ -
system, threc important areas are omiited: the com- ~

Commumgatmns January 1978 TR
of i . Volume 21 -
the ACM H

; ~ Number |

¥

&
i
i

)
s

R

fid
A,

e

Fig. 1. 1100 Series evolution.

1108 3p*
110a2r

ARCHITECTURAL CLASS

1100/

1100/83

11o0/2
1100/398

1100/44 | *=*
1100/43
1100/42
1oea

IHHIZF
1nowe

#100/22 | 1100/12

1o/ | reaim

162 53 ‘B4 65 66 67 ‘G868 M
' FIRST DELIVERY

Fig. 2. 1100 Series architectural genealogy.

| 11DO."10| I 1100!20!

munications front-ends; the peripherals associated with

- each system; and the available applications programs.

As a result; this paper is divided into two sections.
The first section provides a brief summary of the basic
1100 series structure through a description of the 1107
architecture, discusses the architecture and technology
of ecach of the 1100 series systems, and examines

"several possibilities for future 1100 series systems.

The secord section follows a similar progression for
the 1100 series operating system. For ease of compari-
son and conirast, a summary of some pertment char-
acteristics of the 1100 series systems is given in Table

- L

Expressing system speed in units such as millions
of instructions/second is of dubious value unless the
reader is familiar with the instruction repertoire of the
system and the mix of instructions used. Consequentiy,
this paper uses the basic add time as a metric. In the
basic add, ail systems in the 1100 series read a 3€-bit
operand from storage (indexed if desired}, add the

26

T T2 k] 4 75 76 B |]

LEGEND: *INDICATES NUMBER OF PROCESSORS
) “*RENAMED “1100 EXECUTIVE" IN 1972

S*LAST DIGIT INDICATES NUMBER OF PROCESSORS

value to an accumulator register, algebraically incre-

.. ment the index register if specified, read the next

instruction, and are ready to execute this next instruc-
tion when the add has been completed. In addition to
the add time, Table I lists the time to do a single-
precision, floating-point divide which provides a better
indication of the relative processor 'speeds since the
divide time is relatively independent of memory cycle
time. The slowest user instruction tends to be a double-
precision, floating-point divide but the use of this
instruction would exclude the 1107 system from the
comparison.

2.0 Architecture and Technology

2.1 1107 System
~ The 1107 system, introduced in 1962, provtded
the base architecture for the 1100 series. The 1108,
1110, and 1100/80 descriptions begin with a summary
of major changes from the previous system.
The major features of the 1107 are:
e 36-bit word, ones complement arithmetic
16 index registers, 16 arithmetic registers
standard usage is one memory operand and one
register operand; optional usage is two register
operands .
 unlimited cascading of indirect addressing, with
indexing possible at each level

® 16-bit address field plus index yields absolute’

address; 64K words maximum for memory
interrupts are to a dispatch table in memeory
¢ itwo memery write lockout windows (however,
no privileged state was provided)
Communications January 1978

of . Volume 21
the ACM Number 1

i

N

¢t Table } 1100 Systems characteristics.

1107 1108 1106 1114 1100/20 1100/40 1100710 1100/80
First
Oalivery _ 1862 1965 1969 1972 1975 1975 1976 1817
Integer 1 2 3
Add Time {ns) 5000 750 1000° - 1002 s 300 1125 200
F.P. Divide 7 4
Tima (ns} 26700 8250 11004 52002 8325 52002 8625 4300
Number
Base Registers 0 2 2 4 2 4 2 4
Maximum Number
Processars 1 2 2 4 2 6 2 4
1/0 Channefs/
Processor 16 15 18 0 16 0 18 9
1/0 Channels/
lou - 16 . - 4 - 24 - 26
Maximum .
Number 10Us . 0 2 0 4 0 4 0 - 4
Storage . 1 1 1 Primary/ 1 Primary/ 1 Cache/
Structurs jevet leve level Extended loval - Extended level Main
Logical Addrass :
Space (wards) 65K 262K 2625 230 520K 230 524K 2%
Physical Memory : 5 262K/ 524K/ 16K/
Capacity {words) 63K 262K 262K M 524K M 524K AM
Memory : Wire/ :
Technology Core Core Core Core Mos TTL/MOS - Mos. ECL/MOS
Mumber Pracessors) : :
By 811/17 36 206 338 290 50 108 100 12
Number .
Instructions 117 1% 151 206 151 205 : 151 201°

Notes: ! 1506 ns with 262K of “Unitized" Storage. *Time for executing out of primary storage. ! Time assumes in *“hit’* in cache. 411,500 ns

¢ input/output performed via 16 bidirectional word

: channels :

s. single-precision; floating-point computational ca-

: pability provided

e trace mode provided for aiding program debug-
ging

e two subroutine call instructions provided: one
call instruction leaves the return address in an
index register, the other leaves the return ad-

. Jdregs at the memary iccation aEegg‘ of the
& an extensive test and search repertoire is pro-

vided, including instructions to test; search,
and mask search for an operand within or
outside specifiable limits
Fundamental to the 1100 architecture is a General
Register Set (GRS) that is structured as shown in
Figure 3. Most instructions periorm some operation
on, or examine, a value located in one or more (up to
four) of these high-speed registers. In addition to the

27.

‘Communications

with 262K of “Unitized" Storage. ® At initial delivery; Can be field-upgraded 10 524K. ° Does not include 494 system insiructions.

uscr visible registers, the GRS contains information
such as input/output controls; however, these addi-
tional entries are not of direct interest to a user.

2.1.1 Instruction Format

The instruction format is shown in Figure 4. The
two 4-bit felds, 2 and x, allow specification of two
registers out of the GRS. The GRS is composed of
thrée subsets of registers:;] X' registers are used for
indexing; A registers are jefmeral-purpose arithmetic
registers; R registers_ are intended for special purposes
to be discussed later.

The X registers have the format shown in Figure 5.
If indexing is not specified (the instruction x-field
contains all zeros), the operand address in main storage
is the 16-bit u-field. If the x-field is nonzero, it selects
1 of the 15 X registers and the effective operand

-address is 4 + X,,. Additionally, if the 4-bit is |, the

operation X; + X, —» X, is performed, effecting a
programmer-defined increment or decrement (X, i3

January 1978

of Volume 21
Number 1

the ACM

Fig. 3., General register stack.

ADDRESS V1A ADDRESS VIA
x, 8 FIELDS RELATIVE ADDRESS
ra prm—————— e — Ag
o]
._ X
rFo |u-———"————7"7"7
alwl]
Aq
7 L] 3
35
J» -
(o[_REAL_TIWE CLOCK_ 100
1| _ _REPEAT COUNT _ __ |
2 _mask . _
R<
) ' 17
y I
! [
I o
L _________ T

NOTE: NUMBERS IN OCTAL

Fig. 4. Instruction format, TR

a x hi u

treated as a signed value) of the index. This permits,
for example, the summation of an array in any single
dimension with a 2-instruction loop, where most proc-
essors would require a 3- or 4-instruction loop. There
is no overhead for either indexing or incrementing the
index. Register to register transfers are accomplished

by specifying one register in the a-field and the other -

in the u-field (relative address less than 200g). By
operating ' system convention, all user programs are
biased so that they never have a main storage address
less than 1000,; consequently, users are not impacted

by seemingly ambiguous addresses in the range 0-.

200s. The 1107 addressing is shown in Figure 6.
 The arithmetic register to be used is specified by
the 4-bit g-field. This is usually one of the A registers
but it can also be an X or R register; there are some
special instructions for each of the register subsets.
Note in Figure 3 that the last four X registers overlap
.e first four A registers, thus making a more powerful
struction set available for some of the index registers.
Parameters are usually exchanged with procedures by
leaving values or addresses in the first few A registers.

- 28

~ . .

i -
. [4 | r] 4 11r 18 .

Fig. 5. Index register formpat.
X; (INDEX INCREMENT) Xm{INDEX MODIFIER}

e i 18

Fig. 6. 1107 Addressing.
GRS

— X | Xm

OPERAND

The i-bit (see Figure 4} provides cascaded indirect
addressing. When the i-bit is zero, an operand is
fetched as described above. When the /-bit is 1, an
indirect word is.fetched which replaces the original x,
h, i, and u fields. If the i-bit of the word fetched is also
1, another word is fetched. Since each fetch has
independent control of x, A, i, and u, chains of consid-
erable complexity can be formed. This cascading proc-
_ess continues until eventually a word-is fetched with i
= {; this word is used to compute the operand address.

The f-field (see Figure 4) defines the instruction to
be performed. For some values of f, the j-field is used
as a minor function code. The j-field is also used to
select a 6-, 12- or 18-bit byte out of memory and right
_justify the byte in an arithmetic register (the 1108
expanded this usage to accommodate 9-bit bytes). A
third use of the j-field is to specify an immediate
‘opzrand. If x is zero, the immediate operand is &, i, u;
if x is nonzero, the immediate operand is u + X,,. The
immediate operand can be specified either with or
without sign extension; i.e., bit 17 is propagated
throughout bits 35 through 18 (higher order bits).

Commuaications :){;muary 1978
of Volume 21
the ACM

. Mumber 1

S

ey

R A S T e T e Ly oy

2.1.2 Arithmetic Instructions

Figure 7(a) shows the format of a single-precision,
floating-point word. The exponent value ranges from
—200 to +177,. A bias of +200, is added to all
exponents to form a characteristic in the range from 0
to +377,. This format allows the use of fixed-point
instructions for making magnitude comparisons on
floating numbers. Instructions to aid conversion be-
tween integer and floating-point forms are provided,
as well as four single-precision, floating-point instruc-
tions. The mantissa contains 27 bits.

Negative numbers are formed by performing a ones _

complement transformation on the representation of
the positive value of the number. Normalization is

‘binary so that all bits are meaningful, providing ap-

proximately 8 decimal digits of precision. Thz range of
floating-point numbers is approximately from 103 to
10-%8, ,

The ones complement arithmetic has a useful side
effect in that the arithmetic complement instruction
also achieves logical negation. Thus A operator B —

. C, where operaror is any of the 16 possible logic

functions, performs the operation in a maximum of
three instructions. g

2..1.3 Iterated Insiruciions -

There are iteration instructions .that use the R
registers; in particular R, is used as a repeat count
register and R, is used as a mask register. One of these

instructions can use any R-tegister (except R, which is -
used for the real time clock). The use of multiple R-

registers allows efficient control of nested loops.
Many search and masked-search instructions are
provided. A particularly powerful instruction, masked
search for operand within limits, will be used for
ulustration purposes. This instruction causes a search
to determine if an operand is within a predefined
range. The range is specified by preloading the lower
and upper limits iato two consecutive A registers. The
a-field in the search instruction points to the first of
these registers. For masked, iteration instructions, R,

_contains the maximum number of operands to be

tested and R, contains the mask that specifies which
bits are to be compared. Since X, + X; — X,, on each

iteration, flexibility is provided for efficiently searching.

multidimensional arrays. If a compare is successful
then the repeat count is decremented, the next instruc-
tion is skipped, and X, can be used to identify the
operand that compared successfully. If a compare is
unsuccessful then the repeat count is decremented, X,
is modified, and the next compare is made. If the
Iepeat count reaches zero, the next mstruction is
executed. Note that R, and R, are implicitly defined
by the function code as opposed io a register selection
Held within the instruction word. In addition to the
search instrucrions, a block transfer instruction uses a
similar process to provide fast storage to storage trans-
fer.

29

Fig. 7. Floating-point formats.
SIGN CHARACTERISTIC MANTISSA

e | 7 J

SINGLE PRECISION
- e

SIGN CHARACTERISTIC _ MANTISSA MANTISSA

| =' | | * l

DOUBLE PRECISION
{n}

2.1.4 Other Instroctions
Two jump instructions are provided to allow sub-

routine calls. One of these instructions stores the
return address in an index register thus allowing pure-
procedure code. The other instruction jumps to the
entry point of the procedure and stores the return
address at this address minus one. This instruction
prohibits the use of pure-procedure but allows more
convenient nesting of subroutines.

An instruction is provided for implementing a prim-
itive memory lockout mechanism. Two writable win-
dows can be specified. These windows both start and
end on 4K-word boundaries. Since no privileged-mode
exists in the 1107, this instruction is only useful in
protecting a user from himself. For debugging pur-
poses, a trace-mode instruction is provided which puts
the processor in trace mode and causes an interrupt
every time a branch is about to occur (either uncondi-
tional or successful conditional).

2.1.5 Program Organization

Physical storage is organized into two independent
modules allowing two independent accesses concur-
rently. To make use of this capability, programs are
assembled using two logical “location counter’’ groups.
One of these location counter groups is usually devoted
to instructions and the other to data, to permit fetching
instruction n + 1 simultaneously with the fetching of
the operand for instruction n. The storage units have a
cycle time of 4 microseconds but the overlap allows an
effective cycle time of 2 microseconds.

2.1.6 Input/Output

There are three basic instructions provided to initi-
ate an input/output sequence. Once initiated, the chan-
nel hardware completes the transfer without interven-
tion by the processor. The a-ficld of the instruction
word specifies 1 of 16 input/output channels, u + X,
points to an input/output control word formatted as
shown in Figure 8, and the f-field specifies the instruc-
tion: Load Function in Channel (send command words

" to the peripheral); Load Input Channel (read) or

Load Output Channel (write).

The channel uses an input/cutput control word to
control the transfer. If a channel is in output mode {a
Lead Cutput Channel instruction was executed} and a
request for a word is received.from a peripheral, the
channel will transfer the word in main storage specified
by Address to the peripheral, increment or decrement

Communications January 1978
of Yolume 21
the ACM Number I

!

Fig.'8. Input output control word.

INC/
DEC COUNT ADDRESS

e v]

.e Address field (as defined by the Inc/Dec field),
' nd decrement the Count field. If 2 channel is in input
mode and a signal is received indicating that the
peripheral has a word available, the channel stores the
word at the Address specified in the inputfoutput
control word, increments or decrements the Address
field, and decrements the Count field. Variants of the
above three instructions cause an interrupt to occur
when the Count goes to zero. Data transfers take the
form of 36-bit words transmitted over a dedicated
channel for each peripheral subsystem. The 1107 sys-
tem can have a maximum of 16 of the these bidirec-
tional channels which are an integral part of the
processor.

Channel priority is based primarily on the function
being performed on the channel. In some cases, the
priority is dynamic so as to avoid a total lockout of
some functions. For example, input data requests have
priority over output data requests; however, if an
input transfer is in progress and both input and output
requests are pending, the output request will be given
priority.

2 1.7 Technology :
The 1107 processor is constructed thh discrete
emiconductor technology except for the GRS, which
.ses a thin film storage element. Main storage is core
memory with a 4-microsecond cycle time giving a basic
add time of 4 micreseconds.

2 Z 1108 System

The 1108 system, first de]wered in 1965, intro-
" duced several improvements over the 1107. The major
improvements were increased throughput and en-
hanced protection in multiprogramming environments.
The primary new feature which provided these im-
provements was a relative addressing structure which
created a dynamic relocation capability. In addition to
faster unit processor operation, multiprocessor config-
urations were introduced which offered higher per-
formance and greater system availability. Significant
new features on the 1108 are: _
¢ changes to support multiprocessor operation
—test and set instruction included for interpro-
cess communication
—interprocessor interrupt capability
relative addressing achieved via two base registers
better storage protection as part -of relative ad-
dressing structure
’ ‘s logical address range increased to 65K words for
) - programs, and 262K Wwords for data
¢ privileged mode

» double-precision, fixed-point instructions
_ double-precision, floating-point capability
e g-field used as minor function designator to ex-
tend the number of function codes
faster instruction execution
e availability control unit to partition components
into three systems
e memory switches for multiple processor access to
each memory module
e shared peripheral interface to provide switching
between multiple processors and peripherals
e 1107 compatibility mode to invoke 1107 address-
ing
physical storage increased to 262K words

2.2.1 Addressing

A major improvement te the 1107 architecture
occurred in the area of addressing. The 1108 hardware
allows the instructions and data of any program to be

-dynamically relocated in any available space. This is

made possibie by the introduction of two base registers.
Figure 9 shows the addressing structure of the 1108.
The segment (called ‘bank’ in 1100 series manuals)
select algorithm is given in Figure 10. The decision

variable is a segment select value that determines .

which segment to use. Conceptuaily, each base register
contains an 18-bit number, maintained by the Execu-
tive with the low-order 9-bits being 0. The value in a
segment select register defines the length of the area
based by Base 0 and is used to determine whether a
relative address should be based by Base 0 or Base 1.

- An effective operand address for the 1107 is a4 + Xp;

for the 1108, it is u + X, + base.
Since. the base reglsters are 18 bits, a storage

capablhty of 262K words is possible. Normally this-

space is -occupied by the Executive and several pro-
grams being multiprogrammed. Each program can
address up to 65K words without indexing, and up to
262K data words (minus instruction space) with index-

, ing, since X, is 18 bits long.

Storage is assigned and protected on a 512-word
boundary. Two storage limits registers are associated
with each base register. These registers identify the
extremities of the addressing range allowed to each
segment. Access outside the segments is not allowed
and write protection is selectable within the segment.

The 1108 relative addressing structure provides a
relocation capability to allow efficient multiprogram-
ming. The incorporation of a privileged-mode and a
better memory protection scheme provides the neces-
sary isolation for multiprogramming. Instructions deal-
ing with control of system resources, input/output
instructions, for example, were reclassified as privi-
leged. The requirement for muoltiprogramming led to
the addition of a duplicate General Register Set similar
to the one shown in Figure 3; one GRS is intended for
the user and the other tor the Executive. The user
cannot use the Executive’s GRS but the Executive can

Communications - January 1978
of | Volume 21
the ACM Number 1

/

cf]

-, Fig. 9. Address structure of 1108 architecture.

SEGMENT
SELECT

ABS01 UTE
BASE 0 Q ADDRESS

B8ASE 1§ '

Fig. 10. Segment select algorithm for 1108 architecture.

BASE
SUPPRESS
RO

KELATIVE ADORESS

{ut Xm)

USE AEL.

ADOR. AS

ABSOLUTE
ADDR.

RELATIVE
ADDRESS

USE REL.
ADDR. AS
GRS ADDA.

REL, ADDR.
<SEGMENT
SELECT

REL ADOA.

WITHIN
SEGMENT 0
LIMITS

AEL. ADDR®
WITHIN
SEGMENT 3
o LIMITS

YES

USE
SEGMENT 0
BASE VALUE

USE
SEGMENT 1
BASE VALUE

STORAGE
LIMITS
VIOLATION

use either set. This additional set of registers reduces
the context switching time. To reduce context switching
time even further when the Executive makes use of
_the user’s GRS, the Executive normally uses (by soft-
ware convention) a “minor set” of only 13 registers.

2.2.2 Multiprocessing _
Later versions of the 1108 can be configured as
tightly coupled, symmetric multiprocessors. This re-
quires muitiple access ports at each of the main storage
units. The Test -And Set instruction was added to

facilitate interprocess synchronization. This instruction

causes the storage unit to read a semaphore bit, and
then, without allowing any other processor to access
the same memory word, to set the semaphore bit. If
the semaphore was initially set, an interrupt occurs
(indicating that the item protected by this semaphore
is already being used). At this point the inierrupted
process is queued until the semaphore is cleared, If
the semaphore was initially clear, the next instruction

31

is executed. Execution of the Test and Set instruction
must precede the use of any data where erroneous
results could be produced by two or more instruction
streams operating on these data concurrently.

The introduction of the multiprocessor version of
the 1108 led to the development of a new kind of
system component, called the Availability Control Unit
(ACU). This unit allcws partitioning of the system

" into three smaller independent systems for debugging

of either hardware or software on one system, while
normal operation (at reduced throughput} continues
on the remainder of the system. Each processor period-
ically sends a signal to the ACU indicating that the
processor is still functioning and the Executive is still
in control. If the ACU does not receive all the expected
signals within a predetermined time, an automatic
recovery sequence is initiated.

Some of the problems encountered in the expansion
of the system from unit processor to multiprocessor
configurations were: (1) The performance capability
of main storage was strained by the increase in system
activity, resulting in less-than-expected processor per-.
formance and increased frequency of ifo data overruns.
{2) Some of the timing margins provided on the
processor to main storage interface were reduced to
accommodate the increased delays resulting from-
longer cables and multiple port switches. (3) The
system interfaces and the grounding scheme were
strained by the increased number of interfaces required
and the larger physical size of the system,

2.2.3 Arithmetic .
A set of feur double-precision floating point in-

structions, and instructions to aid in conversion be-
tween integer and the new floating-point format were
added to the 1107 repertoire. The range of floating-
point numbers was extended to approximately 109 to
1073 and the precison was increased to 60 bits.

The format for double-precision, floating-point
words is shown in Figure 7b. Double-precision oper-
ands are located in adjacent registers with the insiruc-
tion specifying register A (the most significant half)
and implying A +1 (the least significant halfy. There is
also ‘one instruction, a double shift and count, that
places the number of shifts in A +2. Since the specified
A regisier could be A4 ;, registers 34, and 35, must be
reserved as shown on Figure 3. Double-precision op-
erands can start on any word boundary in either GRS
or main storage.

In addition to the double-precision, floating-point
instructions, the 1108 provides double-precision inte-
ger add and integer subtract instructions, along with
double-word register load, store, and test instructions.

2.2.4 Input/CGutput

The 1108 has up to 16 input/output channels inte-
gral to the processor. These channels are faster than,
and upward compatible with, the 1107 channels. The

Comununications January 19738

of Volume 21
the ACM

Number 1

1103 also permits the inclusion of ane or two separate
input/output controllers; each controller contains up
to 16 input/output channels.

.5 Technology

g The 1108 processor is constructed of discrete com-

ponents except for the General Register Set, which is
composed of integrated circuits. Main storage is core
memory with a 750-nanosecond cycle time.

2.3 1106 System

The 1106 system was introduced in 1969 as a
lower priced aliernative to the 1108. The 1106 is
architecturally similar to the 1108; the main differences
are storage and timing changes. Two main storage
units, both core, are available for the 1106. One of
them has a cycle time of 1.5 microseconds and is
referred to as “‘unitized” storage. This storage is de-
signed in 131K word modules; consequently, instruc-
tion execution time is a function of storage size. If
there are caly 131K words of storage, it is not possible
“to petform an operand access and simultaneously pre-
fetch the next instruction; thus, the basic add time is 3
microseconds. With 262K words of storage, memory
overlap can be used to reduce the basic add time to
1.5 microseconds. The second, and faster, storage unit
is constructed of 32K word modules. The system using

‘15 storage is called the 1106-I and the basic add

ne is 1.0 microsecond.

2.4 1110 System

"The 1110 system, first delivered in 1972, was
designed to improve upon the 1108 by increasing the
degree of multiprogramming, improving the capability

in a business environment, and allowing larger muiti- .

processing configurations. Changes from the 1108 in-
clude:
‘@ ..named segment address space
—2'* segments in logical space
—2% words in logical space
—enhanced storage protection
— physical address space expanded to 16M words
e new external i/o processing unit having provisions
for data chaining and interrupt tabling
e additional input/output instructions to communi-
. cate with input/output unit
- e 2-level storage* with 2 maximum of 262K words
primary and 1048K words extended storage
e breakpoint and jump-history instructions to aid
debugging
byte manipulation instructions

-
j’ & the number of i/o units expanded to four
[]

the number of channels per input/output unit
increased from 16 to 24

32 [
/ / - _

1

P 'y

faster instruction execution

provisions for four processor configurations
4-deep instruction overlapping

parity on the input/output channel interface

2.4.1 Addressing

A conceptual view of the 1110 addressing structure
is given in Figure 11. This structure would directly
implement a segmented virtual address space if the
Segment Descriptor Index was provided as part of
each instruction. Since no space exists in the 1100
series instruction words to hold this segment index, an
approach has been provided on the 1110 that utilizes
four high-speed segment descriptor registers to hold
the descriptors for up to four currently active segments.
This accelerated addressing method is depicted in
Figure 12. The algorithm for selecting one of the
acceterated segment descriptors is shown in Figure 13.
The segment descriptor register is:divided into two
sets of two descriptors each. At any time, either
segment descriptor set 0,1 or 2,3 is primary. The
other set may be designated as primary by branching
into a segment that currently is in the secondary set of
the segment descriptor register. Within a set, the
segment to be used is selected using segment select

values (0,2; 1,3) in a manner similar to the 1108

segment selection scheme.

The user loads the segment descriptor register using
nonprivileged instructions. These instructions obtain
new segment descriptors from the segment descriptor
table, which is maintained by the Executiveé. Since
there are 4096 segment descriptors in the segmeni
descriptor table, and since each segment can have a
maximum length of 262K words, the user has a npamed-
segment address space of one billion words with which
to work. Segment descriptors can appear in more than
one segment descriptor table. This allows processors
to share common code. Extensive use of this capability
by the operating system reduces the amount of main
storage space allocated to redundant code.

The base values on the 1110 were increased in
length from 18 to 24 bits to provide a larger addressa-
ble main storage capacity. To maintain an affordable
price with a larger memory, it was decided to use 2-
level storage. Physically, the largest configuration al-
lows up to 262K words of fast, plated-wire storage
(primary storage) and 1M words of slower, lower-cost,
core memory (extended storage). The extended storage
begins at absolute address 1,048,576. The design is
such that the highest absolute address of primary
storage is 1,048,575 regardless of the amount of stor-

. age 2 particular system has; thus, primary and extended

storage addresses are always contiguous. The most
common usage of the four accelerated segments is:
instructions in primary; data in primary; instructions in
extended; and data in extended.

Insofar as physical space allocation is concerned, a
user may specify whether a segment is to be located in
primary storage or extended storage. A user who is

Communications January 1978
of Yolume 21
the ACM Number 1

AL AT e

i

,'.‘31':-“

LRI

- e

" Fig. 11. Logical address structure of 1110 architecture.

SEGMENT
DESCRIPTOR
SEGMENT DESCRiPYoR TABLE

TABLE PQINTER

ABSOLUTE

SEGMENT DESCRIFTOR
ADORESS Fro

LENGTH

i n UPPER LOWER
12 RW O BASE LIMIT LIMIT

T 10

SEGMENT
DESCAIFTOR
INDEX

{4068 DESCRIFTORS MAX)

ABSOLUTE
ADDRESS

Fig. 12. Accelerated addressing structure for 1110 architecture.

SEGMENT
SELECT

SEGMENT SEGMENT DESCRIFTOR

DESCRIFTOR
REGISTERS UPPER LOWER
AWoO BASE LIMIT __ LIMIT

KN

SDAZ

$OA3
fELATIVE AODRES ~ ABSOLUTE
\ Xmp J > ADDRESS

aware of the referencing patterns of his program, can
make efficient use of the two speeds of storage. The
Executive maintains storage reference counts to assist
the vser in proper program placement. Uniess overrid-
den by the user, The Executive will tend to place
compute-bound programs in primary. storage, and in-
put/output-bound programs in extended storage. It has
been found, by instrumentation, that about 90 percent
of the main storage references within the Executive
are made to 10 percent of the addresses. As a result,
the Executive is partitioned to use both primary and

" extended storage. A new privileged state was added to

permit the Executive to address all of physical main
storage without the use of base registers by defining
the X, portion of an index register to be 24 bits and
the X, portion to be 12 bits.

2.4.2 Byte-Handling Instructions

A set of 24 instructions for byte handling were
added to the base 1108 repertoire to improve the
capability of the system for business applications. A
sampling of these instructions includes: Byte Move,
Byte Move With Translate, Byte Compare, Byte To
Packed Decimal Conversion, Byte Add, Byte Subtract,
and Edit. Instructions such as the Byte Move operate
on bytes of 6, 9, 12, or 18 bits. These instructions use
some of the previously unassigned (on the 1107 and

3

Fig. 13. Segment select algorithm for 1110 architecture.

RELATIVE
ADOME

IE aflL

| a00m s
AROLUTE

ADDA

USE AEL.
ADGA AL
A1 AOGA

€k, AOON_
£ JEGNE NT
JLECT L T

JFCMERT T
LamTY,

U3
NECMENT {
AASE wALLL

v
JEGMENT |
RARE VAL¥E

usé
JEEMENT §
BALL VALWE

1ICKERT)
LASE vALUE

0 TrAGe)
LN
VIOLATION

1108) R registers to parameterize the byte-handling
instructions; for example, they define the number of
bits per byte, number of bytes in a string, and special

editing characters. .

2.4.3 Overlap

To achieve the desired basic add time of 300 nano-
seconds on the 1110, it was necessary to use.a high
degree of instruction execution overlap. A d4-deep
instruction stack provides the nucleus for the overlap. -
This complicated the design because of the conflict
checks that must be performed. For example, if a
register used for- indexing on instruction n + 1 has its
contents changed by instruction r, the operand fetch
for instruction n + 1 must be delayed. This can
degrade performance; however, most of the compilers
generate stack optimized instructions. In addition,
many of the assembly language instruction scguences
within the operating system have likewise been opti-
mized. '

2.4.4 Technology .

The 1110 was the first processor in the 1100 series
to be constructed entirely of integrated circuits; in
particular, high-speed TTL is used. Primary storage is
composed of plated wire with a 280-nanosecond read
cycle time and a 480-nanosecond write cycle time;
extended storage is core storage with a 1.5-microsec-
ond read/write cycle time.

2.5 1100/20, 1100/10 Systems

The 1100/20 and 1100/10, successors to the 1108
and 1106, were first delivered in- 1975 and 1976,

Communications Januvary 1978

of . - Volume 21
Number 1

the ACM

respectively. These systems have the same instruction

‘tet as the 1108 and 1106.

The storage capacity on the 1108 was found to be
inadequate for many applications; furthermore, semi-
conductor technology has lowered storage costs since
the introduction of the 1108. As a result, modifications
were made to the 1108 addressing structure to increase
the addressable storage range. The storage addressing
range was increased to 524K words by appending a
state bit to an 18-bit address—produced as in the
1108 —to yield a 19-bit address. The logical address
space is still limited to 262K words, but the additional
storage is usable by allowing more programs to be
multiprogrammed. Additionally, the input/output con-
trol word (Figure 8) was redefined so that the address
field contains 19 rather than 18 bits. Consequently,
the count field was reduced in length by one bit. This
format change has no impact on the user since the
Executive has always formatted these control words
for the user.

2.5.1 Technology

Both models use MOS main storage with single-bit
error correction and double-bit error detection. The
1100/20 has a storage cycle time of 450 nanoseconds

-and a basic add time of 875 nanoseconds; the 1100/10
has a storage cycle time of 650 nanoseconds and a
basic add time of 1125 nanoseconds. The memory
cycle times are less than the minimum instruction
execution times in order to provide more efﬁc1ent

. 'naltlprocessmg operation.

2.6 1100/40 System

"The 1100/40 system, which is architecturally similar
to the 1110, was first delivered in 1975. The instruction
execution times for the 1100/40 are the same as those
for the 1110 when exccuting out of primary storage.
However, two changes from the 1110 allow greater
overall performance. Extended storage is constructed
from MOS memory chips and has a read/write cycle
time of 800 nancseconds. Single-bit error correction

and double-bit error detection are incorporated. The.

faster cycle time allows faster execution of instructions
and data located in extended storage. The other change
was to construct primary storage out of bipolar memory
chips instead of plated wire. The 1110 is constrained
to 262K words of primary storage by cable length,
which is a function of storage unit size. Long interface
cables to memory preclude the short access time
needed on primary storage. The more compact semi-

conductor storage allows the configuring of 524K.

words of primary storage on the 1100/40.

2.7 1100/80 System

The 1100/80, with a basic add time of 200 nano-
seconds, is the latest and most powerful member of
the 1100 series family. It makes an interesting contrast

34

with the 1107. The 1107 had a General Register Set
that operated at 667 nanoseconds/cycle, and several
cycles were necessary to execute an instruction. The
1100/80 completes the entire instruction in only 200
nanoseconds. The first delivery of the 1100/80 was
made in 1977,

The 1100/80 system introduced several improve-
ments to the 1100 architecture and design approach.
The most significant are:

® addressable memory returned to a single level
structure
memory addressing structure simplified
the effective speed of memory increased by use
of a user-transparent cache memaory
¢ single-bit-error correction and double-bit error
detection on main memory
» arithmetic/logic unit microprogrammed
emulator provided for executmg Sperry Univac
494 programs
¢ instructions added to accelerate user and Execu-
tive common functions
* higher throughput achieved by using faster logic
components and more dense packaging
¢ automatic recovery from system failures im-
proved

A new group of instructions has been added to
accelerate common functions for both users and the
Executive. These include several context switching
instructions, such as save and restcre system status,
and load and store GRS; and user-oriented instruc-
tions, including new constant storage and memory
increment and decrement instructions.

Two new instructions were also added to support
the autorecovery feature of the 1100/80. These instruc-
tions reset the autorecovery timer and toggle the
autorecovery path. When autorecovery is enabled, and
the system software does not reset the automatic
recovery timer within the preset time interval, the
System Transition Unit (similar to the Availability
Contraol Unit of the 1108) clears, reloads, and reini-
tiates the system. Two recovery paths are provided.
The alternative recovery path is system initiated when
an attempted avtomatic recovery fails. The instructions
mentioned above provide for software resetting of the
automatic recovery timer and for selection of the first
automatic recovery path to be used by the next recov-
ery attempt.

2.7.1 Addressing

-The 1100/80 logical address structure, shown in
Figure 14, is similar to that of the 1110. The acceler-
ated addressing structure, shown in Figure 15, is also
similar to that of the 1110. The significant difference
in the addressing structures of the 1100/80 and 1110
lies in the segment select algorithms. A comparison of
the 1100/80 segment select algorithm, shown in Figure
16, with that of the 1110 (Figure 13) shows that the
1100/80 algorithin is simpler. The 1160/80 addressing

Communications January 1678
of ’ Volume 21
the ACM Number 1

o

4
3
|
]

_.Fig. 14. Logical address siructure of 1100/80 architecture.

.

SEGMENT
OESCRIPTOR

SEGMENT DESCRwTOR TABLE

TABLE POINTER
ABSOLUTE SEGMENT DESCRIFTOR
LENGTH ADDRESS
UPPER LOWER USE
I 12 l b1 LIMIT LIMIT STATUS COUNT
rd
T To Je] o
-. |
ma ~ " 1 ",
NOT BASE
iUSED
SEGMENT
DESCRIFTOR
INDEX

(4098 DESCRIPTORS MAX)

——
RELATIVE ADDRESS

ADDRESS
Fig. 15. Accelerated addressing structure for 1100/80 architecture.

~ SEGMENT
" SELECT

SEGMENT SEGMENT DESCRIFTOR

DESCRIFTOR
UPPER LOWER USE
REQISTERS | i1 LIMIT STATUS COUNT

50RO |, 12 l g l R l 1
30R1

5082 |~ 18] 18
S0R3 NOT USED BASE

—,
ELATIVE ADDRESS ABSDLUTE
{uXmb ADDRESS

: al'gorithm has a simpler autoswitch function, and does

not have the segment select variables of the 1110,
Once a segment set is selected, the segment to be used
is found by an ordered testing of the segment limits
against the relative address. If no test succeeds in the
primary set, the secondary set is tested.

In addition to the simpler algorithm for selecting
the next segment, the 1100/80 also introduced instruc-
tions to aid address-space manipulation. The most
significant new instruction is one that transfers a 2-

“word segment descriptor directly from the segment
descriptor table to the segment descriptor register,
saves the previous contents of the segment descriptor
register, and branches.

The granularity of segment sizes has been improved
on the 1100/80. Segments can be as large as 262K
words and can be specified in 64-word granules begin-
ning on any 512-word boundary and ending on any
64-word boundary. Protection is also provided on this
granularity. '

2.7.2 Dual Mode

The 1100/80 system has an alternative, 30-bit word
mode. In 30-bit mode, Sperry Univac 494 System user
instructions are executed directly by the 4G4 system
execution module of the 1100/80 system, or via soft-

a5

Fig. 16. Segment select algorithm for 1100/80 architecture.

RELATIYL
ADDAESY

e
TECMERT 1
KA3E AL

e
CEGMENT B
AARE VaLut

e
SLQMENT !
SALF VALUF

(13
SEGMEAT 3
LE VALUE

WITHIN
JEGMERT §
{1})

STORAIE

ViOLATION

ware assistance. provided by the Promega processor.
Promega is an 1100 series user level program that
provides a 494 virtual processor capability on the
1100/80 system for the purpose of running a 494
operating system. If, for example, the standard 494
operating system (Omega) is to be run, it is loaded as
a user program under the 1100 series Executive.
Promega provides the interface between Omega and
the 1100 series operating system that allows Omega to
be executed as a user program. Promega runs concur-
rently with other 1100 series user programs providing
multiprogramming of mixed 1100 serics and 494 series
programs.

Each 494 system instruction is emulated either by
the 1100/80 system hardware or by the Promega
software. Generally, user instructions are emulated by
hardware, and privileged instructions by software. Pro-
mega allows Omega to allocate system resources, as in
a 494 system, to provide for multiprogramming of
user jobs. The capability of Promega-Omega provides
compatibility with the batch utility packages, applica-
tion packages, and language processors of 494 Omega.,
Promega simulates the functional capabilities of the
494 system instruction processor, including clocking,
interrupt generation and handling, and execution of
privileged instructions. The 494 system user instruc-
tions are executed directly by hardware and thus are
transparent to Promega. The privileged instructions,
including input/output requests, are passed to Promega
via an emuiation interrupt and executed by the soft-
ware.

2.7.3 Ioput/Output

Input/output channels on the 1100/80 are available
in two forms. Word channels are available that are
compatible with the 1110 system. Additionally, intell-

Conimunications January 1978
of Volume 21
the ACM Number 1

i 3o it

B i e

EEE

e e, 1 i R Y iy e L b

[P R N Y WL SR Y IO PR

i

\
.

gent byte channels are avatlable that ailow the direct
usage of byte oriented peripheral equipment, wheréas
previously these required separate adapters. As in the
1110, the input/output channels are housed in their
own separate cabiner.

2.7.4 Technology

The 1100/80 uses a high-speed cache memory
between the processor and main storage. The cache
memory is transparent to the user. It is constructed of
emitter-coupled logic storage elements and contains
up to 16K words; these words are the most recently
used contents of main storage. The cache has an access
time of 120 nanoseconds.

The physical main storage capacity was increased
to 2 maximum of 4M words of MOS memory with a
read access time of 1250 nanoseconds. Single-bit error
correction and double-bit error detection are provided.

The processor is constructed of emitter-coupled
logic integrated circuits, necessitating a controlled
impedance signal distribution system. Consequently,
the backpanel wiring is accomplished with four large
multilayer printed wiring boards. The ICs themseives

- are mounted on smaller (7 inch by 10 inch) multilayer

boards. The predecessor systems used wire wrap back-
panels. ‘

2.8 Future Architecture and Technology

There are two main driving forces which, together,
will shape the form of the evolution of the 1100 series.
One of these forces is user requirements; the other is

the available technology. The time between the com-
mencement of a system design and first delivery to
- users can be very long, often more than five years.

The time between start of design and required availa-
bility of the logic elements in substantial quantities can
be as long as two years. Since both user requirements
and the best available technology vary with time, it is
difficult to predict the best possible computer design.
As a result, it is often necessary to carry out muitiple
design efforts and to decide later which of these systems
should actually be introduced as products.

The area of user requirements is difficult to assess.
Traditionally, short term throughput per dollar (usually
determined by short benchmark runs) has been the
main metric by which systems have been evaluated.
However, it seems clear that other aspects of computer
systems will be receiving increasing emphasis by the
user community. Primary among these are expected to

* be security, availability, system integrity, programmer
productivity, and ease of use. The relative emphasis
on each of these aspects will vary from user to user,
making it difficult to predict what the overall profile
will be. It is not clear how much users will'be willing
to pay to achieve these more subjective attributes.
Some of these attributes, such as security, will be
achieved only at the expense of throughput per unit

- cost. Conversely, some of the other attributes, such as

increased system availability and increased program-
mer productivity, can lead to an increase in overall
throughput per total (purchase plus support) cost.
However, if system value continues to be measured on
short-term throughput per unit cost, it may be difficult
to sell those systems that actually have better overall
throughput per total cost. It is because of the difficul-
ties of accurately predicting technological capabilities
and user requirements that multiple options are cur-
rently being pursued with respect to future 1100 sys-
tems.

Three possible future 1100 systems are discussed
in the following text. Although all are being actively
pursued, no ordering is implied as to the relative
priority or relative level of activity on any of these
projects. No implication is being made that these are
the only options that are being pursued, or that any of
these options will ever appear as future Sperry Univac
products. :

One option being pursued is the utilization of large-
scale integration in the design of an 1100 processor.
Although LSI has been used extensively in the design
of memory systems, very little use of LSI has been
made so far in the design of mainframe level proces-

. sors. The approach being used is to utilize multiple

microprocessors to create an 1100 system processor. It
has been demonstrated that mainframe level perform-

-ance (greater than 1108 performance) can be achieved

by appropriately interconnecting sets of microprocessor
units. We believe this to be the first example of
achieving mainframe level performance on a single
instruction stream using a single microprocessor slice
as the basic building block. This performance is
achieved by decomposing macroinstructions into a set
of activities which can be executed in parallei. These
paralle! activities are executed by a set of microinstruc-
tion streams which are, in turn, built up from sets of
microprocessor slices. By appropriately adjusting the
interconnections, a varying number of microlevel paths
of varying path widths can be established. The very
low cost of the basic building blocks makes it possible
to economically perform‘some parallel activity on each
of the microinstruction streams. This parallel activity
allows partial execution of both possible next instrue-

"tions on conditional branches, thus allowing over-

lapped micreinstruction streams with negligible degra-
dation due to -conditional branching. Furthermore,
because the basic LSI microprocessor building blocks
will be relatively inexpensive compared to the rest of
the system, very high system integrity can be achieved
via complete duplication and comparison of the micro-
processor resuits. Parity checking is effective in the
control logic because a table-driven control structure: is
used. These fault-detection schemes create a processor
design where the probability of detecting any fault is
about 0.9 at a 15 percent increment to the processor
build cost. A beneficial fallout of this design approach
is that the resultant 1100 system is microprogrammed.

Communications " January 1978

of Volume 21
Number 1

the ACM

The 1100/80 is currently the highest performance
1100 system. Several possibilities exist for improving
upon this performance, including a change to a higher
performance technology, more sophisticated pipelining
approaches, and the addition of certain new instruc-

" tions. The 1100/80 logic elements have an average
gate delay of about 2 nanocseconds. Subnanosecond
emitter-coupled logic is now available with higher
levels of integration than that used with the 1100/80.
Higher packaging densities are also available. As the
1100 series addressing structure has evolved to create
an expanded environment for the user, the implemen-
.tation difficulties have increased. Several possible per-
mutations of overlapped address calculation, coupled
with parallel or pipelined cache systems, have been
identified and evaluated to overcome these difficulties.
Similarly, new byte and array manipulation instructions
have been identified and evaluated. It is believed that
a significant performance improvement can be
achieved by utilizing these techniques.

- The two approaches described above are mainly
directed toward providing improvements in cost/per-

- formance and integrity. There is also an activity under
way that is directed toward achieving significant im-
provements in other areas by providing an alternative
mode of operation. The architecture of the new mode
is substantially different from that of the 1100 series.

Therefore, it is necessary to switch back to the old-

mode to execute 1100 series programs. This design is
based on a general emulator which supports an efficient
virtual machine structure capable of executing multiple
copies of both old- and new-mode systems. The incor-
poration of a new mode makes it- possible to utilize
very sophisticated architectural concepts to create
strong capabilities in several important areas, such as
security, efficient execution of selected higher-level
languages, and programmer productivity. The estab-
lishment of a dual mode of operation makes it possible
to execute existing 1100 series programs, while exploit-
ing the architecturally enhanced environment for those
applications that require increased capability. It is
anticipated that the efficient underlying emulation
“structure, coupled with the decreasing cost of hard-
ware, will make this dual mode of operation cost
effective.

Some possibilities for future 1100 systems have
been discussed. These projected systems will all exe-
cute existing 1100 series programs. The systems that
actually emerge as products will be the ones that best
anticipated the strongest requirements of potential
users, and which best exploit the evolving technology.

3. Operating System

The 1100 series Operating System consists of a
series of ‘layers’ of software as illustrated in Figure 17.
To be discussed, in turn, are: the control portion or
Executive {analogous terms used in the industry are

37

Fig. 17. 1100 Operating sysiem.

END USER
FACILITIES

COMMUNICATIONS
MAMAGEMENT SYSTEM
TRANSACTION INTERFACE
PACHAGE

100
EXECUTIVE

COM
PILERS

/

BATCH/DEMAND
CONMTRQL LANGUAGE

APPLICATION
PACKAGES

USER APPLICATIONS

Supervisor, Monitor, Operating System and Master
Control Program}, including the control language; the
languages; and the database and data communications
software.

3.1 Executive

The first 1100 series executive sysiem, EXEC I, was
introduced on the 1107 in 1962, It supported a general
purpose multiprogramming environment. Functionally,
EXeEc I included many of the facilities of current
executive systems, such as priority based job schedul-
ing, logical facility assignments, relative address pro-
gram loading, and control switching between concur-
rent programs based on time quanium or loss of
control. The major exceptions were the lack of a
workspace-oriented file facility, and an easy to use
control language. The lack of these facilities posed 2
problem which was difficult to correct short of com-
plete rewrite, since the control language and file man-
agement philosophies were integral to the basic design

of ExEC 1.

In early 1963 a second executive, EXEC 1, was
released, EXEc U became the more widely used 1107
Executive (both exec 1 and ExEc n were also used at
the early 1108 sites). Although developed concurrently
with EXEC 1, EXEC O did benefit from the early EXEC 1
experience and contained a much more flexible, easy
to use control language and a workspace-oriented
program and data file facility. It also introduced an
input/cutput control routine concept called a Symbiont
(spooling routine). These routines overlapped read/
print/punch operations with program execution. How-
ever, muitiprogramming of user programs was not
provided. Each program executed serially.

Communications - January 1978
of Volume 21
the ACM _ Number 1

~

-

Fig. 18. 1104 Series Control Language.

@RUN JONES, 421706
(Tdentifies user and account number)
@CQCB,I PROGIL, RB1
1IDENTIFICATION DIVISION
® (Compiles a COBOL symbolic element into a relocatable

. element)
(The source images may follow in the run streant or be added

from a mass storage file)
L}
.-
@COB,I PROG2,RB2
IDENTIFICATION DIVISION
* {Compiles a second COBOL symbolic clement)
- .

-
@MAP ,ABS
IN RB1
IN RB2
" (Collects two or more relocatable elements to form an absolute
element)
@XQT ABS
(Loads and executes the absolute element which accesses a data

base and produces a report)
@FIN
(initiates run stream termination)

Note: Nate all Control Language statements are illustrated. This
run stream may be used in either batch or demand modes. An in-
teractive text editor is provided for symbolic data manipulation, for
correction of compiler input, data preparation and performing run-
stream editing,

Despite their many capabilities both Exec 1 and
EXEC I shared a common deficiency: both were com-
pletely batch oriented when timesharing was beginning
to appear on the scene. This was a problem not easily
corrected without a complete rewrite; consequently,
“the decision was made to develop a totally new execu-
tive, this time in conjunction with the introduction of

- the 1108 system. :
This new executive (often referred to as ‘Exec 8)
~ for the 1108 was first released in 1967. It combined
the multiprogramming capabilities of Exgc 1 with the
control languags, program and data files, and symbiont
capabilities of Exec 1. Designed to operate in both a
muitiprogram and multiprocessor environment, the
1100 Executive System, as it is now called, supports a
concurrent mix of batch, remote batch, demand, and
transaction programs. Particular emphasis was placed
on demand mode (timesharing).[All system facilities
available in batch mode are likewise available in de-
- mand mode; the same run stream (Figure 18) can be
used in_either batch mode or demand mode without
charllﬁt;]' his continues to be one of the strongest
featuT®s of the control language. The Executive also
has a transaction mode. This mode is intended for
realtime environments such as an airline reservation ot

bank teller system. A transacfion is an input processed’

Fig. 19. 1100 Series execulive.

LOCALS
REMOTE
FRINTER

JLOCAL/AEMOTE
BATCH

COoA

ASE
e e o e SCHEDULER

MAIN
MEMOAY OYNAMIC
AEQUEST ALLOCATOR
QUEUE

— (]
Ty Froean
SWAF FILE

A run stream is a collection of user service requests
used for batch, remote batch, and demand. Included
in the run stream are any data images supporting each
service request. The run stream is formulated using a
control language consisting of service requests. A task
is an individual service request; for example, assign a
tape, or perform a compilation within a run stream.

The execution of the run stream is referred to as a

i 14

run’. :
A program has its origins in symbolic elements
within the run stream, which are then compiled to
form relocatable elements. The elements are, in turn,
collected (bound) with other relocatable elements to
form an absolute element (the program). The term
“absolute’ refers to program relative address resolu-
tion only; the relative addressing capability of the
hardware aliows the program to be loaded (or swapped
and reloaded) and executed anywhere within main

code and system libraries are resolved during execcu-
tion. '

by a user-written program and which typically results

in an output.
iz Tollowing paragraphs define some of the major

terms and system concepts used by the 1100 Executive.
(Figure 18 illustrates the use of the control language.
Figure 19 illustrates the flow through the Executive.)

38

=—"When a batch run stream enters the system, it is
first processed by the symbiont complex, which disas-
sociates the run stream from the relatively slow unit-
record device speeds, and allows tasks to proceed at
higher mass storage spceds. The run stream is scanned
for facility allocation and prescheduling. The symbionts
provide multiple, asynchronous, unit record input/out-
put; this is particularly important in a multiprogram-
ming/multiprocessing environment.

After staging in a mass storage schedule queue, the
run stream is processed by the Coarse Scheduler which
is responsible for the scheduling, selecting, and activat-
ing of the run stream. The run is assigned a Temporary
Program File, or workspace, in which intermediate
results such as compiler output or text editor output
are held until termination, when the file is released.
The results may be retained by directing them instead
to a permanent file or copying the contents of the
temporary file prior to termination. Demand runs are
scheduled for.immediate activation;-batch runs. are
scheduled on s user-selected priority basis. A major
batch scheduling consideration at this point is the

Caommunications January 1978
. of Yolume 21
the ACM i Mumber 1

storage. References to shared segments of bOlh‘jiU

“availability of facilities such as tape devices. When the

necessary facilities are available the program is then’

queued for main storage allocation.

The program is removed from the main storage
allocation queue by the Dynamic Allocator, which has
the responsibility for the distribution of main storage
space among users, on a priority basis. The main
functions of the Dynamic Allocator include the alloca-
tion and release of main storage and the initial load,
swap-out, and reload of programs. The decisions of
the Dynamic Allocator are facilitated by relative ad-
dressing which allows the program to be loaded any-
where in memory. The program may be- partitioned
into multiple segments, which need not be loaded
contiguously. Segments (usually shared) that were not
a part of the initial program may be referenced (and
loaded) dynamically. This facility allows for greater
program protection and re-entrancy efficiency. It also
allows each segment to be loaded into a separate
memory module, thus reducing the effective instruction
execution time through storage unit overlap.

The 1100 Executive uses a switch list to control an
executing program. The program may fork into any
number of asynchronous execution paths, called activ-
ities, each of which is independently scheduled (except
for synchronization requests). It is given main memory
space and a time slice under the control of a unique
switch list entry. The executing activity requests 1100
Executive services through a set of executive requests.
‘These perform services such as input/output, control
statement processing, and activity activation.

Real processor time slices are allocated to outstand-
ing activities by the dispatcher according to the priority
and needs of the respective activities. In a multiproces-
sor system, any available processor may be assigned to
execute the next time slice. Thus, an activity may
execute successive time slices on different processors,
or two parallel activities within the same program may
be executing concurrently on different processors.
Upon completion of processing within an activity, a
request for normal or abnormal termination is made.
After all activities within a task have terminated, the
task is terminated and control is returned to the Coarse
Scheduler. When the final control statement is de-
tected, the run is closed and run termination accounting
information is written to a system log.

The initial release of the 1100 Executive was made
in early 1967. Typical of newly introduced system
software, a rapid progression of stability and minor
enhancement releases quickly followed. The major
emphasis was on stability as the development project
grappled with the problems of debugging the Executive
for a demand environment. Debugging difficulties re-
sulted from handling many simultaneous terminal ses-
sions instead of repeatable batch programs. Consider-
able effort was expended in tuning the resource alloca-
tion algorithms used by the Dynamic Allocator and
Dispatcher to control the sharing of resources between
demand programs. The original timesharing algo-

39

‘m files withi

ent to the user. Each file is viewed as a logical address
space. All access is file relative {number of words to
read/write and offset into the file), regardless c1 phys-

rithms, based on processor utilization alone, proved
inadequate and caused excessive program swapping.
Improved algorithins were developed that incorporated
input/output operations and program siz¢ into the
determination of the time slice allocated to each pro-
gram.

Despite these initial growing pains, the 1100 Exec-
utive, measured by the test of time, has proven to be
of solid design. Over the years many routines and
algorithms have been redesigned. Many new peripheral
handling routines have been added. However, the
basic structure or foundation described above remains
intact. Part of the credit for this is due to the Program-
mer Reference Manual, which was written before
implementation and served as the design document
and implementation control vehicle.

The progressive introduction of the subsequent
members of the 1100 series provided the most signifi-
cant test of the basic logical structure of the 1100
Executive. Input/output control, program swapping,’
interrupt processing, and other time-dependent rou-
tines had to be adjusted, first for slower machines such
as the 1106, then for faster machines such as the 1110
and 1100/80. A basic design goal, that of maintaining
a single source (symbolic) of all components of the

operating system, proved to be a key factor in provid-
ing a uniform environment in all systems. The symbol-
ics are released to all sites. System generation tools
are provided which allow a site selectively to include
or exclude certain functions. These tools have been
extended, particularly in the case of the 1160 Execu-
tive, to similarly include or exclude model-dependent
code. Special care has been taken to isolate model-
dependent instructions whenever possible. Thus, the
same symbolic version of the 1100 Executive can be
used to generate & code which will execute on all post-
1107 computers. Despite considerable architectural
differences between the various 1100 systems, only
about 10 percent of the 1100 Executive is hardware
dependent. Given the enormous cost of developing a
new executive system or of maintaining several, it is
doubtful that the 1100 series product line could be as
large and diverse as it is today were it not for the
single symbolic concept.

The 1100 Executive insulates much of the remain-
ing operating system software and all user software
from the physical characteristics of the computer. For
example, in the file management area, files are as-
signed with a symbolic naime to a logical device class.
The file may migrate from drum to fixed disk, to

" removable disk, without requiring any change in the

accessing program. If inactive for a long period
1100 Executive may transfer a file to tape bse-
Uemn Tan ack to mass SLOT upon the next

reference. ExcepT 10T pOssl lmeTlays such IJIQXQ

Communicalions Januvary 1973
of VYolume 21
the ACM Number 1 . ~

;;_i
‘.;
i
:
;
i
H
[
a1
!
i
%

-qal track size angd formatting factors. All user access to
symbolic, relocatable, and™
rogram file is made symbolically by element name
without reference to logical addresses. User access to
information within & data Hle (s based upon logical
address unless a facility such as the Data Managemgnt.
Systeffi is Deing USEd 10 provide symbolic access. Files
may be preallocated as contiguous physical entities or
incrementally” & Needed 1o HONContiguous

physical space. Such insulation from the hardware has

been a major benefit to the ‘outer layers’ oI the
“operating system software. The compilers and database
“Software utilize the standard 1100 Executive facilities
and interfaces. These have only isolated hardware-
dependent code. For example, the compilers make use
.of this code for generating the newer instructions
introduced with the 1110 and 1100/80.

32 Lﬁnguages

The operating system software components for each
. language consist of the compiler and a set of assaciated
run time library routines. The original compilers for
Cobol, Fortran IV and Fortran V date back to the
1107 and were based on a 6-bit character set. Their
replacements, discussed below, have adopted the 8-bit
Asch character set. Table II summarizes the character-
istics of the major asco compilers. These compilers,
: for Cobol, Fortran, rtf1, and a compiler for Sperry
Univac use only (pLUs), are briefly described below.
. Also available are Algol and Basic compilers, an aprL
interpreter, an assembler, and a meta assembler,

The asci-based Cobol compiler was a major step
in the evolution of the 1100 series from a scientific to
a business-oriented system. It demonstrates that an
efficient and competitive business compiler can be
implemented using the basic 1100 instruction set. In
addition, the compiler takes advantage of the byte
instructions added to the 1110 hardware. These byte
instructions were coupled with string manipulation
capability within the compiler to further enhance its
business orientation. The initial release included a
Ceodasyl Report Writer, Message Control System, and
Asynchronous Processing System as extensions to the
then current Cobol standard. The compiler has been
upgraded to comply with the Jatest ansI standard,
which became 2 federai government requirement
during 1977. _ L

- The ascu-based Fortran compiler and the PLI
compiler are noteworthy from an implementation view-
point: first, they are implemented in a higher-level

language; and second, they are implemented as part of -

a “‘common compiler model”. The higher-level imple-
mentation language is pLUs (Programming Language
for Univac Systems). pLus was defined and developed
for the express purpose of implementing new software
in a common language on both the 1100 and 90 series.
(The Sperry Univac Series 90 is a small-to-medium

40

some higher level languages designed for internal de-

‘lation of registers or storage contents. The systems

Table 1I. Characteristics of the Major' Compilers

Cobol Fortran PL/I PLUS

Initial release 1972* 1975% 1975 1975

Latest release 1977 1977 1977 1977

Re-entrant compiler Yes Yes Yes Yes

Re-entrant output Yes Yes Yes Yes

Demand-mode syntax scanning Yes Yes No No

Checkout mode No Yes Yes Na

Global optimization Yes Yes Yes Yes

Tr? interface Yes Yes No No *
DMs interface Yes Yes Yes No

Standards Yes? Yest Yes® No

L Other languages available include Basic, APL, Algol and Assembler
* Total replacements fot earlier compilers

¥ ans X3.23-1974, mirs rus 21-1

4 anm X3.9-1966 (and portions of proposed 1477 standard)

" aNsI X3.53-1976

scale product line based on a byte-oriented architec-
ture.) The compiler is intended to be an internai
development tool, not a customer product. Unlike

velopment purposes, PLUS language source code cannot
be intermixed with assembly language source code
within the same symbolié element. The pLUS compilet
is thus free to perform extensive optimization without
regard to the possibility of assembly language manipu-

programmer is not given the option of reverting to
assembly language in the same routine, which would
limit the portability of the code to other Sperry Univac
systems. As a result, PLUS is generally used for new
products. ' _

In addition to being implemented in pLUS, the
Fortran and pL/1 (and PLUS) compilers are implemented
under a design referred to as the “common compiler
model.” The common compiler model utilizes a 4- !
phase approach. Figure 20a shows these four phases.
The first phase is syntax analysis. This is performed by
a separate front end for each language. The second
phase is semantic analysis. This phase results in the
generation of intermediate text. The third phase is
optimization, which optimizes the intermediate text.
The fourth phase is code generation which generaies .
eiiher relocatable code (to be collected to form a
normal program) or in-memory code (to be immedi- |
ately executed for checkout purposes). All four phases
are reentrant. As shown by Figure 20b, the latter
three phases are implemented using a common design
architecture for Fortran, pL/1, and pLUs. In addition to
allowing partial commonality across programming lan-
guages, this modularization creates other benefits. Fig-
ure 20¢ illustrates how Phase 1 may be used to perform
syntax analysis for text editing purposes. Fhases !, 2,
and 4 (generating relocatable code) may be used as 2
high-speed compiler. Phases 1, 2, and 4 {generating
in-memory code) may be used as a checkout compiler 3
which allows the user to trace the execution, halt the i
execution, dump variable values. and perform other
debugging activities. Finally, all four phases may be

Communications January 1978
of Volume 21
the ACM Number 1

Fig. 20. Common compiler model.

rriase | PHASK 2 PHASE 3 FHATE 4 el
SYNTAX LEMANTIC coDE
ANALYSIE ANALYR [] OFTIMIZATION —1 gemgpalion
IN-MEMOR Y
CODE
i)
FRONT FRONT FROMT
END END END
na FORTRAN LU
L INTERMEDIATE LANGLIAGE]
oFTIMIZER
- CODE GENERATUR _ .
RELOCATABLE I inmemony
OUTAUT H COOE
b}
* OPTIMIZED RELOCATARLE
cooe CODE
* FAST COM- RELOCATABLE
PLATION CODE

IN-MEMORY CODE
AND EXECUTION

* CHECROUT
COMPMILER

® IYHTAX
ANALYSIS

fe}

used to generate optimized relocatable code for a
production program.
~ Fortran and pL/t meet and extend the full ansI
standard. A common run-time re-entrant library is
shared by all executing Fortran and pr/1 programs.

A general purpose macro facility was developed in
parallel with the Fortran and pr/t compilers. Macro
consists of two components; the first supports the

definition of macros; the second, callable by the For--

tran and PL/1 compilers, expands the macros into
source text as part of the user program. With this
facility, the Fortran and pL/1 languages become exten-
sible. For example, the macro facility has been used to
provide data manipulation language extensions to For-
tran.

i3 Dﬁtﬁbasé and Data Communications

In late 1971, the 1100 series entered the emerging
world of database management with the introduction
of a Data Management System, DMS 1100, which is
depicted in the lower portion of Figure 21. DMS 1100
is based on the specifications of the Codasyl Data
Base Task Group {DBTG) and successor committees.
It includes a separate data definition language for
defining the characteristics of the database (the
schema) and the security and validation requirements.
A second data definition language defines a logical
subset (the subschema) which consists of the items of
information available to a specific programmer or end
user. Data manipuiation language commands are avail-
able as extensions to Cobol, Fortran, and Pi/1. The

commands are functionally equivalent across the host

languages; however, the syntax used has a Cobol,
Fortran, or pu/1 style, as appropriate.

41

Fig. 21. Database and data communication software,

COMMUNICA TIONS
MAMAGEMENT SYSTEM

END USEA FACILITIER l BATCHDEWAND PROGRAMS
. = __l TRANSACTION B0
il
PROCESSING ERFAC DML FCRTAAN
SYSTEM I TAANSACTION [DaLL
QUERY vnmnm 1
LANGUAGE
PROCESSOR T T —['

,
g — .
DATA
MANAGEMENT SYSTEM

¥
x4

DATA BASE

i
£l

)

The online Data Management Routine supports a
collection of alternative storage structures and access
techniques. Records may be maintained on the data-

base in one or more of six storage structures: direct,

key transformation, index sequential, chained seft,
pointer array, and indexed pointer array. Records may
be processed either randomly or sequentially, based

on either physical (database key) or logical (symbohc

key) criteria.

The Data Management Routine is multlthread
allowmg concurrent access to a shared database by
batch, demand, . and transaction programs. Conflict
situations between concurrent programs are handled
through the use of locks on the input/output umit,
which typically contains several data records, plus
automatic queuing and dequeuing mechanisms, and
automatic deadlock detection and program rollback.
Database integrity is provided by. logging before and/
or after images of altered pages to an audit trail tape
and before images to a mass storage file. The audit
trail tape images are used to recover the database in
the event of a device failure. The mass storage images
are used to rollback an executing program’s updates in
the event of a program error or system detected
deadlock. The mass storage images are also used to
rollback all executing programs in the event of a
system failure,

A data maintenance utility prowdes a set of termi-

_nal-oriented privileged functions to be used by the
‘data administrator to moniter and maintain the data

base in an operational state. A second utility, the data
reorganization utility, provides the data administrator

* with the capability to reorganize an existing database.

It includes a reorganization control language used to
indicate the portions of the database to be reorganized
and the manner in which the reorgamzauon is to

~ proceed.

The upper portion of Figure 21 shows the commu-
nication and iransaction sofiware. A transaction inter-

" face package (TIP 1100) provides the generalized

framework within which user iransacuon programs
may operate at a real-time level. TIP 1100 augments
the normal 1100 Executive mechanisms to provide

Communications January 1978

of Volume 21
Number |

the ACM

(. 1 31marwT 3 ep. TPebb

. I
transaction program service functions, such as program
loading and initiation. TIP 1100 includes a more
specialized file control facility which has a shorter
instruction path for transaction data. TIP 1100 files,
which are 1100 Executive compatible, may contgin a

atabase managed by DMS 1100 as illustrated in
Figure 21. This file control facility is also used for very
high volume non-DMS 1100 environments such as
airline reservation systems.

The communication management system (CMS)
provides for the control and polling of the terminal
network, the receipt and transmission of messages, the
queuing of input messages for subsequent processing,
and the transmission of output messages. It is the
primary interface between the 1100 Executive (as a
host} and any attached front-end processor.

There are two database oriented, end-user facilities.
The first, the query language processor (QLP 1100),
provides a conversational language interface for data-
base retrieval and updating. The second, the remote
processing system (RPS 1100), provides a screen
(CRT) image interactive facility for data manipulation.
These interfaces into DMS 1100 are illustrated in
Figure 21. '

QLP 1100 includes English language-like com-
mands which require only identification of the items of
information in the database necessary to satisfy the
query. A simple query might be: LIST EMPLOYEE-
NAME, EMPLOYEE-NUMBER, EXTENSION WHERE DE-
PARTMENT EQUALS MARKETING AND DEGREE EQUALS
uBA. Knowledge of the physical structure of the data-
base is not required. The DMS 1100 subschema data
definition language gives the database administrator a
means of controiling user ac¢ess to the database. QLP
1100 contains a report writer which can be activated
by a sinple command within a query session.

Unlike QLP 1100, which is command-language
oriented, RPS 1100 provides a screen-image otiented
‘interface to files maintained within a database. RPS
1100 allows the end user to view a file, such as a
report on the status of all outstanding orders, in a
relational manner. The user may advance images of
data through the file viewing each screen, much like
reviewing printed output. A line may be changed by
typing over it, new lines may be inserted or old lines
deleted. Computations, either horizontally or verti-

cally, may be performed. Files can be searched, sorted, -

or matched with other files to produce a result file.
Sclected data from a file may be projected into a new
file, or data from multiple files may be joined into a
single file.

RPS 1100 includes an application cfr:veloprnent'

todl, known as the tutorial processor, which s dia-
logue-oriented, allowing an analyst. to establish a se-
quence of operations tailored to an application. The

, analyst, instead of developing program specifications

4P for subsequent coding by a programmer, interactively

defines the application directly to RPS 1100 using the
tutorial processor. This definition includes. tailored

a2 / ;

. screen image inputs, outputs, decision and branching

criteria, and computational requirements. The end
user is thus presented with screen images, which con-
tain application-dependent, not system-dependent. ter-
minology and style (e.g., hospital admission, order
entry, customer service).

In addition to the two database oriented, end-user
facilities, an end-user facility for program development
is also provided. This facility, the high volume time-
sharing system (uvTs), utilizes the transaction interface
package and communication management system and
is designed to run from 50 to several hundred terminals
in a timesharing environment. HvTs supports Fortran
and Basic syntax analyzers and compilers, and an apL
interpreter. '

3.4 Future Software Directions

A pumber of software trends can be readily identi-
fied. Many of them have been underway for some
time and are not unique to the 1100 series. Examples
include the: increasing use of high level languages,
movement toward online data base systems, growth
in available application packages, emphasis on 2
programming methodology (structured programming),
improvement in conversational programming tech-
niques, increase in the level of system security, and
development of additional industry standards. The
operating system software discussed above —the Exec-
utive, languapes, and database and data commu-
nication software —will continue to evolve in anticipa-
tion of and reaction to these trends. A sampling of
several interesting development activities is discussed
below. However, new development in the sense of
new software packages or major additions to existing
packages is only a portion of the development picture.
The much less visible portion is the ongoing work to
support new hardware additions (within the Executive)
and .maintain operational compatibility between the
various releases of the operating system components
discussed previously. Also ongoing are continuval ef-
forts to improve interfaces between compouents, re-
duce path lengths, and improve the program schedul-
ing/swapping and resource allocation algorithms.

One key area of ‘operating system enhancement is

_ system security. This stems from the increasing govern-

ment and private industry interest in more stringent
protection measures. Numerous security-oriented facil-
ities are currently available; these include password

_ controls on terminals, read/write keys on files. account

number restrictions, and database access control. Be-
yond this, additional facilities under consideration
would allow the Executive to ensure a proper match
between authorized users and system resources such as
rums, lerminals, files, and devices. These facilities
include a control language for use by the security
administrator in defining the security requirements of
the site. and a security control module within the 1100
Executive for enforcing the security requirements. It is

Communications- Janvary 1978
of Volume 21

the ACM Number 1

anticipated that the position of the security administra-
tor will become commonplace in the future, much as
the position of the data administrator did during the
mid-1970's.

In the language area, emphasis will continue to be
placed on increased functionality, increased perform-
ance, and increased system integration. In part, the
increased functionality stems from compliance with
industry standards; e.g., it is expected that Fortran
will be upgraded to comply with the latest standard
expected in late 1977. Other functionality extends
beyond current standards as in the case of a Codasyl
structured programming specification which is under
consideration for addition to the Cobol compiler. Per-
formance enhancements will typically center around
taking advantage of a newer hardware capability. Uti-
lization of the more powerful byte instructions previ-
ously mentioned (sec section on Future Architecture
and Technology) would be an example. System integra-
tion encompasses the interface between the various
software components discussed in this paper. Candi-
date enhancements include a tramsaction interface
package send/receive interface for pL/1, and the addi-
-tion of data manipulation language commands to pLUS.

In the communications area, the establishment of a
distributed communications architecture (pca) for all
Sperry Univac products has not been discussed in this
paper. However, new communications software is
being written adhering to this architecture which is
viewed as a set of development guidelines for the
future. It is used to guide design in areas such as
interface into other foreign networks, distribution of
functions throughout the network, and utilization of

intelligent terminals. Within the 1100 series (as a -

host), a major upgrade of the communications manage-
ment system (CMS 1100) is being undertaken so that
CMS properly utilizes the data and packet structures
dictated by the distributed communications architec-
ture for the interfaces throughout the network. This
will inctude a standard front-end processor interface
and the use of new software modules to support batch,
demand, and transaction interfaces. Parailel develop-
~ment of TIP will stress performance improvements for
controlling file and record placement in an enhanced
transaction program environment thus making more
efficient use of 110C Executive memory management
facilities.) ,

Development activity will likewise continue in the
data management system area. As databases grow in
size and complexity, the need arises for additional
data administrator tools to control and maintain the
database. One such tool under evaluation is for the
restructuring of a database. Following control language
directives, it must utilize both the current schema and
a “target’” schema to restructure an existing database.
Types of restructuring include adding or modifying
areas, records and items, or sets. Another such iool
under evaluation is a data dictionary which would
contain additional user-supplied. text describing the

43

database. It aiso would include important system-gen-
erated, cross-reference information about the users of
the database. For example, the Data Administrator
could use the Data Dictionary to obtain a list of all
programs accessing a specific data item.

One of the principal factors behind the continuing
trend toward online utilization of computers is the
desire to gain immediate access to a database. What
often begins as a simple query, rapidly expands in
complexity and scope as a user begins to gain an
appreciation of the potential of direct interaction with
a database. The query language processor (QLP 1100)
is to be enhanced to include high-level procedure and
macro facilities that, while retaining the straightfor-
ward inquiry and update’ facilities, offer the somewhat
more advanced user a database oriented conversational
programming facility.

The remote processing system (RPS 1100) is aiso
to be expanded, particularly in'terms of a screen image
manipulation capability on a database. The orientation
of the RPS 1100 tutorial processor, which is currently
aimed toward application development by an analyst,
will evolve in the direction of providing even higher-
level application development facilities for the end
user. -

Conclusion

The 1100 Series, from the 1107 to the 1100/80
and beyond, has been traced in some detail. As the
title of this paper suggests, this has been largely an
evolutionary process. During the course of this evolu-
tion, we believe the 1100 series has been at the
forefront of a number of technical advances. Among
these are multiprogramming, symmetrical multipro-
cessing, virtual file control, darabase management,
common compiler implementation techniques, and si-
multaneous demand, batch, and real-time operation.
It is significant that these advances were made in such
a way as to allow complete upward compatibility across
a succession of computer models. This commitment to
protect the user’s software investment will continue to
be a'dominant factor in future extensions to the 1100
series. : :

Acknowledgments, Both the number of Sperry

* Univac people who have coniributed to the develop-

ment of the 1100 systems and the number of peopie
who have made contributions to this paper are too
numerous to cite. We happily acknowledge these con-
tributions, and offer our appreciation. Contributions
from the 1100 user base are both recognized and
acknowledged by Sperry Univac. Special recognition is
due the two major 1100 Series User Groups: USE,.
Inc.. in the United States and UUA/E, in Europe.
Also, the contributions made by Nippon Univac Kaisha
are acknowledged and appreciated.

Received March 1977; revised September 1977

Conumnunications January 1978

of Volume 21
Mumber

ARGk L |

pw

ey

B T R s Sy

e, N i

