
TECHNICAL BULLETIN

UNIVAC 1107

CENTRAL COMPUTER

November, 1961

CONTENTS

1. UNIVAC 1107 THIN.FILM MEMORY COMPUTER. • . • 1-1

General Description. •• 1-1
Features. •• 1-2
Peripheral Equipment. •• 1-2

2. CENTRAL COMPUTER.. • • • • 2-1

Storage. •• • • • • • • • • • • • • • • •• 2-1
Magnetic Film Memory. •• 2-1
Core Memory •••••••••••••••••••••••• '. • • • • • • .• • • • • • • •• 2-1
Storage Allocation. •• 2-2

Control. •• 2-4
Indexing Unit. •• . 2-4
Interrupts. •• 2-5
Initial Load Operation (Automatic Bootstrap) ••••••••• • • • • • • • •• 2-5

Arithmetic. •• 2-5
Adder. •• 2-6
Overflow and Carry Designators. •• 2-6
Arithmetic Registers. •• 2-7
Partial Word Transfers. •• 2-7
Floating Point Arithmetic ••••••••••••••••••••••••••••••• 2-7

Input-Output. •• 2-7

3. DATA, CONTROL AND INSTRUCTION WORDS .•.•....••.•.••...•. 3-1

Data Representation •••••••••• •••• • •• • • • • • • • • • • • • • • • • • •• 3-1
Control Words and Control Registers.. •• 3-1

Index Registers....... •• 3-2
Arithmetic Registers.. •• 3-2
R-Registers •• 3-3
Input-Output Access Control Registers •••••••••••••••••••••• 3-3

Instruction Word. • • • • • • • • • • • • • • . •• 3-4
Two- Address Accessibility. •• 3-7

4. INTERNAL DATA PATHS.. . • • • • • 4-1

Execution Cycle •••••••••••• 0 •••••••••••••••••••••••• • 0' 4-1
j Des ignator Unequa I to 16 or 17 • • • • • • • • • • • • • • •• • • • • • • • • • • •• 4-3
j Des ignator Equa I to 16 or 17 •• 4-3
Ind irect Address ing • • • • • • • • • • • • • • . •• 4-3
Glossary and Conventions.. • • • • • • • • • • • • •• • • • • • • • • • • • . • • • •• 4-6

5. TRANSFER INSTRUCTIONS.. 5-1

Load. . • • • • • • • .• • . . . • . . • . . . • • • • • • . • . • • • • • . • 5-1
Store • . • . • • • • • • • • • • • • • • • • • . • . . • • • • . • • . • . . • • • • . • . . . • 5-5

6. ARITHMETIC INSTRUCTIONS.. 6-1

Addition••.•.•••.....••••••••••••. ". . •. •. . .• 6-1
Multiplication •••••••.•••••••••••••••••••••...•••..... 6-5
Division. . . • . • • • . . • • • • • • • • • • • • • • • • . . . • . . . • . . • . • • 6-7
Multiple Add and Subtract•..•....••..•...........•.•• 6-9

7. LOGICAL INSTRUCTIONS. .• ...•...•.• . • • • • . • . . . • • • 7-1

8. SHIFT INSTRUCTIONS. . • • • 8-1

9. BRANCHING INSTRUCTIONS - SKIP .••..........•.•....•..... 9-1

Test. • • • . • • • • • • • • • • • • • . . . • . . • . • . • • • . • . . • . • . • • . • • . . . 9-1
Search •••.•.•••••.••••••...•••......•••.••.•.•.••.. 9-5

10. BRANCHING INSTRUCTIONS - JUMP. • • . . . • • 10-1

11. BLOCK TRANSFER INSTRUCTION. . • • . • • .. 11-1

12. SPE CIAL INSTRUCTIONS. • • 12-1

13. FLOATING POINT INSTRUCTIONS•......... \ 13-1

14. CONTROL CONSOLE. • • 14-1

Automatic Programming. • • • • • . . • • • • • • • • . .. 14-2

APPENDIX A - INSTRUCTION REPERTOIRE ••...•.............. A-I

GENERAL DESCRIPTION

The UNIVAC@ 1107 Thin-Film Memory Computer
signals the arrival of a third generation of com­
puters since it marks the first time thin-film
memory is used in a commercially available data­
processing system. Thin-film memory - the most
significant technological achievement since solid­
state circuitry - brings to commercial and scien­
tific computer users data control and storage tech­
niques never before available.

Designed and developed as a solid-state, general­
purpose system, the UNIVAC 1107 Computer util­
izes advanced data-processing methods. Its con­
cept of design centralizes the many controls -
necessary for high efficiency input and output,
concurrent computation, and internal transmission -
within the thin-film memory, the "heart" of the
system.

As a direct res uIt of its logical design, the UNI­
VAC 1107 Computer can reliably and economically
process a wide range of applications in either an
on-line or an off-line mode. Equally important is
the rate of speed at which these applications can
be processed: internal speeds of the UNIVAC 1107
System are measured in nanoseconds - billionths
of a second. Accordingly, the system is particular­
ly well equipped to handle real-time applications.

UNIVAC thin-film, also known as magnetic film, is
manufactured by deposition of vaporized magnetic
alloys on thin planes of glass under the influence
of a strong magnetic field. Because these deposits

are made in extremely thin layers, the direction
of their magnetic field can be switched in an inter­
val of several nanoseconds. This feature allows
information to be stored or retrieved at extremely
high rates of speed. Immediate benefits include
substantial savings in processing time, reduced
power requirements, and miniaturized storage units.

Basically, magnetic-film memory consists of an
array of minute circular metallic elements, several

1. UNIVAC 1107 THIN-FILM

MEMORY COMPUTER

millionths of an inch thick, deposited on planes
(substrates) of glass. Functionally, each metallic
deposit (or "dot") can be compared to the ferrite
core employed in conventional storage units.
Thirty-six "dots" are assigned to each of the 128
words in the thin-film or control memory.

Instead of wires physically threading ferrite cores,
the circuitry for magnetic film is printed on MYLAR *
tape, and then wrapped around glass substrates.
Figure 1-1 depicts a glass substrate after deposi­
tion of the metallic alloy.

Employed primarily in a control capacity, magnetic­
film memory provides multiple accumulators, index
registers, control-registers, and input-output regis­
ters. As a res ult of this arrangement, intricate
input-output, arithmetic, and housekeeping oper­
ations - which formerly required extensive data
manipulation - have now become little more than
routine programming functions.

Figure 1-7. Substrate of Magnetic Film.

* Re~istered trademark of the E.l. duPont de Nemours and

Company for its polyester film.

1-1

FEATURES

Among the more prominent features of the UNIVAC
1107 Data-Processing System are:

1-2

• A magnetic-film memory - the most ad­
vanced data storage device on the market today.

• A ferrite-core memory for instructions and
operands, available in capacities of 16,384
words in one bank or 16,384 words and
multiples thereof (up to 65,536 words) in
two separately accessed banks.

• Six hundred and sixty-seven nanosecond
(0.667 microsecond) cycle time for film
memory, complemented by an effective 2-
micros econd cycle time for core memory
(overlapping of two banks).

• Sixteen bidirectional input-output chan­
nels, capable of concurrent input-output
transmissions at a maximum rate of 250,000
words (1,500,000 characters) per second.

• Automatic programming, including ALGOL,
COBOL, FORTRAN, simulators and assem­
blers.

• An executive system for integrating the
subroutines required in the processing of
multiple programs.

• A highly versatile instruction word that
provides for indexing, indirect addressing,
automatic incrementation of the modifier,
and partial word transmission, as well as
specification of both an operand and an
arithmetic register.

• A repertoire of instructions that frequently
combines two or more data-processing oper­
tions in a single command.

PERIPHERAL EQUIPMENT

The input-output section of the UNIVAC 1107 Com­
puter System accommodates many different types
of peripheral equipment. Some external units, such
as magnetic drum and tape units, may be used to
provide auxiliary storage. Other devices may serve
as input-output equipment; these would include
card and tape units, printers, and document-sensing
devices. Additional special peripheral equipment
can provide information links to other systems.

Standard on-line peripheral equipment for the UNI­
VAC 1107 System consists of:

Magnetic Drum Storage Systems (FH880 Drums)

Magnetic Tape Units:

UNISERVO IIA Units(Remington Rand UNIVAC
format)

UNISERVO IIA Units (IBM format)

UNISERVO III Units

Card Readers (80-column or gO-column)

Card Punches (80-column or gO-column)

High-Speed Printer

Paper Tape Reader

Paper Tape Punch

Conventional off-line operations, such as card-to­
tape conversions, can be performed on-line with
negligible interruption of running programs. In this
type of operation, data flows to and from an as­
signed memory area. In effect, this memory area
serves as a data transfer buffer, functioning in­
dependently of the main program.

The capacity of the UNIVAC 1107 System to ab­
sorb many off-line operations eliminates the need
for special equipment. Appreciable savings in
floor space, power requirements, and rental costs
are then realized.

The Central Computer in the UNIVAC 1107 System
consists of four maj or sections: storage, control,
arithmetic, and input-output.

STORAGE

Regardless of the selected core memory capacity,
each UNIVAC 1107 System is equipped with a
separate magnetic-film memory. Consequently, the
storage section of the Central Computet encom­
passes both a magnetic-film memory and a core
memory, along with their respective address, trans­
fer, and control circuits.

Magnetic- F ilm Memory

Magnetic film in the UNIVAC 1107 System provides
a 128-word control memory. Each word, is capable
of storing 36 bits of information. The film array is
such that word selection determines which 36 bits
are to be accessed. Operating in the parallel mode,
read access time for any film-memory address is
167 nanoseconds (0.167 microsecond); complete
cycle time is 667 nanoseconds.

The magnetic-film memory is the most frequently
used area in the entire UNIVAC 1107 Data-Pro­
cessing System. As a general rule, in the time it
takes to make a single reference to core memory,
film memory will have been referenced threetimes.
Carried a step further, approximately 1.5 million
references per second can be made to film memory. *

Core Memory

Core storage in the UNIVAC 1107 System con­
sists of small doughnut-shaped magnetized cores
of ferrite material. Depending upon its direction of
magnetic orientation, each core (similar to the
metallic "dot" in film memory) is capable of repre­
senting one of two stable states: on or off (lor 0).

The cores themselves are arranged in planes.
Wires thread the planes in a pattern similar to that
of the vertical and horizontal coordinate lines on a
map. The intersection of two wires determines a
specific core. Data stored in core memory is ac­
cessed via word selection and read in the paralle I
mode.

* In this case references to core memory are overlapped to
provide an efficient communications rate of 500,000 words
per second.

2. CENTRAL COMPUTER

UNIVAC 1107 core memory is available in options
of 16,384 words in one bank; or, 16,384,32,768,
49,152, or 65,536 words in two banks. Read access
time for any core-memory address is 1.8 micro­
seconds; complete cycle time is 4.0 microseconds.

In a two-bank installation, regardless of the selec­
ted memory capacity, the full range of lower-order
addresses (0 through 32,767) apply to bank one, while
the full range of higher-order addresses (32,768
through 65,535) apply to bank two.

To illustrate this principle, assume a two-bank in­
stallation has a total storage capacity of 32,768
words. As shown in Figure 2-1 (Option C), the
addresses available to the programmer are 0 through
16,383 in bank 1 and 32,768 through 49,151 in
bank 2, for a total of 32,768 locations. Note that
bank 1 does not end at address 16,383 and bank 2
begin with address 16,384. Instead, each bank has
the full complement of addresses. In this manner,
the system lends itself to future expansion.

BANK 1 J BANK 2

I

E D C B A 000000 I 032768
008191 I 040959 I

008192 I 040960
016383 I 049151

I

016384 I 049152
024575 I 057343

I
I

024576 I 057344
032767 I 065535

I

OPTION I CAPACITY/WORDS BANK

A 16,384 1
B 16,384 1, 2
C 32,768 1,2
D 49,152 1, 2
E 65,536 1, 2

Figure 2-1. Core Storage Options.

2-1

BANK 1 BANK 2
DECIMAL OCTAL BINARY DECIMAL OCTAL BINARY

000000 000000 a 000 000 000 000 000 032768 100000 1 000 000 000 000 000 . .
008191 017777 a 001 111 111 111 111 040959 117777 1 001 111 111 111 111
008192 020000 a 010 000 000 000 000 040960 120000 1 010 000 000 000 000

1--------- -------- - --------- ----- --------,
I . I

016383 037777 a all 111 111 111 111 : 049151 137777 1 all 111 111 111 111 ~
I ACTUAL ADDRESS ACCESSED I

---------- --------- ____________________________ 1

016384 040000 a 100 000 000 000 000 049152 140000 1 100 000 000 000 000

024575 057777 0 101 111 111 111 111 057343 157777 1 101 111 111 111 111
024576 060000 0 011 000 000 000 000 057344 160000 1 all 000 000 000 000

I --------- -------- ------- --- ---- ------ ---
I

I ,
032767 077777 0 111 111 111 111 111 : 065535 177777 1 111 111 111 111 111 I -I

I PROGRAM REFERENCED ADDRESS I
__________________ - ____________ - __ I

Figure 2·2. Decimal, Octal, and Binary Values of Core Storage Addresses

In a system that uses less than maximum storage,
an address that exceeds the capacity of a selected
bank will automatically reference an address in
that same bank with fewer significant bits. For
example, if memory capacity is 32,768 words and the
programmer inadvertently references address 65,535,
the last address for maximum storage, the program
will automatically access location 49,151, the
highest actual address in bank 2.

The principal advantage of a two-bank installation
is that by simply storing data in one bank and in­
structions in the other, core-memory references in
consecutive instructions can be overlapped. Under
this arrangement, the cores that contained the cur­
rent instruction's operand can be read, while
the cores in the alternate bank, containing the
next instruction, are being read. The net result
is an effective cycle time of 2.0 microseconds
(see Figure 2-3).

Storage Allocation

The addresses of the 128 locations in film memory
are identical to those of the first 128 locations
in core memory. Distinction between memory units
is based on whether the address is specified by
the program-address register (P) or a designator
in the instruction in the Program Control Register (PCR).
If the address of a location that can be found in
both film memory and core memory is contained in
P, an instruction word is being accessed. Con­
sequently, program control will automatically refer-

2-2

ence the appropriate location in core memory. Con­
versely, if the address is specified via the peR,
a data word, a constant, or a control word, is
stipulated. In this case, program control auto­
matically references film memory.

,

i

Data Instruction

Cycle I
Bank i Bank

Time !

Microseconds:
1 2

2 i READ
I

---~--T------

RESTORE
!

'-------

2 READ READ
1--------1--------1--------

2 RESTORE RESTORE
t--

, 2 READ READ L _____ '-- ______ L-______

}

Overlap.
Effective
Cycle Time
of 2 p.s

Figure 2-3. Overlapped Core-Memory References

Magnetic-F ilm Memory

The 128 locations in magnetic-film memory are
reserved for data words, constants and control
words. These locations can only be accessed by
load, add, mask, and similar instructions; that is,
an instruction that designates an internal oper­
ation. For example, when a programmer specifies
that the contents of location 20 are to be stored
in location lIS, the contents of film-memory loca­
tion 20 will be transferred to film-memory location
115.

A particular location in film-memory is accessed
via designators in the instruction in the peR. The
contents of the specified location are then trans­
ferred either to the arithmetic section or to another
memory location.

An input-output instruction, that is, one that speci­
fies transfers to or from peripheral equipment, will
only reference core memory. This means that when­
ever the contents of a film-memory location are to
serve as output, they must first be transferred to a
core-memory address. Similarly, input data that is
to be operated on arithmetically must be trans­
ferred first to core memory, and then, to film memory.

In this respect, the UNIVAC 1107 incorporates a
unique safety feature. In refusing input-output
instructions direct access to magnetic-film memory,
the system precludes the possibility of a program­
mer inadvertently overlaying input data on control­
memory data essential to computation.

CONTROL MEMORY (Thin-Film)

As employed in the Central Computer, magnetic
film supports a comprehensive data-processing
network. For example, many of the system's
advanced processing and input-output options re­
sult from the 63 magnetic-film locations that pro­
vide:

Index registers

Arithmetic registers

Input-output access control registers

Temporary program address register

Real-time clock

Mask register

Repeat count register

The programmer is free to use the remaining loca­
tions as auxiliary storage for data and constants.

Core Memory

Just as film memory is reserved for data words
and is protected from external operations, the
first 128 locations in core memory are reserved
for instruction words and are fully protected from
all internal write operations. Because of this
logical design, these locations are particularly
well suited for a bootstrap routine.

Individual instructions or a bootstrap routine may
be loaded into the first 128 locations * in core
memory only by means of input peripheral equip-

* The bootstrap routine may utilize up to 224 locations in
core memory.

CORE MEMORY

BANK 1 BANK 2

128 8,192,16,384 or 32,768 8,192,16,384 or 32,768
36-bit Words 36-bit Words 36-bit Words

0.667 JLs Cyc Ie Time 2p.s Cycle Time (effective) 2p.s Cycle Time (effective)

Zo
I

So I Sl :
(Storage Address :

Zl S2 : Z2
(I/o Register)

I (Storage Address
I Register) I Register) I

(I/O Reg ister) (Storage Address I
Register) I

(I/O Register)

Figure 2-4. UNIVAC 1107 Thin-Film Memory Computer Storage

2-3

mente Once stored, the instructions can be al­
tered only by reading new instructions, via peri­
pheral equipment, into the same locations. Behind
this stipulation lies the general rule that when­
ever the designators in an instruction specify an
address that may be found in both film memory and
core memory, the program will reference film memory.

Instructions stored in the first 128 core-memory
locations are accessed via P, the program address
register. The contents of the specified location
are then transferred to PCR, the program control
register, for execution. Note that entry into PCR
can only be gained from core memory.

The next 75 core-memory locations (addresses 128
through 202) are reserved for interrupts and the
external status word. The remaining locations in
core memory (addresses 203 through 65,535 when
maximum capacity is used) may be employed as
the programmer desires.

CONTROL

The control section of the Central Computer com­
prises the program address register, the program
control register, the storage class control decod­
ing unit and the indexing unit. In addition, this
section includes the circuits which supply the
control signals necessary to synchronize the
execution of instructions.

Control Memory (Thin-Film)

The program address register., P, normally con­
tains the address of the next instruction, except
during a repeated sequence operation when it
contains the remaining number of times the in­
struction is to be executed. The program control
register, PCR, contains the instruction currently
being executed. The storage class control decod­
ing unit, SCC, decodes the effective operand ad­
dress for subsequent referencing to magnetic-film
memory or core-memory bank 1 or bank 2.

Indexing Unit

The indexing unit, containing an adder and sens­
ing circuits, is shared by both program control
and input-output control. Program control uses the
indexing unit to: advance the P-register by 1 each
time an instruction is executed (provision is thus
made for sequential execution of instructions); to
count down and control repeated sequences; and
to perform address modification, and incrementa­
tion.

The indexing unit performs address modification
as 18-bit one's complement addition. Because the
maximum operand address utilizes 16 bits, two
binary O's are placed to the immediate left of the
operand address. After modification, the two most
significant bits in the effective operand address
are dropped and the 16-bit address is transferred
to SCC.

CORE MEMORY

1------------- - --- --I

I 128 thirty-six bit words :

2p,s Effective Cycle Time

C-----~ ~~_~!~~ _1~= ~ -= ~ ~-j f---~ -= == ~~~ ~ -=--=----= =-J
~ 8,192,16,384 or 32,768 : I 8,192,16,384 or 32,768 !

I 0.667 p,s eye Ie time :
I

r-------- ----- -- --I
I Zo .L So I
---~----- ---- ,....----

I
i 1

rl scc
r

INDEXING
UNIT

2-4

I Thirty-six bit words I I Thirty-six bit words I

t---- -- --- T----- - ---i I- - - - ----.,..---------1
Sl --L Zl I I S2 : l~ _ ___ :

-----~--- ---r------- ---- - - _...&... ---....

P

PROGRAM
CONTROL

Figure 2-5. Control Paths and Units

Input-output control uses the indexing unit to
specify both the number of words to be transferred
and the locations to or from which data will move.

rupt is associated with a fixed address which auto­
matically provides entry into a subroutine cor­
responding to the event or circumstances that
caused the interrupt.

Interrupts Initial Load Operation (Automatic Bootstrap)

Interrupts are special control signals which divert
the attention of the computer from the main pro­
gram to a particular event or set of circumstances.
In the UNIVAC 1107 System, provision is made for
several classes of interrupts.

There is an external interrupt for each of the 16
input channels. These interrupts enable peripheral
equipment to request access to the Computer.
There are internal interrupts corresponding to
each of the 16 input access-control words, 16 out­
put access-control words, and the 16 external
function words. An internal interrupt is also pro­
vided for the real-time clock.

An initial load op,eration is provided for initial
loading of programs and for program restoration.
The initial load operation will read a maximum of
224 words from peripheral equipment into the first
224 locations in core memory. Upon termination of
the reading, program control is transferred to the
program contained within these 224 words. The
initial load operation may be initiated manually or
by program control.

An additional external interrupt is available for
real-time system synchronization. This interrupt
is independent of the input-output channels. It
accepts signals of any frequency from an external
generator which may be a supplementary real-time
clock for the Central Computer or the master clock
for a multiple-computer installation.

In the UNIVAC 1107 System, interrupts need not be
tested to reveal their source. Instead, each inter-

ARITHMETIC

The arithmetic section of the Central Computer in­
cludes threshold sensing circuits, counters, arith­
metic sequence control circuits, a shift matrix,
temporary storage registers, and an adder.

The threshold sensing circuits determine the
equality and relative magnitude of the contents of
specified registers. The counters are employed
during multiply and divide opera~ions. Sequence
control circuits govern the execution of add, sub­
tract, multiply, divide, shift, and test-relative-

CORE MEMORY
~~.!!~~!...m~ry i!hi!!:~~l 21ls Effective Cycle Time
I j"'-----SANK1-----, 1-----BANK2-----'
I 128 thirty-six bit words 1--------------.., r-------------,
I O.667 1ls cycle time 1 8,192,16,384 or 32,768 I I 8,192,16,384 or 32,768 ,
I-------r-------~ : ___ Th~y-S~~i!..w~rds ___ ~ ~ ___ Th~y-S~..':i!...W~~S---l
l--1"~~ __ ...J ___ ~-- -I !....--l!...--.l---r~!. - -_I I---~---L-T~!.~--~

--J-- ------l--[-=---=--=-~-~=--=--=--=±-=--=--=-~-L-~--~-=-~===~-----;
j I I 1 I
I I r--- I I
. I r --I SCC 1 I

I I L ____ ..! I

I I I
I_....L__ I !

: : INDEXING L - L ----------.. ;---- ---;
1 I UNIT J- -- ----- -------1 P I
1 I _____ ...!------~ ,--------1
I I 1--------,
I 1----- 1- --------1 PROGRAM I
I I I ~--------------------~ --__ 1 PCR '----------1 CONTROL 1

I 1 I • _____ 1 , _______ 1

Figure 2·6. Arithmetic Paths and Units

X·REGISTER

t
ARITHMETIC
NETWORK &
CONTROL

2-5

magnitude instructions. The shift matrix shifts
data from 0 through 36-bit positions in a shift oper­
ation.

During the actual execution of an arithmetic in­
struction, temporary storage registers within the
arithmetic section itself are employed. The Central
Computer first determines that the arithmetic sec­
tion will be utilized in a given operation. Data is
then transferred automatically, via the X-register*,
to a temporary storage register of the arithmetic
section. The X-register and the temporary storage
registers cannot be addressed by the programmer.

Adder

The adder in the UNIVAC 1107 System is a 36-bit
one's complement subtractive adder (mod 2 36 - 1).
Additions are performed in the following manner:

Assume the value 2 is to be added to the value
6. In core storage, the binary equivalents of
these values are:

000000000000000000000000000000000110 = 6

000000000000000000000000000000000010 = 2

In executing the instruction, the adder first
complements the value 2:

111111111111111111111111111111111101 =

one's complement of 2

Next, the adder subtracts the one's complement
of 2 from the value 6. The subtraction itself in­
volves an "end-around borrow," whereby the
process of borrowing from the digit to the left
may carry from the leftmost digit in the minuend
(value 6) to the rightmost digit in the remainder.
It will continue moving to the left in the remain­
der until the borrow is satisfied:

''a\\'a\\\'a\\\\\\\\'a\\\\\\\\\\'a\\\o 1\0 = 6

111111111111111111111111111111111101 =

one's complement of 2

o
00000000000000000000000000000000100\ = 8

end-around borrow---------... +

In the example, the binary 1 in digit position
3* in the subtrahend cannot be subtracted from
the binary 0 in the corresponding minuend posi­
tion. If the subtraction is to continue, a binary
1 must be borrowed from a digit to the left in
the minuend. However, digit positions 4 through
35 all contain binary O's. At this point an end­
around borrow occurs; that is, the needed binary
digit is taken from the remainder. As it happens,
the first bit position in the remainder contains
the binary 1 needed to satisfy the borrow.

After the end-around borrow, computation ad­
heres to the rules of .binary subtraction. The
remainder is the sum of the values 6 and 2.

Overflow and Carry Designators

Associated with the adder are two special designa­
tors: the overflow designator and the carry designa­
tor. Eight instructions affect the two designators:
the four basic add instructions and the four basic
subtract instructions - operation codes (in octal
notation) 14 through 21, 24 and 25.

Upon execution of one of the eight instructions,
both designators are cleared. After addition has
been performed, the designators remain in their
respective states (set or clear) until another one
of the eight instructions is given. Both designators
are set in time to be tested immediately after the
affecting instruction.

The overflow designator is set upon generation of a
significant bit in the sign position. This condi­
tion can only arise when the values that are added
have like signs. Specifically, a positive result
of two negative quantities will set the overflow
designator, as will a negative res ult of two posi­
tive values.

The carry designator is set whenever an end-around
carry (no borrow) is generated. The condition of
the carry designator is determined by the following
rules:

POSITIVE NEGATIVE
VALUES RESUL T RESULT

A positive and U negative Set Clear

A negative and U positive Set C lea r

A negative and U negative Set Set

A pos itive and U positive Clear Clear

* X is the 36-bit exchan~e re~ister providin~ entrance and exit * Readin~ from ri~ht to left the bit positions are numbered

to the arithmetic section. 0 throu~h 35.

2-6

The following additions will always set the carry
designator:

1. Any number added to its complement

2. All O's added to all l's.

3. Any number added to a1I1's.

4. AlII's added to alII's.

Arithmetic Reg i sters

Sixteen arithmetic or A-registers, directly address­
able by the programmer, are available for storing
operands and results of arithmetic operations.
These 16 registers are not to be confused with the
non-addressable temporary storage registers within
the arithmetic section itself.

As previously pointed out, during actual computa­
tion temporary storage registers in the arithmetic
unit are utilized. However, these registers are not
capable of retaining initial data or final results
from one instruction to another. Consequently, all
such information is transferred automatically to
the A-registers specified in the instructions. The
16 A-registers, then, function as accumulators.

Partial Word Transfers

Word transmissions between the arithmetic section
and core memory can be directly segmented into
halves, thirds, or sixths. This flexibility allows
the Central Computer to operate upon one of eleven
poss ible portions of a word or the entire 36-bit
word itself, as shown in Figure 2-7. The selected
data in a partial word transfer from memory is
shifted automatically to lower-order positions in
the arithmetic section. By means of this feature,
computation can be performed immediately after
the partial words have been transferred, without
first calling for such housekeeping instructions
as shiftso

Along with partial word transfers, special add and
subtract instructions are available to the program­
mer. Upon execution of one of these instructions,
parallel addition or subtraction of two or three
fields within a single data word is performed.

Floating. P oi nt Arithmetic

In the UNIVAC 1107 System, floating-point arith­
metic has been made a hardware, rather than a
software or programming, function. Seven instruc-

tions are devoted exclusively to floating-point
arithmetic. Addition, subtraction, and multiplica­
tion always store a 2-word result. Both results
contain their appropriate characteristics. Division
produces a quotient and a remainder, both of which
are in the floating-point format. The 2-word res ults
of these floating-point instructions lend them­
selves to programmed double-precision arithmetic.

INPUT -OUTPUT

The input-output section of the Central Computer
provides the data paths and control circuits neces­
sary for direct communication between core memory
and peripheral equipment. Data transfers may be
scheduled over a maximum of 16 bidirectional in­
put-output channels. When 16 channels are oper­
ating concurrently, word transfers can be multi­
plexed to provide a maximum communication rate
of 250,000 words (1,500,000 characters) per second.
Of course, such high-speed input-output data trans­
fer rates are rarely maintained for more than brief
periods.

The main computer program establishes the initial
communications path between core memory and the
peripheral equipment. From this point on, indi vidual
word transfers are governed by input-output access­
control circuits. These circuits monitor the num­
ber of words to be transferred and specify the core­
memory addresses to and from which data are
transmitted. In this way, the access-control cir­
cuits allow the Central Computer to res ume execu­
tion of the main program.

FULL WORD OR 36-BIT TRANSFER

1
35

01

1/2 WORD OR 18-BIT TRANSFER

1
35 18) 17

01 I

1/3 WaR DaR 12 -BIT T RAN S FER

1

35 24!23 12111
01

1/6 WORD OR 6-BIT TRANSFER
! ! I I i

35 30
1

29 24
1

23 18
1

17 12 11 615 0

Figure 2·7. Partial Word Transfers

2-7

3.

DATA REPRESENTATION

Internal operations in the UNIVAC 1107 System
are performed in the parallel binary mode. Since
the machine language is binary, data, control, and
instruction words must be expressed in pure binary
form. However, for convenience in programming,
as well as in monitoring internal operations, octal
notation can be used.

The basic data word in the UNIVAC 1107 System,
as shown in Figure 3-1, utilizes 36 binary digit
positions. Position 35 contains the sign bit, bit
position 34 is the most significant, and bit posi­
tion 0 is the least significant.

I ! I ! i I ;

3534,33,3231,30,29,28272625242322 21,2019,1817,16,151413121110,09080706,0504,03020100

Figure 3-7. Bas ic Internal Data Word.

With one position reserved for the sign, a total of
35 binary digit positions may be used to represent
a given quantity. The largest number that can be
accommodated in the UNIVAC 1107 Sys tern (ex­
clusive of floating-point and double-precision
arithmetic) is 2 35 - 1 or 34,359,738,367.

Positive binary numbers are obtained in the follow­
ing manner. The absolute value of the desired
number is placed in the low-order positions of a

DATA, CONTROL,

AND INSTRUCTION WORDS

given register. A 0 is placed in bit position 35 and
extended right until a binary 1 is reached.

Example

+ 9 = 000 000 000 000 000 000 000 000 000 000 001 001

Negative binary numbers, on the other hand, are
arrived at by complementing (substituting a binary

!

1 for each binary 0 and a binary 0 for each binary
1) the positive binary configuration of the desired
negative value. Applying this rule, a negative 9
is obtained by complementing the binary representa­
tion of a positive 9.

Example

- 9 = 111111111 111111 111111111111111 110 110

NOTE: Positive numbers are characterized by a 0
in bit position 35 and negative numbers
by a 1 in bit position 35. Also, in posi­
tive numbers the first significant bit posi­
tion contains a 1 and in negative numbers
it contains a O.

CONTROL WORDS AND CONTROL REGISTERS

Special 36-bit control words are associated with
several types of film-memory registers. Data trans­
ferred to these registers should adhere to the for­
mat of the corresponding control word. Data that
is to enter a register which is not associated with
a special control word is transferred in the format
of the basic data word.

3-1

3-2

Index Registers

Fifteen 36-bit registers are available in thin-film
memory for index register modification and index
counts. Index register word format is as follows:
The right half (Q-portion) of the index register
word stores the modifier which may be up to 18-
bits (including sign) in length; the left half (the
11 portion) of the word stores an increment which
can be up to 18-bits (including sign) in size. The
index register word format is shown in Figure 3-2.

Q

* Sign Pos itions

Figure 3.2. Index Register Word.

When an indexing operation is indicated, the ap­
propriate modifier is applied to the current in­
struction's base execution address. The result is
the effective operand address (before indirect ad ..

DECIMAL ADDR ESS OCT AL ADDR ESS

00000 000000
00001-00015 000001-000017

>- 00012-00027 000014-000033
0:: 00028-00031 000034-000037 0
~ 00032-00047 000040-000057 w
~ 00048-00063 000060-000077
..J 00064 000100 0
0:: 00065 000101 t-
z 00066 000102
0
u 00067 000103

00068-00079 000104-000117
00080-00127 000120-000177

00000-00127 000000-000177
00128-00143 000200-000217

>- 00144-00159 000220-000237 0::
0 00160-00175 000240-000257
~
w 00176-00191 000260-000277
~

w 00192-00199 000300-000307
0:: 00200 000310
0
u 00201 000311

00202 000312
00203-65535 000313-177777

dressing, if specified). Then, depending upon the
value of a special designator in each instruction,
the increment is applied to the modifier. In this
way, provision is made for varying the extent of
address modification in subsequent indexing oper­
ations.

The leftmost bit in both the modifier and the in­
crement (or decrement) portions of the index regis­
ter word specifies these quantities as positive or
negative.

Arithmetic Registers

Sixteen magnetic-film locations provide interim
storage for arithmetic operands and results. Be­
cause four of these locations overlap addresses
assigned to index registers (Table 1), the Central
Computer in the UNIVAC 1107 System is capable
of performing highly sophisticated address modi­
fication. For example, in a table look-up applica­
tion, the res uIts of a given calculation can im­
mediately be applied, as a modifier, to a base
address.

FUNCTION

Unassigned (depends on operation)
Index Registers (15)
Arithmetic Registers (16)*
Unassigned
Input Access-Control Words (16)
Output Access-Control Words (16)
Rea 1-Time Clock
Repeat Counter
M Register R Registers
T-Register (temporary storage for P)
Additional Special Registers
Unassigned

Unassigned **
External Request Interrupts (16)
Input Data Termination Interrupts (16)
Output Data Termination Interrupts (16)
Function Termination Interrupts (16)
Error Interrupts (8)
Real-Time Clock Interrupt
Externa I Status Word
External Synchronization Interrupt
U nass igned Core-Memory Addresses

* Me mory addresses 000014-000017 are a Is 0 addressa b Ie as index reg isters
** Normally reserved for Bootstrap Routine.

Table 1. Storage Allocation of Film and Core Storage Locations

The format of data that is to be loaded into an
arithmetic or A-register is contingent upon the
type of arithmetic operation to be performed. In
the case of fixed-point arithmetic, operands need
only conform with the format of the basic data
word. Floating-point arithmetic, however, requires
a word format of its own. The floating-point w'ord,
depicted in Figure 3-3, contains a 27-bit mantissa,
an 8-bit characteristic, and a sign bit.

t:: * Mantissa .~ Character ist ic
en

35 34 27 26 00

* Biased by 128 (200 octal)

Figure 3-3. Floating Point Word

As previously mentioned, the A-registers function
as 16 accumulators; that is, they retain the results
of computation from one instruction to another.

R- Registers

Sixteen film-memory locations are designated as
"R-registers." Twelve of these registers may be
used in any way the programmer desires except,
that they, as well as all other film-memory loca­
tions, cannot be employed for storing instructions.
As shown in Table 1, the remaining four R-regis­
ters are assigned the following specific functions:

Real-Time Clock

One of the four assigned R-registers serves as the
real-time clock. Every millisecond (the exact tim­
ing is 2- 10 seconds), the 36-bit number contained
in th Figure 3-5. T-Register Word. by 1. When the
count reaches 0, an internal interrupt occurs which
causes the main program to jump to address 200
(octal 310). Therefore, the programmer must either
load the real-time clock register or provide for
recovery from the automatic interrupts generated
by the clock every 2- 10 seconds.

The real-time clock, along with the other R-regis­
ters, the index registers, and. the arithmetic regis­
ters, may be referenced directly either in the oper­
and portion of an instruction (u address) or in the
arithmetic register designator (a address). (This
is known as 2-addres s accessibility, and it is ex­
plained further on page .) In respect to the real­
time clock, two-address accessibility simplifies
the setting and subsequent reading of the count.
The real-time clock is not associated with a spe­
cial control word.

Repeat Count

The second of the four assigned R-registers (refer­
red to as the "K-register") provides the repeat
count during the execution of an instruction in the
repeat sequence mode. Data that is to enter this
register should be in the format of the repeat count
word, as shown in Figure 3-4.

135
un ass igned

18 [17
k

Figure 3-4. Repeat Count Word.

Initially, the k portion of this control word con­
tains the total number of times a particular instruc­
tion is to be executed. Then, during the repeat
operation itself, k is reduced by 1 each time the
instruction is executed. Provision is thus made for
a "running" count of the number of execution times
remaining in sequence. When k reaches 0, the re­
peat operation is terminated.

In certain applications it may be necessary to re­
tain the initial repeat count. To meet this pro­
gram requirement, load the repeat count (the total
number of times an instruction is to be executed)
into the unassigned left half of the repeat count
word as well as into the k portion.

Mask Reg i ster

The third assigned R-register contains the mask
(bit pattern) used in certain logical and test in­
structions.· Data that is to enter the mask or M­

register, is in the format of the basic data word.

Temporary Program A ddres s Reg ister

The fourth R-register assigned a specific function
is employed as a temporary storage register (T­
register) for the address of the next instruction.
Utilized only during a repeat operation, the pro­
gram address is stored in the next instruction
portion of the T-register word. The format of this
particular control word is presented in Figure 3-5.

unass igned Next Instruction

35 00

Figure 3-5. T -Register Word

Input-Output Acces s Control Regi sters

Thirty-two locations in film memory are used to
maintain control over data transfers between the

3-3

Central Computer and peripheral equipment. Input­
output access control wO'{ds are associated with
this group of registers. These words, along with
the function words necessary to initiate input­
output data transfers, are discussed in the UNIVAC
1107 Input-Output Manual. At this point, it is
sufficient to note that thirty-two film-memory loca­
tions (addresses 32 - 63, Table 1), are reserved
for this purpose.

INSTRUCTION WORD

The UNIVAC 1107 Thin-Film Memory Computer is
controlled by a program of instructions stored in
memory. Each instruction consists of various parts
called designators. These designators are identi­
fied by letters, as shown in Figure 3-6.

f j a b h i u

35 30 29 26 25 22 21 18 17 16 15 0

(6 bits) - Operat i on Code
(4 bits) Operand Instruction or Minor Operation Code*

a (4 bits) - A, B, or R-register,or Input-Output Channel
Des ignator*

b (4 bits) - B-Reg ister Des ignator
h (1 bit) - Incrementation Designator
i (1 bit) Ind irect Address ing Des ignator
u (l6bits) - Base Operand Address

* Instruction determines usage.

Figure 3-6. Basic Instruction Word.

Operation Code, f (6-Bits)

The operation code or f designator, composed of
the leftmost six bit positions in the instruction
word, stipulates the particular operation that is to
be performed. (In certain instructions, when the
normal meaning of the j designator is not ap­
plicable, the operation code may be expanded to
include the ten leftmost bits in the instruction
word.)Invalid f (or f and j) values are fault condi­
tions which cause an error interrupt to occur. In
this event, the main program jumps to a fixed
memory address containing the entrance to an ap­
propriate error subroutine.

3-4

Operand Interpretation, j (4. Bits)

Normally, the j designator determines whether an
entire data word or only a part of it is to be trans­
ferred to or from the arithmetic section. As pre­
viously mentioned, in certain instructions j serve§>
as a minor operation code rather than as a partial
word determinant.

In the case of partial transfers, j stipulates which
portion of a word (half, third or sixth) is to be trans­
ferred. Figure 3-7 shows the j values and corre­
sponding word portion transfers to the X-register.

When j equals 16 or 17 (octal), the effective oper­
and is taken directly from the instruction word,
itself, instead of calling for an operand from mem­
ory.

In data transfers to the arithmetic section, when
j equals 3 through 7 or 17, the sign of the operand,
which is the MSB of the partial word, is extended
to the high-order positions in the arithmetic sec­
tion. Figure 3-7 shows that thirds are always ex­
tended, sixths are never extended, and extension
is optional with half words. Figure 3-8 snows the
j values and word portion transfers from the X­
register to the core memory input-output registers
Z 1 and Z 2' A j of 16 or 17 (octal) inhibits the
data transfer.

A.Register Designator, a (4·Bits)

The type of instruction that is to be executed de­
termines the specific usage of the 4-bit a designa­
tor.

In arithmetic instructions, a specifies one of six­
teen arithmetic registers. In a few instructions,
such as Block Transfer; Load Ba Modifier Only;
and Test Modifier, the a designator specifies one
of sixteen index registers. Input-output instruc­
tions, on the other hand, use a to stipulate which
communications channel and access control word
is to be used. In some instructions, the a designa­
tor specifies an R-register, using the notation R a •

In the Index Jump instruction, a and j combine to
specify any desired control-memory location.

B· Regi ster Designator, b (4· Bits)

The 4-bit b designator determines which of the
fifteen index registers, if any, is to modify the
instruction's operand address. When b equals 0,
address modification is inhibited. (Index register
o can only be addressed by the a designator.)

35 00 Z

j = 0 10

35 00 X

2 12

z

3 13

35 SIGN EXT.

Z Z

4 14

35 SIGN EXT.

Z

5

35 SIGN EXT.

Z

6 16

35 SIGN EXT.

Z

7 17

35 SIGN EXT. 35 SIGN EXT.

/=inllr ... ~_7 nnfn Pnfhc:: fn Arifhrn ... fir S ... rfinn_ ~ r:

35 00 Z Z

j = 0 11

35 00 X

z

1 or 3 12

35 35

z z

2 or 4 13

35

z

5

35

Z z

6

35

Z Iz

7 16 or 17 NO TRANSFER

Ix

z

10

35

Figure 3-8. Data Paths from Arithmetic Section.

3-6

Incrementation Designator, h (1- Bit)

The h designator specifies incrementation of the
modifier stipulated in the b portion of the instruc­
tion word. When h equals 0, the modifier remains
unchanged. When h equals 1, the increment portion
of the index register word (Figure 3-2) is applied
to the modifier portion, thereby altering the sub­
sequent address modification.

Ind irect Addressing Des ignator, i (1- Bit)

The i designator specifies either direct or indirect
addressing of the operand. Indirect addressing
means that the address of the operand rather than
the operand itself is contained in the location
specified by the u designator. Thus, u contains
the address of an address instead of the address
of an operand.

When i equals 0, direct addressing applies; when i
equals 1, indirect addressing applies. In the latter
case, the rightmost 22-bits contained in the loca­
tion specified by the u designator replace the right­
most 22-bits in the current instruction. Because
the b, h, i, and u designators are involved in this
substitution, all indexing, incrementing, and in­
direct addressing operations can be cascaded.

Base Operand Address, u (16-Bits)

The u designator specifies the base operand ad­
dress, that is one of the storage locations in
memory. The base operand address u becomes U
(the effective operand address) after specified
indexing or indirect addressing operations have
been performed.

Most instructions reference an operand in memory,
except when j equals 16 or 17 (octal). In this case,
the actual operand itself is taken directly from the
u portion of the instruction.

The u designator can also be used to provide the
shift count or to specify core-memory sections in­
volved in a memory lockout.

TWO-ADDRESS ACCESSIBILITY

The index, A, and R-registers can be accessed in
one of two ways. First, the film-memory address
associated with anyone of these registers can be
accessed in the same way any film-memory ad­
dress is referenced; that is, by specifying the
address in an instruction's u designator. Second,
A, B, and R-registers can be accessed via the a
designator. In this case, the type of instruction to
be executed determines which of the three groups
of registers is' pertinent to the operation. The
value of the a designator specifies a particular
register within a group.

Anyone of 16 arithmetic registers or 16 R-regis­
ters may be referenced by placing the appropriate
value, ranging between 0 and 15, in the a designa­
tor. In respect to specially assigned R-registers,
the a val ues are as follow s:

VALUE REFERENCE

o real-time clock

1 repeat count register

2 M-register

3 T-register

Sixteen index registers may be accessed via the a
designator. Here again, the a values range between
o and 15. However, the index register accessed
via an a value of 0 c.annot be referenced by the b
designator. Accordingly, index register 0 is em­
ployed only in certain instructions; for example,
B 10 c k Transfer; Load Ba Modifier Only; and
Test Modifier. As previously stated, a u designa­
tor containing a value of 0 will inhibit address
modification.

3-7

Solid-state circuitry within the Central Computer
provides the data paths for all internal transfers.
The specific circuits over which data moves depend
prima rily upon the interpretation of the various
designators within the instruction word. (The role
of skip and jump instructions in determining data
paths is discussed in Chapters 9 and 10.)

EXECUTION CYCLE

To illustrate the functions of the various instruc­
tion word designators, assume an arithmetic in­
struction, stored at the address contained in P, is
to be executed. Assume further that instructions
are stored in one bank and data in the other; the j
designator value is not equal to 16 or 17; and the
b designator is not equal to O. Once the arithmetic
instruction has been read into peR, the following
events take place:

1. The I, j, and a designators are interpreted and
the appropriate circuitry is alerted.

2. The lower half of the instruction (h, j, and u
designators) is transferred from peR to the
indexing unit.

3. The b designator is tested to determine which
index register, if any, is to participate in ad­
dress modification.

4. If modification is stipulated (the contents of b
are unequal to 0), the lower-half of the con­
tents of the specified index register is trans­
ferred to the adder in the indexing unit.

5. The contents of the u designator, with two O's
placed to the immediate left, are transferred to
the adder where modification takes place as 18-
bit one's complement addition.

4. INTERNAL DATA PATHS

6. Concurrently, the results ofthe previous instruc­
tion involved in arithmetic operations are
transferred from a temporary storage register
within the arithmetic section to the A-register
specified in that same instruction.

7. After modification (step 5), the tw-o leftmost
bits are ,dropped and the address is transferred
from the adder to see where it is decoded for
subsequent referencing to memory.

8. When modification is specified, the h designa­
tor in the current instruction is tested to deter­
mine whether the index register modifier (Q) is
to be incremented (or decremented) by (L\). If
h equals 1, the increment is applied to the
modifier.

9. After incrementation, the new modifier is sent
into the lower half of the index register speci­
fied by the b designator. The increment portion
remains unchanged.

10. The operand address is transferred from see
(step 7) to the appropriate storage address
register (SO, Sl, or S2).

11. The entire 36-bit contents of the location speci­
fied in the storage address register are trans­
ferred into the appropriate memory unit's Z­
register.

12. The i designator is tested to determine whether
direct or indirect addressing is stipulated.

13. The contents of the A-register specified in the
current instruction are transferred from film
memory to a temporary storage register in the
arithmetic section.

4-1

14. The actual data transfer, in accordance with
the j designator interpreted in step 1, is made
from memory (ZO, Zl, or Z2) to the arithmetic
section.*

17. The circuitry alerted by the f designator in
step 1 performs the desired operation.

18. The next instruction, referenced in ste p 15, is
sent to peR.

15. The program address register, P, is increment­
ed by 1 to provide for the sequential execution
of instructions.

19. An input-output transmission may be performed
while the specified arithmetic operation (step
17) is being completed.

16. The next instruction, stored at the address now
contained in P, is referenced in memory. For most instructions, the preceding steps require

4.0 microseconds. Execution time is extended by
4.0 microseconds when the operand reference is
made to the same bank as the instruction reference.

• The J desi~nator is ineffective when the operand is read

from film memory (ZO). For certain instructions, 18 bits

are transferred to or from a u address specifyin~ film memory.

However, the transfer is made as specified by the h designa­

tor rather than the j.

The block diagram in Figure 4-1 depicts the prin­
cipal paths over which data moves during the exe­
cution cycle.

4-2

i~~r;':':':"~;~~·:~,~·~·~~~~~:~;>~··:~:~:§:;ili'::::;:;:;';';'::::;';';';:;::'~:·:·~·~·;.:; ... :'.~.;.=~.~ :~.4iliili.:~.:.~.:.::';';';';';;';': .•..••... ········:·Iil!

i~ I_Control~emory (Thin-FiI~1 1------ 2JL~fec~e Cy<:.!=. Tim~ ______ I~~~
.. .. . BANK 1 I I BANK 2 Ii::: t' 128 thirtY-sIx blt~ords I r-----------J 1-----------, l~~~
~:~ I 0.667 s cycle time I I 8,192., 16,~84 ?r 32,768 I I 8,192., 16,~84 ?r 32,768 ,I:l:
lll~ I JL I I Thirty-sIx bit words 'L Thirty-sIx bit words JIll;
~~~~ --Zo--T--So-~ "--Zl---'---S-l--' I -Z2--'-$2--1 ~~~~ 

ff~~T~~~~=tt'==1 
J; rl see I r I ~ , I d I , 

~ IN~EXING ' P' X·REGISTER , 

UNIT A R I T H ~ E TIC t 
1 I,---r--~~P-R-O-G-R-A-M~ 

'-------+fJ P CR It---___ -+-_-I 

ARITHMETIC 
NETWORK & 

I I 

MAIN CONTROL 

CONTROL 

ACCESS 
CONTROL 
CIRCUITS 

IBR OBR 
INPUT­

OUTPUT 

llt· SYNC. 1 -----~ SYNC. 16 .. .. 1lll 
:::~ * r 
, PERIPHERAL PERIPHERAL PERIPHERAL I 
~ll~ EQUIPMENT EQUIPMENT ------ EQUIPMENT -[ 
~~~~ & CONTROL & CONTROL Im~ 
1l11::~;:::::;:::::::;:;;;:::;:;:::::;:;::::::::=;::::::::=;::mm:;:;~:;::::w:::,:::::::::::::::;:;::::::::;::::,:;;<:::::::::::;:;mm;::::::::m.:::~:;wm:;:~;:;~;:;~;:,~:::wJ~il

Figure 4-7. Block Diagram of the UNIVAC 7107

Thin-Film Memory Computer.

j DESIGNATOR UNEQUAL TO 16 OR 17

When the current instruction's j designator is
neither 16 nor 17 (octal), one of eleven possible
portions of a word or the entire word may serve as
the operand. The j designator becomes effective
when the operand is being transferred between
core memory (Zl or Z2) and the arithmetic section.
Consequently, with respect to the j designator, a
data transfer to or from film memory (ZO) will
always involve a complete 36-bit word. Figure 4-2
shows the data paths utilized when the j designa­
tor is neither 16 nor 17.

CORE MEMORY

BANK 1 or BANK 2

-- ----------- -- -r---------- ----
I

Z
I
I
I
I

partial word selection as
specified by j

des ignator

L-

X-REGISTER

S

ARITHMETIC SECTION

Figure 4-2. Data Paths for j Unequal to 76 or 77

j DESIGNATOR EQUAL TO 16 OR 17

The j designator may also stipulate that the oper­
and is to be transferred from the instruction word
itself. This operation is specified by a- j value of
16 or 17 (octal). Then, depending upon the con­
tents of the b designator, either 16 or 18 bits will
be transferred from low-order positions in the cur­
rent instruction to the arithmetic section.*

When j is 16 and b is not 0 (that is, index register
modification is specified), the 16-bit contents of
the current instruction's u designator serve as the
operand. In the indexing unit, two binary O's are
placed to the immediate left of the 16 bits taken
from the instruction. After the specified modifica­
tion has been performed as 18-bit one's complement
addition, the i8-bit operand is transferred to the
lower half of the X-register for subsequent trans­
mission to the arithmetic section. The upper half
of this register is cleared to O's.

When j is equal to 16 and b is equal to 0 (modifica­
tion is inhibited), an 18-bit operand will be trans­
ferred from the instruction word to the arithmetic
section. The 18 bits are taken from the current
instruction's h, i, and u designators. Once again,
the upper half of the X-register is cleared to O's.

A j value of 17 is executed in a manner similar to
those described, with the exception that the sign
of the operand, as it enters the lower half of the
X-register, is extended to the left. Sign extension,
then, replaces the filling in of O's.

Figure 4-3 depicts the data paths used in trans­
ferring operands from an instruction to the arith­
metic section. Once the operand has entered the
arithmetic section, the specified arithmetic oper­
ation is performed. Indirect addressing, if speci­
fied, is performed before transferring the operand
to the arithmetic section.

INDIRECT ADDRESSING

When the current instruction's i designator is
equal to one, an indirect addressing operation will
be performed. In this case, the rightmost 22 bits
contained in ZI, or Z2, are transferred (step 11 in
the execution cycle) to corresponding positions in
peR. The execution cycle then reverts to step 2
and remains in this loop until step 13 specifies
direct addressing.

• The J values of 16 and 1'1 are effective only in transfers
to the arithmetic section. These J values inhibit transfers
from the arithmetic section.

4-3

tion Mod ifier por
of index regis
specified by

ter
b

(T:16\
~

f

18 bits

peR

I j I a I b I hi i I u

,

~ I hi i I u

t
INDEXING

I
18·b it adder UNIT

INDEXING
UNIT

peR

u

o .:

AR ITHMETIC SECTION

X-REGISTER
(36 bits)

• 0

f

ARITHMETIC SEG'fION

X-REG ISTER
(36 bits)

o .: ~ 0

•• e· •••••••••••••••••• -

4-4

(J:17\
~
Mod ifier por tion
of index reg ister
specified by b

(T:17\
~

f

18 bits

peR

I j I a I b hi i I u

,

~ h I i I u

~t
IND EXING

18-bit adder UNIT

peR

INDEXING
UNIT

u

Figure 4-3. Data Paths for oj of 76 or 77.

S

AR ITHMETIC SECTION

X-REG ISTER
(36 bits) ,
S I

Sign ext

t

ARITHMETIC SECTION

X-REG ISTER
(36 bits)

s s
Sign ext

Figure 4-4 shows the data paths utilized in indirect
addressing. Note that the 22 bits cannot be trans­
ferred from film memory (ZO), since the PCR can
only be entered from core storage, Zl or Z2.

Because the 22 bits read into PCR include the b,
h, and i designators, as well as a new u designa­
tor, indirect addressing can be cascaded.

mod ifier portion of
index register

specified by b.

I 18-bits I

CORE MEMORY

I
IT1111

22-bits
I I I I

PCR

1
INDEXING

UNIT 18-bit adder

I see

* Z may contain an instruction word or a data word.

Figure 4-4. Data Paths for Indirect Addressing

leftmost two bit
pos itions dropped

4-5

GLOSSARY AND CONVENTIONS

Listed below are the abbreviations and symbols
frequently used in the ensuing chapters.

()

()'

I () I

u

u

A

A + 1

B

Ra

4-6

Contents of the register or ad­
dress specified within the paren­
theses.

The complement of the contents
of the specified register or ad­
dress.

The absolute value of the con­
tents of the specified register
or address.

Subscript numbers indicate the
range of pertinent bit positions
in the word located at the speci­
fied address.

The initial contents of the regis­
ter or address specified within
the parentheses.

The final contents of the regis­
ter or address specified within
the parentheses.

The address specified in the
current instruction's u designa­
tor.

The effective operand address.

One of 16 arithmetic registers
as specified by the a designa­
tor.

The arithmetic register located
at the address immediately fol­
lowing the one specified by the
a designator.

One of 15 index registers as
specified by the b designator.

One of 16 index registers as
specified by the a designator.

One of 16 R-registers as speci­
fied by the a designator.

M

NI

() 0 ()

()EB()

() EB ()

- The mask register.

- The next sequential instruction.

Transfer the word located at the
address shown to the left of the
arrow to the address shown on
the right.

The logical product of the con­
tents of the addresses shown to
the right and left of the symbol.

The logical sum of the contents
of the addresses shown to the
right and left of the symbol.

The logical difference between
the contents of the addresses
shown to the right and left of the
symbol.

For the purpose of presentation, the internal in­
structions in the UNIVAC 1107 repertoire have
been subdivided into nine groups. Within practical
limits, assignment of an instruction to a particular
group was contingent upon the type of operation
performed by the instruction. A chapter is devoted
to each of these nine groups.

In all instructions, the b, h, and i designators
provide for index register modification, incremen­
tation of the modifier, and indirect addressing. The
a designator normally specifies one of 16 arith­
metic registers (octal addresses 14 through 33).
When the a designator specifies address 33 and a
2-word operand or result is involved, the next
higher arithmetic register (A + 1) is address 34,
an unassigned film-memory location. Note that the
program does not revert back to address 14. In
effect, then, the system has 17, rather than 16,
arithmetic registers.

The values of f and j designators, the examples of
individual instructions, and the memory addresses
cited in the notes that follow many instructions
are presented in the octal numbering system.

The execution time for all instructions is shown
in microseconds.

Partial word transfers that do not involve sign
extension (see Figures 3-7 and 3-8) are used pri­
marily for transferring characters and not arith­
metic quantities. The programmer, however, is not
restricted to this usage.

The numeric representation of the operation code
(f designator) is shown for each instruction.

When used to determine an operand the j designa­
tor may be expressed mnemonically as shown in
the following diagram:

Sixths
Th irds

Ha Ives
Whole

S1 i S2
XTl

H1

MNEMONICS
S3 I S4 S5 I S6 I

XT2 i XT3
! H2
W

In mnemonic representation, a leading X signifies
sign extension. In transfers to the arithmetic sec­
tion, the leading X is mandatory with thirds and
optional with halves. Sixths are never extended.
In transfers from the arithmetic section, the sign
bit is never extended. In this case, the leading X
is dropped from the mnemonic representation of
thirds. Similarly, it would not be used to express
a half-word transfer.

4-7

Thirteen instructions in the UNIVAC 1107 reper­
toire specify internal data transfers. These in­
structions may be further subdivided on the basis
of whether they specify data transfers to film­
memory registers (Load Instructions) or from film­
memory registers (Store Instructions).

Every internal transfer utilizes the arithmetic sec­
tion of the Central Computer. The entrance to the
arithmetic section is made via the X, or exchange,
register. For example, a data transfer from core
memory (Z1 or Z2) to film memory (ZO) is accom­
plished automatically in the following manner:

Core (Z1 or Z2) ~X-register ~Arithmetic

Section ~ F-ilm (ZO)

Depending upon the value contained in the j desig­
nator, one of eleven pos sible portions of a word or
the entire word itself will be transferred in com­
pliance with the instruction.

In the case of a partial transfer, the j designator
becomes effective when the 36-bit word is being
transferred between core memory (Z1 or 22) and
the X-register. Accordingly J in transfers from film

5. TRANSFER INSTRUCTIONS

memory to core memory, the entire data word will
enter the arithmetic section. However, in trans fers
from core memory to film memory, only the selected
portion of the data word enters the arithmetic sec­
tion. The partial word is then shifted to the right,
while binary O's are filled in to the left. *

LOAD

Seven instructions specify load operations. Upon
execution of a load instruction, data contained in
either core memory or film memory is transferred to
a register in film memory.

In load instructions, the a designator specifies
the arithmetic register, index register, or R-regis­
ter to which data is to be transferred. The instruc­
tion itself, as evidenced by the operation code (f
designator), determines which of the three types
of registers is pertinent to the operation. The u
designator in load instructions determines the
location from which data will move.

When the u designator specifies film memory (ZO)
and j is unequal to 16 or 17, an entire data word
is trans ferred.

* The si~n of the selec ted portion of a word is extended to
the left when j equals 3 throu~h 7.

5-1

LOAD POSITIVE

OPERATION CODE: 10

M N EM 0 N IC COD E: LDP

OPE RAT ION: (U) --. A

DES C RIP T ION: Trans fer the i-determined portion
of the contents of U to the specified A-register.

EXAMPLES:

1.
where (A)i =

3 2 1 044 4 4 0 1 2 3

and j = 0 THEN

2.
w here (A)i =

66503 2 7 1 4 325

and j = 0 THEN

3.
where (A)i =

5 5 5 544 4 4 333 3

and j = 2 THEN

4.
where (A)i =

33332 2 2 2 1 III

and j = 5 TH EN

and (U)j =

4 4 5 5 6 6 771 122

and (U)i =

2 1 124 1 145 1 1 5

(A)f =

2 1 1 241 145 1 1 5

and (U)i =

2 0 2 0 1 4 1 413 3 5

(A)f =

777 7 7 7 7 753 3 5
•
Sign Extended

NOT E S : In example 4, the i value causes the nega­
tive sign of a partial word to be extended in A.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

5-2

LOAD NEGATIVE

OPERATION CODE: 11

MNEMONIC CODE: LDN

OPE RAT ION: - (U)--.A

DES C RIP T ION: Transfer the complement of the i­
determined portion of the contents of U to the
specified A-register.

EXAMPLES:

where (A)i = and (U)i =

5 5 553 3 3 322 2 2 1 1 1 1 0 0 0 0 6 6 ~ 6

and j = 0 THEN
6 6 6 6 7 7 7 7 1 1 1 1

2.
where (A)i = and (U)i =

3 124 5 0 026 1 7 7 2531432 735 2 4

and j = 0 THEN (A}f =

524 6 345 0 4 2 5 3

3.
where (A)i =

66664 4 4 4 5 5 5 5

and j = 3 THEN

4.
where (A)i =

1 2 3 4 3 2 1 0 1 234

and j = 6 TH EN (A)f =

NOT E S: Regardless of the i value, positive quan­
tities in U will be stored negative in A. How­
ever, when i equals 0 or 3 through 7, negative
quantities in U will be stored positive in A.

The i factor becomes effective prior to com­
plementation in the arithmetic section.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

LOAD POSITIVE MAGNITUDE

OPE RAT ION COD E : 12

MNEMONIC CODE: LDM

OPE RAT 10 N: I(U)I~A

D ESC R IPT 10 N: Transfer the absolute value of the
i-determined portion of the contents of U to the
specified A-register.

EXAMPLES:

1.
where (A)i =

666 6 6 6 666 6 6 6
and (U)i =

2460135 7 3 2 1 0

and j = 0 THE N (A)f =

Ir--2-4-6-0 -1 ----1.3 -5 -7 -3 -2 -1----,0 I

2.
where (A)i = and (U)i =

22223 3 334 4 4 4 436 1 165 2 771 1

and j = 0 THEN (A)f =

34166 125 006 6

3.
w here (A)i = and (U)i =

3 3 3 3 4 4 4 4 5 5 5 5

and j = 5 TH EN

5 5 5 5 2 2 2 216 6 0

(A)f =

o 0 0 0 000 0 3 660

extend sign & complement

4.
where (A)i =

66666 6 6 6 6 6 6 6

and j = 6 THEN (A}f =

extend sign & complement

NOT E S: After the transfer or partial transfer of the
absolute value of (U Ji' the 36-bit word con­
tained in the arithmetic section is complement­
ed if bit position 35 contains a binary 1.

EXECUTION TIMES: Alternate Bank 4.0
Same Bank 8.0

LOAD NEGATIVE MAGNITUDE

OPE RAT ION COD E : 13

MNEMONIC CODE: LNM

OPE RAT ION: -I (U) I~A

DE SC R I PT ION: Transfer the complement of the
absolute value of the i-determined portion of
the contents of U to the specified A-register.

EXAMPLES:

1.
where (A)i =

3 3 3 3 4 4 445 555

and j = 0 THEN

2.
w here (A)i =

3 3 3 3 4 4 4 4 5 555

and j = 0 THEN

3.
where (A)i =

3 333 4 4 4 4 555 5

and j = 4 TH E N

4.
wnere (A)i =

33334444555 5

and j = 12 THE N

and (U)j =

6 6 6 6 1 1 1 1 222 2

and (U)i =

2 1 1 2 166 1 7 7 0 0

and (U)i =

1111122503344

(A)f =

and (U)i =

002 2 3 3 1 144 7 7

(A)f =

00000 0 0 0 0 0 6 6

NOT E S: When the i-determined portion of U con­
tains a negative quantity, two complementing_
operations occur. The first provides the abso­
lut~ value, while the second provides the com­
plement of the absolute value. For practical
purposes, note that negative quantities in the
arithmetic section are transferred negative to A.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

5-3

LOAD Ra

OPE RAT ION COD E : 23

MNEMONIC CODE: LDR

OPERATION: (U)~Ra

DES C RIP T ION: Transfer the j-determined portion
of the contents of U to the specified R-register.

EXAMPLES:

1.
where (Ra)j = and (U)j =

1 2 344 3 2 1 123 4 5 5 661 1 007 755

and j = 0 THEN

556611007755

2.
where (Ra)j = and (U)j =

2 2 2 2 333 3 4 4 4 4

and j = 5 TH E N

4 1 1 4 5 1 1 5I1 1 6

(Ra)f =

7 7 7 7 7 7 776 1 1 6

3.
where (Ra)j = and (U)j =

2 2 2 2 333 3 4 444

and j= 11 THEN

4 1 1 4 5 1 1 5~1 1 6

(R a)f =

000 0 0 0 0 0 0 061

NOT E S: In this instruction, the a designator speci­
fies one of sixteen R-registers (addresses 100
through 117).

This instruction is executed in the same manner
as a Load Positive instruction.

The real-time clock may be set and the repeat
count and mask registers may be loaded via
this instruction.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

5-4

LOAD Sa

OPE RAT ION COD E : 27

M N E M 0 N IC COD E: LDB

OPE RAT ION : (U)~ Ba

DES C RIP T ION: Trans fer the j-determined portion
of the contents of U to the specified B-register.

EXAMPLES:

1.
w here (Sa)j = and (U)j =

3 3 3 3 4 4 4 4"2 2 2 2 555 5 0 0 001 1 1 1

and j = 0 THEN

5 5 5 5 000 0 1 1 1 1

2.
where (Sa)j =

6 5 653 1 3 1 2 727

and j = 2 THEN

3.
w here (Sa)j =

543 2 6 5 4 3 7 6 5 4

and j = 6 THEN

NOTES: a) The a designator in this instruction
specifies one of sixteen index regis­
ters (addresses 0 through 17).

b) This instruction is executed in a
manner similar to that of the Load
Positive instruction.

c) The index register into which the
value is loaded by the instruction is
specified by the a designator. With a
2-bank care system, the read b oper­
ation in the next instruction is (in
most instructions) performed before
the old" a" has been written. There­
fore, the programmer should consider

the possibility that the value loaded
into an index register by an LDB in­
struction may not be available for
modification purposes for the next
instruction.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

LOAD Ba MODIFIER ONL Y

OPE RAT ION COD E : 26

MNEMONIC CODE: LBM

OPERATION: (U)-+£a 17 - 00

DES C RIP T ION: Transfer the j-determined portion
of the contents of U to the lower half of the
specified B-register.

EXAMPLES:

1.
where (Ba)j = and (U)j =

3 003 1 122 334 4 2 2 2 2 4 4 4 4 666 6

and j = 0 THEN

2.
where (Ba)j

441 132 5 6 6 543

and j = 6 THEN

Extend Sjgn

3.
where (Ba)j

7 7 7 766 665 555

and j = 7 THEN

4.
where (Ba)j = and (U)j ==

454 5 323 2 1 010 3 3 3 3 1 1 442 2 5 5

and j = 10 THEN

NOT E S: In this instruction, the a designator speci­
fies one of sixteen index registers (addresses
o through 17). The upper half or increment por­
tion of the specified index register always re­
mains unchanged.

Circuitry alerted by the f designator (operation
code 26), rather than by the j designator causes
only the low-order 18 bits to be transferred from
the arithmetic section to the specified index
register. In cases where j designates sign
extension, it should be noted that the sign is
not extended beyond bit position 17. Note c)
of the preceding instruction also applies for
this instruction.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

STORE

Six transfer instructions specify store operations.
Five of these instructions entail data transfers
from a film-memory register to either another film­
memory location or to a core-storage'·'location. The
Store Zero instruction, on the other hand, calls
for a transfer of binary O's from the arithmetic
section of the Central Computer to the specified
location in film or core memory.

The a designator in store instructions specifies
the arithmetic register, index register, or R-regis­
ter from which data will move. The u designator
determines the address to which the data will be
transferred.

Whenever j equals 16 or 17 (octal) the write por­
tion of the store operation is inhibited. In this
case, operations stipulated by the instruction's
h, h, and i designators will be performed. How­
ever, the actual transfer of data to the U address
will not take place.

In the execution of a store instruction, the entire
data word is first transferred from the specified
arithmetic register in film memory to the arith­
metic section (X-register). Low-order bits are then
transferred from the X-register to those bit posi­
tions in memory (ZO, Zl, or Z2) specified by the j
designator. Note that in the case of a partial trans­
fer, the bits are always taken from the low-order
positions in the X-register (Figure 3-8). When U
specifies film memory (ZO), an entire word will be
trans ferred.

5-5

Only the positions to which the selected bits will
be transferred are affected. All other bit positions
in the word located at the U address remain un­
changed.

STORE POSITIVE

OPERATION CODE: 01

M N EM 0 N IC COD E: STP

OPE RAT 10 N: (A)--..U

DESCRIPTION:Transfer the contents ofthe speci­
fied A-register to the j-determined positions in U.

EXAMPLES:

1.
where (U)j =

5 005 6 006 7 007

and j = 0 THEN

2.
where (U)j = and (A)j =

2 2 2 2 3 3 3 3 4 4 4 4 6 5 6 5 4 343 2 121

and j = 0 THEN (U)f =

6 5 6 5 4 343 2 121

3.
where (U)j =

001 1 1 3 5 702 4 6

and j = 2 or 4 THE N

NOT E S: When j is equal to zero a negative value
in A will be stored negative in U.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

5-6

STORE NEGATIVE

OPE RAT ION COD E : 02

M N E M 0 N IC COD E : STN

OPERATION: -(A)~U

DESCRIPTION: Transfer the complement of the
contents of the specified A-register to the j­
determined positions in U.

EXAMPLES:

1.
where (U)j = and (A)j =

212 1 353 5 7 1 7 1 1 2 3 4 5 6 701 234

and j = 0 THEN

2.
where (U)j = and (A)j =
212 1 3 5 3 5 7 1 7 1 6 5 4 3 2 1 0 7 6 5 4 3

and j = 0 THEN (U)f =

123 456 7 0 1 234

3.
where (U)j =

o 0 001 1 1 1 222 2

and j = 7 THEN

NOT E S: The entire 36-bit word contained in A is
complemented before the j factor becomes ef­
fective.

When j equals 0 .. negative values in A will be
stored positive in U; positive values in A will
be stored negative in U.

EX E CUT ION TIM E S: Alternate Banks 4.0
Same Bank 8.0

STORE MAGNITUDE

OPE RAT ION COD E : 03

MNEMONIC CODE: STM

OPERATION: I (A) I--..u

DESCRIPTION: Transfer the absolute value of-the
contents of the specified A-register to the j­
determined positions in U.

EXAMPLES:

l.
where (U)j =

67675 4 543 232

and j = 0 THEN

2.
where (U)j =

3 4 5 6 6 543 234 5

and j = 0 THEN

3.
where (U)j =

5 5 5 5 666 6 1 1 1 1

and j = 6 TH E N

and (A)· =
I

313 1 2 0 2 0 4 5 4 5

313120204545

and (A)j =

5 5 003 3 002 121

(U)f =

2 2 774 4 775 656

(U)f =
r--~--'

NOTES: The 36-bit value in A is complemented
whenever bit position 35 contains a binary 1.
Complementation occurs before the j value
becomes effective.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

STORE Ra

OPERATION CODE: 04

MNEMONIC CODE: STR

OPERATION: (Ra)~U

DES C RIP T ION: Transfer the contents of the speci­
fied R-register to the j-determined positions in
U.

EXAMPLES:

l.
where (U)j =

2 222 666 6 7 7 7 7 4 1 1 4 555 5 322 3

and j = 0 THEN (U)f =

4 1 1 4 5 5 5 5 3 2 2 3

2.
where (U)j =

5 775 6 006 1 1 1 1 234 5 5 4 322 3 4 5

and j = 0 TH E N

3.
where (U)j =

2 2 2 2 6 6 6 6 7 777

and j = 1 or 3 TH E N (U)f =

NOT E S: In this instruction, the a designator speci­
fies one of sixteen R-registers (addresses 100
through 117). This instruction is executed in a
manner similar to that of the Store Positive
instruction.

This instruction can be used to read the real­
time clock and repeat counter.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

STORE ZERO

OPERATION CODE: 05

MNEMONIC CODE: STZ

OPERATION: o --.. U

DESCRIPTION: Transfer D's to the j-determined
portion in U.

5-7

5-8

EXAMPLES:

1.
where (U)j = 345665433456 and j= 0

THE N (U)f = I 0 0 0 0 0 0 0 0 0 0 0 0 I

2.
where (U)j= 765432111234 andj=5

THEN(U)f = 76543211\0000\

NOT E S: The a des ignator in this instruction is

2.
where (U)j =

1 1 1 1 333 3 5 5 5 5

andj=6 THEN (U)f =

3.
where (U)j = and (Ba)j =

6 6 775 5 4 4 3 322 543 2 765 4 3 2 1 0

ignored. When U specifies film-memory and j is and j = 15 THE N
unequal to 16 or 17, the entire 36-bit word will
be cleared to O's.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

STORE Ba

OPE RAT ION COD E : 06

M N E M 0 N IC COD E: STB

OPERATION: u

DES C RIP T ION: Transfer the contents ofthe speci­
fied B-register to the j-determined positions in U.

EXAMPLES:

1.
where (U)j =

20453 333 5 005

and j = 0 THEN

4 324 1 234 432 1

4.
where (U)j = and (Ba)j =

555 5 444 4 6 666 3 3 3 3 0 000 7 7 7 7

and j = 16 or 17 THE N (U}f =

5 5 554 444 6 666

NOT E S : The a designator in this instruction stipu­
lates one of sixteen index registers in film
memory (decimal addresses 0 through 15).

When j equals 16 or 17, the transfer is inhibit­
ed (example 4).

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

6. ARITHMETIC INSTRUCTIONS

Eighteen instructions in the UNIVAC 1107 reper­
toire perform arithmetic operations. Included in
this category are the basic add, subtract, multiply,
and divide instructions. Special add and subtract
instructions which operate in parallel upon two or
three fields within a single operand are also in­
cluded in this group.

ADDITION

Four arithmetic instructions specify basic add
operations. Upon execution of an Add instruction,
the contents of a memory location (U J are added to
the contents of either an index register or an arith­
metic register. Then, depending upon the particular
type of Add instruction being executed, the result
is returned to either the same index register, the
same arithmetic register, or the next higher arith­
metic register.

The addition (performed as a 1 's complement
subtractive addition) takes place in the arithmetic
section of the Central Computer.

In an Add instruction, the a designator specifies
one of sixteen arithmetic registers or one of six­
teen index registers. As previously mentioned, the
index register at location 0 cannot be referenced
via the b designator.

The j designator in an Add instruction controls
partial transfers from core memory (Z1 or Z2) to
the arithmetic section. Partial transfers in con­
junction with Add instructions are similar to those
used with Load instructions in that whenever U
specifies film memory and j is unequal to 16 or 17
(octal), an entire word will be transferred to the
arithmetic section.

6-1

6-2

ADD

OPE RAT ION COD E : 14

M N EM 0 N ICC 0 DE: ADD

OPE RAT 10 N : (A) + (U) ~A

DES C RIP T ION: Add the j-determined portion of
the contents of U to the contents of the speci­
fied A-register. Store the result in the specified
A-register.

EXAMPLES:

1.

w here (A)j = I 0 0 0 0 0 3 2 6 4 1 1 51
I
+
I

and (U)j = I 0 0 0 0 0 0 4 1 2 3 1 0 I and j = 0

THE N (A)f = 0 0 0 0 0 3 6 7 6 4 2 5

2.
where (A). = 10000003412211

I \ +,
and (U)j = 777 7 7 715 2 4 5 7 3 I

THE N (A}f = o 0 0 0 0 0 0 6 6 0 1 5

3.
where (A)j = 10000000035011 .,<

and (U)j = 7 7 7 7 7 7 7 7lit!J:J

THE N (A}f = 7 7 7 7 777 776 1 6

4.
w here (A)j = 13 4 5 6 7 6 5 4 3 2 1 0 I

I
+

and j = 3

and j = 5

and(U}j= 0000@1I]1111 andj=6

THE N (A}f = 3 4 5 6 7 6 5 4 6 6 5 3

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

ADD MAGNITUDE

OPERATION CODE: 16

FUN C T ION COD E: ADM

OPE RAT ION: (A) + I (U) I ~A

DESCRIPTION: Add the absolute value of the j­
determined portion of the contents of U to the
contents of the specified A-register. Store the
result in the specified A-register.

EXAMPLES:

1.
w here (A)j = I i) 0 0 0 2 3 4 5 6 7 0 1 I

I
+ •

and(U)j= 10000155124421 andj=O

THE N (A)f = 0 0 0 0 4 1 1 7 1 3 4 3

2.
w here (A}j = I 0 0 0 0 0 0 3 3 5 5 5 51

I
+
I

and (U)j = I 7 7 7 7 7 7 4 4 4 4 4 41 and j = 0

THE N (A h = 0 0 0 0 0 0 6 7 1 1 ·1 0

3.
where (A)j = I 000 02 524 3 3 3 31

'+ ,
and(U)j= 00000011645071 andj=3

THE N (A)f = 0 0 0 0 2 5 4 3 0 0 4 2

4.
w here (A)j = I 3 4 4 3 5 1 1 5 6 7 7 61

I
+

and (U}j = 112 21Iml4 4 4 4 and j=6

THE N (A)f = 3 4 4 3 5 1 1 6 0 3 2 2

NOT E S: The partial word is formed in the arith­
metic section before bit position 35 is tested.
Then, if position 35 contains a binary 1, the
partial word with sign extended is complement­
ed to produce the absolute value.

EX E CUT ION TIM E S: Alternate Banks 4.0
Same Bank 8.0

ADD AND LOAD

OPERATION CODE: 20

MNEMONIC CODE: ADL

OPE RAT 10 N: (A) + (U)~A + 1

DES C RIP T ION: Add the j-determined portion of
the contents of U to the contents of the speci­
fied A-register. Store the result in the next
higher A-register.

EXAMPLES:

1.
where (A)j = 10 0 0 0 2 6 6 5 3 2 1 1 I

'+ ,
o 0 0 0 0 0\3 2 765 41 and j= 3

THE N (A + 1)f = 0 0 0 0 2 7 2 0 3 0 6 5

2.
w here (A)j =10000034565431

'+
7 7 7 7 7 7 7 7~ and j = 5 and (U)j

THE N (A + l)f = 0 0 0 0 0 3 4 5 3 6 5 6

3.
where (A)j

and (U)j

10 0 0 0 3 4 5 6 6 5 4 3 1
I
+

2 4 6 6~1 3 5 7

THE N (A + 1)j = 0 0 0 0 3 4 5 6 4 0 5 4

and j = 6

EX E CUT ION TIM E S: Alternate Banks 4.0
Same Bank 8.0

ADD TO Sa

OPE RAT ION COD E : 24

M N EM 0 N IC COD E: ADB

OPERATION: (Ba) + (U) Ba

DES C RIP T ION: Add the j-determined portion of the
contents of U to the contents of the specified
B-register. Store the result in the specified B­
register.

EXAMPLES:

1.
where (Ba)j = to 0 0 0 0 1 0 3 4 4 4 41

-.:
+

and (U)j = 10 0 0 0 0 I' 0 4 5 5 5 5\ and j = 0

THE N (B a)f = 000 0 021 022 2 1

2.
where (Ba)j = 10 000 0 5 0 2 135 71

-~

+-

and (U)j = 7 7 7 7 7 7\7 7~ 1 1 31 and j = 1

THEN(B). = a I
000 006 0 1 3 4 7 2

3.
where (Ba)j = 10000100543321

I
+
I

and (U)j = 10001010000001 and j = 0

THE N (Ba)f = 000 1 1 1 054 332

NOT E S: The a designator in this instruction speci­
fies one of sixteen index registers (addresses 0
through 17.)

Because the 36-bit index register word contains
two distinct values (the modifier and the incre­
ment), the programmer must be certain a carry
is not inadvertently made into the sign posi­
tions of the Q and ~ portions.

E X E CUT ION TIM E S : Alternate Banks 4.0
Same Bank 8.0

SUBTRACTION

Four arithmetic instructions specify subtraction.
Upon execution, the contents of a memory location
(U) are subtracted from the contents of either an
index register or an arithmetic register. As deter­
mined by the operation code, the result will be
stored in the same index register, the same arith­
metic register, or the next higher arithmetic register.

The designators in Subtract instructions are used
in the same manner as those in the Add instruc­
tions.

6-3

SUBTRACT

OPERATION CODE: 15

M N EM 0 N IC COD E: SUB

OPERATION: (A) ... (U)~A

DES C RIP T ION: Subtract the j-determined portion
of the contents of U from the contents of the
specified A-register. Store the result in the
specified A-register.

EXAMPLES:

1.
w here (A)j 1000 0003 412331

I

and (U)j I 0 0 0 0 0 0·1 5 6 4 4 41 and j = 0

THE N (A}f o 000 0 0 1 6 2 567

2.
w here (A)j 10000004355551

I

and (U)j I 7 7 7 7 7 7 "7 7 3 3 3 31 and j = 0

THE N (A)f o 0 0 0 0 0 4 4 2 2 2 1

3.
w here (A)j 10000004422221

7'
L-

and (U)j 13 3 3 3 5 515 5 6 6 6 6 and j = 4

THE N (A}f 00000010664 5

4.
where (A)j = !O 000003 34 5671

I

and (U). =
I

77 7 7~5 555 and j = 6

THEN(A}J= o 0 0 0 003 3 5 7 0 0

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

6-4

SUBTRACT MAGNITUDE

OPERATION CODE: 17

M N EM 0 N IC COD E: SBM

OPERATION: (A)~I(u)I~A

DES C RIP T ION: Subtract the absolute value of the
j-determined portion of the contents of U from
the contents of the specified A-register. Store
the result in the specified A-register.

EXAMPLES:

1.
where (A)j = ·10 0 0 0 0 05 5 4 4 4 4\

I -
and (U)j 10 0 0 0 0 O· 0 3 6 6 6 61 and j = 0

THE N (A)f o 0 0 0 0 0 5 1 555 6

2.
w here (A)j 10000444455551

'-.......
and (U)j 77777313366661 and j = 3

THE N (A)f 00004 4 1 0 6 6 6 7

3.
where (A)j 10 0 0 0 6 6 6 6 2 2 2 21

~
-~

and (U)j o 0 0 0 0 0 0 Or 4 4 41 and j = 5

THE N (A)f = o 0 0 0 6 6 6 6 1 667

NOT E S: The partial word is formed in the arith­
metic section before bit position 35 is tested.
Then, if position 35 contains a binary 1, the
partial word with sign extended is complement­
ed to produce the absolute value.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

SUBTRACT AND LOAD

OPERATION CODE: 21

MNEMONIC CODE: SBL

OPERATION: (A) - (U~A + 1

DES C RIP T ION: Subtract the j-determined portion
of the contents of U from the contents of the
specified A-register. Store the result in the
next higher A-register.

EXAMPLES:

1.
where (A)j =/ 0 0 0 0 0 0 3 3 2 4 2 4 I

I

and (U)j = I 0 0 0 0 0 0'1 4 5 6 7 0 I and j = 0

THE N (A + 1)f = 0 0 0 0 0 0 1 6 4 5 3 4

2.
where (A)j =1777777754646 I

""""
and (A)j 7 7 7 7 7 7 7 7~ and j=5

THE N (A + 1)f = 7 7 7 7 7 7 7 5 2 5 3 4

3.
where (A)j

and (U)j

=1000045543223
I

THE N (A + l)f = 0 0 0 0 4 5 5 4 3 3 3 4

and j = 6

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

SUBTRACT FROM Ba

OPERATION CODE: 25

M N EM 0 N IC COD E : SBB

OPE RAT 10 N:

2.
w he re (B a)j = / 0 0 0 0 3 1 0 2 0 0 6 5 I

I

and (U)j =/000012'0000001 andj=O

THEN (Ba)f = 000017020065

NOT E S: The a designator in this instruction is
used to specify one of sixteen index registers
(addresses 0 through 17).

In using this instruction, the programmer should
exercise care that a carry or borrow is not in­
advertently made from the increment portion
(8) of the index register word to the modifier
portion (Q).

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

MUL TIPLICATION

Three instructions perform multiplication. In these
instructions, the a designator always specifies an
arithmetic register. The remaining designators
serve the same purpose as those used in Add
ins tructions.

Multiplication produces a 72-bit (2-word) result.
The most significant word is stored in the speci­
fied arithmetic register, while the least si.gnificant
word is stored in the next higher arithmetic regis­
ter. Bit position 35 in the specified A-register con­
tains the sign of the 72-bit result. All 36 bit
positions in A + 1 contain data.

DESCRIPTION: Subtract the j-determined portion MULTIPLY INTEGER
of the contents of U from the specified B-regis-
ter. Store the result in the specified B-register. 0 PER AT 10 NCO DE: 30

EXAMPLES:

1.
where (Ba)j = I 0 0 0 0 0 4 0 3 4 6 5 1 I

[

and (U)j = I 0 0 0 0 0 0 '0 0 2 1 1 6 I and j = 0

THEN (Ba)f = 000004032533

M N E M 0 N ICC 0 DE: MPI

OPERATION: (A) • (U}~A, A + 1

D ESC R IPT 10 N: Multiply the contents of the speci­
fied A-register by the j-determined portion of
the contents of U. Store the most significant
half of the 72-bit result in the specified A­
register and the least significant half in the
next higher A-register.

6-5

6-6

EXAMPLES:

1.
where (A)j = 100 0 0 0 0 0 0 0 1 2 21

I

and (U)j = 10000000000021 and j = 0

TH EN (A)f 000 0 0 0 0 0 0 0 0 0

AND (A + 1)f o 0 0 0 0 0 0 0 0 2 4 4

2.
w here (A)j = 131200000.00001

'.
and (U)j o 0 2 0 0 0 10 0 4 4 4 41 and j = 4

THE N (A}f o 0 0 0 0 0 0 006 2 4

AND (A + l)f 0000000 000 0 0

3.
where (A}j 12 1 4 0 0 0 0 0 0 000 I

!

and (U}j 77 7 7~5 5 5 5 and j = 6

THEN (A}f o 0 0 0 0 0 0 0 064 4

AND (A + 1}f o 0 0 0 0 0 0 0 0 0 0 0

4.
w here (A)j 13 1 2 0 0 0 0 0 0 0 001

~

and (U}j 17 7 7 7 7 7
1

7 7 5 7 7 71 and j = 0

THE N (A)f 3 1 1 7 7 7 7 7 7 1 5 3

AND (A + l)f 4660000 0 000 0

EXECUTION TIMES: Alternate Banks 12.0
Same Bank 16.0

MULTIPLY SINGL E (INTEGER)

OPERATION CODE: 31

MNEMONIC CODE: MPS

OPERATION: (A) • (U)~A

DES C RIP T ION: Multiply the contents ofthe s peci­
fied A-register by the j-determined portion of
the contents of U. Store the res ult in the s peci­
fied A-register.

EXAMPLES:

1.
where (A)j =10000000001221

I

and (U)j =1000000000002\ and j = 0

TH EN (A)f = o 0 0 0 0 0 0 0 0 2 4 4

2.
w here (A)j =[3120000000001

7'

and (U)j = 10 0 2 0'0 010 044 4 4 and j = 4

TH E N (A}f = 000 000 000 000

NOT E S: Basically, this instruction specifies a
Multiply Integer operation. However, the least
s'ignificant half of the 72-bit result (rather than
the most significant half) is stored in the speci­
fied A-register. The 36 most significant bits
are lost, while the contents of the next higher
A-register (A ;- 1) remain unchanged.

EXECUTION TIMES: Alternate Banks 12.0
Same Bank 16.0

MUL TIPL Y FRACTIONAL

OPE RAT ION COD E : 32

MNEMONIC CODE: MPF

OPE RAT ION: (A) • (U)~A, A + 1

D ESC R IPT 10 N: Multiply the contents of the speci­
fied A-register by the j-determined portion of
the contents of U. Store the most significant
half of the fractional result in the specified
A-register and the least significant half in the
next high A-register.

EXAMPLES:

1.
w here (A)j

and (U)j

THE N (A)f

AND (A + 1}f

10000000001221
•

\ 0 0 0 0 0 0'0 0 0 0 0 21 and j = 0

o 0 0 0 000 0 0 0 0 0

00000 000 0 5 1 0

2.
where (A)i [3120000000001

"
and (U)i 002 0 0 010 0 4 4441 and j = 4

TH EN (A)f o 0 0 0 0 0 0 0 1 4 5 0
AND (A + 1)f 000 0 000 0 0 0 0 0

3.
w here (A)i 1214000,0000001

and (U)i 7 7 7 713 0'0 015 5 5 5 and j = 6

THE N (A)f o 0 0 0 0 0 001 5 1 0

AND (A + 1)f o 0 000 0 0 0 0 0 0 0

4.
where (A)i 13120000000001

i

and (U h 1777777'7757771 andj=O

THE N (A)f 7 7 7 7 7 7 7 7 6 3 2 7

AND (A + 1)f = 0 0 0 0 0 0 0 0 0 0 0 0

NOT E S: This instruction is identical to Multiply
Integer with the exception that the 72-bit result
is shifted one place to the left before it is
stored in the two A-registers.

As may be seen from a comparison of examples,
the left shift in Multiply Fractional doubles the
result of a Multiply Integer instruction.

EXECUTION TIMES: Alternate Banks 12.0
Same Bank 16.0

DIVISION

Three arithmetic instructions stipulate division.
In these instructions, the a designator always
specifies an arithmetic register. The remaining
designators are used in the same manner as with
Add instructions.

The Divide Integer and the Divide Fractional in­
structions are normally used when the program
specifies immediate division of the double-length
product of a Multiply Integer or Multiply Fractional
instruction.

During the execution of a Divide, overflow will
occur whenever the divisor is equal to or less than
the most significant half of the dividend. This
condition, in turn, causes an error interrupt.

DIVIDE INTEGER

OPE RAT ION COD E : 34

M N E M 0 N ICC 0 DE: D VI

OPE RAT ION: (A, A + 1) + (U)-.A, A + 1

DESCRIPTION: Divide the 72-bit combined con­
tents of the specified A-register and the next
higher A-register by the j-determined portion of
the contents of U. Store the quotient in the
specified A-register and the remainder in the
next higher A-register.

EXAMPLES:

1.

where the Dividend (A,A+1)i =

1 000 0 0 0 0 0 0 0 0 000 0 0 000 1 0 000 1
I-
i

and the Divisoc (U)i = 10 0 0 0 0 0 0 0 2 0 0 Oland j = 0

Then the Quotient (A~ = 0 0 0 0 0 0 0 0 0 0 0 4
and the Remainder = 0 0 0 0 0 0 0 0 0 0 0 0

(A + 1)t

2.
where the Dividend (A,A+1)i =

10000000000000000000000221 ,. "'T,

3.
where the Dividend (A,A+l)i =

10000000000000000000000221 ,.
~

and the Divisor (U)i = 777777177777 2land j=3

Then the Quotient(A~= 7 7 7 7 7 7 7 7 7 7 7 4
and the Remainder 0 0 0 0 0 0 0 0 0 0 0 3

(A + 1)t

6-7

6-8

NOT E S: Because the double-length dividend is,
in effect, a single 72-bit word, the divisor need
only be greater than the most significant half,
that is, greater than the contents of A.

The remainder has the same sign as the divi­
dend.

EXECUTION TIMES: Alternate Banks 31.3
Same Bank 35.3

DIVIDE SINGLE AND LOAD (FRACTIONAL)

OPE RAT ION COD E : 35

MNEMONIC CODE: DVL

OPERATION: (A) - (U)~A + 1

DESCRIPTION: Divide the contents of the speci­
fied A-register by the j-determined portion of
the contents of U. Store the result in the next
higher A-register.

EXAMPLES:

1.
where the Dividend (A)i =

10000000000351 .;.

TH EN the Quotient (A + 1}f =

o 000 000 000 0 4

2.
where the Dividend (A)i =

10000000000301 '. and the Divisor (U)i = ~

and j = 0

7 7 7 7 7 7 7 7l.LLUJ and j = 5

THEN the Quotient (A + 1}f =

7 7 7 7 7 7 7 777 7 3

NOT E S: This instruction is similar to the Divide
Fractional (operation code 36) except that only
the most significant half of the dividend is
used.

A remainder is not provided for by this instruc­
tion.

EXECUTION TIMES: Alternate Banks 31.3
Same Bank 35.3

DIVIDE FRACTIONAL

OPE RAT ION COD E : 36

MNEMONIC CODE: DVF

OPE RAT 10 N: (A, A + 1) + (U) A, A + 1

DES C RIP T ION: Divide the 72-bit contents of the
specified A-register and the next higher A-re gis­
ter by the j-determined portion of the contents
of U. Store the quotient in the specified A­
register and. the remainder in the next higher
A-register.

EXAMPLES:

1.
where the Dividend (A, A + l)i =

I 0 0 0 0 0 0 0 0 0 0 0 0: 0 0 0 0 0 0 0 1 0 0 0 0 I

and ttle Divisor (U) i = [0 0 0 0 0 OiO 0 2 0 0 0 I and j = 0

Then the Quotient (A\= 0 0 0 0 0 0 0 0 0 0 0 2
and the Remainder = 0 0 0 0 0 0 0 0 0 0 0 0

(A + l)f

2.
where the Dividdnd (A, A + l)i =

3.

10000000000000000000000221 '. -r

where the Dividend (A, A + l)i =

/0000000000000000000000221 ,. -r,
and the Divisior (U)i = 77 7 7 7 717 7 7 7 7 21 and j=3

Then the Quotient (A~ = 7 7 7 7 7 7 7 7 7 7 7 6
and the Remainder 0 0 0 0 0 0 0 0 0 0 0 4

(A + 1)f

NOT E S: This instruction is identical to the Divide
Integer with the exception that the 72-bit divi­
dend is effectively shifted right I-bit place
prior to division. (See the notes on Divide
Integer.)

As may be seen from a comparison of examples,
the right shift in Divide Fractional reduces the
quotient of a Divide Integer by one half.

The right shift counteracts the left shift in­
herent in Multiply Fractional instructions.

EXECUTION TIMES: Alternate Banks 31.3
Same Bank 35.3

MUL TIPLE ADD AND SUBTRACT

Four arithmetic instructions specify parallel addi­
tion or subtraction of two or three fields within a
single operand. The operation code (t designator)
is the same for all four instructions. However, with
these instructions, the j designator serves as a
minor operation code, rather than as a partial-word
determinant. The selection of a particular instruc­
tion in this group is contingent upon the value
contained in j.

In these instructions, the a designator always
specifies an arithmetic register.

The addition (or subtraction) of two fields is treat­
ed as two distinct operations. Bit positions 35 and
17 contain the signs of the upper and lower fields
res pectively. In the actual computation, carries
(or borrows) are restricted to the half in which
they occur. Since carries (and borrows) are not
made throughout the entire 36-bit word, these
instructions will not set the carry designator or
the overflow designator.

Similarly, the addition (or subtraction) of three
fields is treated as three distinct operations. Bit
positions 35, 23, and 11 are the sign positions.
Here again, the carry and overflow designators
will not be set. Consequently, in all four Multiple
Add and Subtract instructions, the programmer
must take into account the possibility of a carry
-(or borrow) inadvertently made into the sign posi­
tion of a particular field.

ADD HALVES

OPERATION CODE: 72

MINOR OPERATION CODE: j=4

MNEMONIC CODE: ADDH

OPE RAT 10 N: (A) 35 _ 18 + (U) 35 - 18 A35 - 18

(Ah7 - 00 + (U) 17 - 00 ~A17 - 00

DES C R I PT ION: Add the upper-half of the contents
of U to the upper-half of the contents of the

specified A-register. Store the result in the
upper-half of the specified A-register. Add the
lower-half of the contents of U to the lower­
half of the contents of the specified A-register.
Store the result in the lower-half of the speci­
fied A-registero

EXAMPLES:

l.

w here (A)j

and (U)j

THEN (A)f

2.
where (A)j

and (U)j

THEN (A)f

3.
where (A)j

and (U)j

THEN (A)f

I 0 0 1 2 3 4110 6 5 4 3 2 I
I J
+ +
I ,

r--I 0-0-0-"--5-6----,7110 1 3 3 3 3 1

00202 3 1 0 0 765

I 0 0 0 2 2 2117 7 7 4 4 4 I
I I
+ +
I .------'1'--_--.

j 7 7 7 4 4 4110 0 5 5 5 5 1

7 7 7 666 005 222

1 3 3 3 3 3 31 11 1 1 1 1 1 1
I I
+ +

I 0 2 4 '3 4 3111 2 3 '4 5 6 I
3 5 7 6 7 6 2 3 4 5 6 7

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

SUBTRACT HALVES

OPE RAT ION COD E : 72

MINOR OPERATION CODE: j = 5

MNEMONIC CODE:

OPERATION:

SUBH

(A) 35 _ 18 - (U) 35 _ ur~A 35 - 18

(Ah7_ 00 - (Uh7- 00" A 17- 00

DES C R I PT ION: Subtract the upper-half of the con­
tents of U from the upper-half of the contents
of the specified A-register. Store the result in
upper-half of the specified A-register. Subtract
the lower-half of the contents of U from the
lower-half of the contents of the specified A­
register. Store the result in the -lower-half of
the specified A-register.

6-9

EXAMPLES:

1.
where (A)j I 0 4 5 5 TIl 10 3 4 4 4 4 1

I i -
and (U)j I 0 0 6 '6 6 6110 0 5' 7 5 7 I

TH E N (A)f o 366 6 7 0 2 6 4 6 5

2.
where (A)j I 0 3 2 2 2 2117 7 6 2 2 2 I

.I I - -
and (U)j I 7 7 5 '3 3 31 ~ 0 0 '6 6 6 1

THE N (A)f o 3 4 6 6 6 775 334

3.
w here (A)j 1 0 0 0 4JJl~ 7 7 6 4 6 I

I I - -
and (U)j 17 7 7 '2 2 21P 0 4

1

5 5 5 1

THEN (A)f o 0 1 2 1 7 7 7 3 071

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

ADD THIRDS

OPERATION CODE: 72

MINOR OPERATION CODE: j=6

MNEMONIC CODE: ADDT

OPE RAT ION: (A)35 _ 24 + (U) 35 _ 24..Ja.35 - 24

(Ah3 - 12 + (U) 23 - 12..-A23 - 12

(Ahl- 00 + (U) 11- oo~A 11- 00

DES C RIP T ION: Add the upper third of the con­
tents of U to the upper third of the contents of
the specified A-register and store the result in
the upper third of the specified A-register. Add
the middle third of the contents of U to the

6-10

middle third of the contents of the specified A­
register and store the res ult in the middle third
of the specified A-register. Add the lower third
of the contents of U to the lower third of the
contents of the specified A-register and store
the result in the lower third of the specified
A-register.

EXAMPLES:

1.
where (A)j lJijJJl~lo 6.6.6 1

+ + +
and (U)j 1 0 2 '3 41llii::§J 10 o· 1 2 I

THEN (A)f o 7 0 0 0 7 0 0 0 7 0 0

2.
w here (A)j ~~I051671

+ + +
and (U)j I 0 4 ·3 21liTI 10 I' 1 2 I

TH E N (A)f :;:: o 6 6 6 0 5 6 707 0 1

3.
where (A)j ~~~

+ + +
I --L- •

and (U}j 17 3 3 311lilJ 17 4 4 4 1

THE N (A}f o 1 1 175 5 5 0 0 0 0

E X E CUT liON TIM E S : Alternate Banks 4.0
Same Bank 8.0

SUBTRACT THIRDS

OPERATION CODE: 72

MINOR OPERATION CODE: j = 7

M N E M 0 N ICC 0 DE: SUB T

OPERATION: (Ah5-24 -(Uh5-24~A35-24

(Ah3 - 12 ,.- (Uh3 -12~A23 -12

(A)u- 00 - (U)l1- oo~A 11- 00

DES C RIP T ION: Subtract the upper thitd of the
contents of U from the upper third of the con­
tents of the specified A-register and store the
result in the upper third of the specified A­
register. Subtract the middle third of the con­

tents of U from the middle third of the contents'
of the specified A-register and store the result
in the middle third of the specified A-register.
Subtract the lower third of the contents of U
from the lower third of the specified A-register
and store the res ult in the lower third of the
specified A-register.

EXAMPLES:

1.
where (A)j

and (U)j

TH EN (A)f

~~102161
- - -

I 0 O· 5 61 [ill 10 0 (7 7 I

o 2 6 6 0 1 070 1 6 2

2.
where (A)j

and (U)j

THE N (A)f

~[[lJ]10 0.3 4
- - -

r-[7 ---L7 ·3----'41lDJ] ~-O~·4-5--.,

052 1 020 2 776 6

EX E CUT 10 N TIM E S: Alternate Banks 4.0
Same Bank 8.0

6-11

Six instructions in the UNIVAC 1107 repertoire
are classified as logical instructio.ns. Basically,
these instructions entail the addition, subtraction,
or multiplication of specified bit configurations
rather than quantities. Logical instructions differ
from arithmetic instructions in that they perform
these operations ina non-arithmetic manner. In
executing a logical instruction - whether it be
addition, subtraction, or multiplication - the de­
sired operation is performed on a bit-by-bit basis.
The special circuitry that provides for carries
from one bit position to another is not activated as
in the execution of arithmetic instructions.* Con­
sequently, carries do not occur in logical oper­
ations.

• The manipulation of bits on an individual basis conforms
to the loaic of basic computer circuitry. Consequently,
instructions that stipulate the handHna of data on a bit-by­
bit basis are termed loaical instructions.

7. LOGICAL INSTRUCTIONS

In logical instructions, the a designator always
specifies an arithmetic register. When the result
is to be" stored in A + 1 and the instruction's a
designator specifies address 33 (the sixteenth
A-register), the result will be stored at address 34
(an unassigned film-memory location). The program
will not revert back and store the result at address
14 (the first A-register).

The j designator in logical instructions controls
partial transfers from core memory (Z1 or Z2) to
the arithmetic section. When U specifies film mem­
ory (ZO) and j is unequal to 16 or 17 (octal), an
entire word will be transferred to the arithmetic
section •

7-1

SEL ECTIVE SET

OPE R A TI 0 NCO DE: 40

M N E M 0 N ICC 0 DE: SSE

OPE RAT ION: (A) ® (U) -+-A + 1

DESCRIPTION: Form the logical sum of the con­
tents of the specified A-register and the j­

determined portion of the contents of U. Store
the result in the next higher A"register.

EXAMPLES:

1.
w here {A)j-

and {U)j

THE N (A + 1)f

2 ..
where (A)j

and (U)j

TH E N (A + l)f

3.
where (A)j

and (U)j

THEN (A + 1}f

and j = 0

o n 0 0 0 1 4 5 3 2 3 2

and j= 3

000 0 0 0 0 7 7 7 7 7

and j= 6

0000000 0 0 0 3 6

NOT ES: For practical purposes, when correspond­
ing bit positions in U and A contain O's, a
binary 0 is placed in the same position in A + 1.
Under all other conditions, a binary 1 is placed
in the appropriate bit position in A + 1.

7-2

The rules governing logical binary addition are
as follows:

A

U

o
o

o
o
o

This type of logical binary addition is some­
times referred to as "inclusive OR"; for ex­
ample, if there are bits in corresponding posi­
tions of either the A-register or the U-register

OR both, then bits will be included in the
corresponding position of the sum.

This instruction is normally used when the pro­
grammer wishes to buff or superimpose individ­
ual bits onto the value contained in the speci­
fied A-register. Binary l's in U will cause
binary 1 's to be buffed into corres ponding posi­
tions in A + 1, while O's in U leave correspond­
ing A values unchanged in A + 1.

Initial U and A values remain unchanged.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

SEL ECTIVE COMPL EMENT

OPERATION CODE: 41

M N EM 0 N IC COD E: scp
OPERATION: (A) EF> (U) -+- A + 1

DES C RIP T ION: Form the logical difference of the
contents of the specified A-register and the j­

determined portion of the contents of U. Store
the result in the next higher A-register.

EXAMPLES:

and {U)i =\000000411111\ andj=O

THE N (A + l)f = 0 0 0 0 0 0 7 3 5 5 5 3

2.
w here (A)i

and (U)j

THE N (A + 1)f

3.
w here (A)j

and (U)j

THE N (A + 1)f

=10000000000111
I

~ rnfu7 7 7 3 3 3

000 0 000 0 0 000

= 1 0 00 0 0 0 2 2 4 4 ~ 4 1
_7

~~7440021
~

7777775 5 3 2 2 2

sign exte nded

and j = 4

and j= 7

NOT E S: When corresponding bit positions in U
and A contain the same values, a binary 0 is
placed in the corresponding bit position in
A + 1. When U and A contain different values
in identical bit positions, a binary 1 is placed
in the corresponding position in A + 1.

The rules governing logical binary subtraction
are as follows:

A

U

o

1

1

o
o

o
o
o

This type of binary subtraction is sometimes
referred to as "exclusive OR"; for example,
if there are bits in corresponding positions of
either the A or the U registers, bits will be
included in the corresponding bit positions of
the result; however, if corresponding bit posi­
tions of both the A and the U register contain
the same value, a bit is not included in the
corresponding bit position of the result.

In effect, this instruction complements those
bit positions in A that correspond to binary 1 's
in U.

Initial U and A values remained unchanged.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

SELECTIVE CLEAR

OPE RAT ION COD E : 42

MNEMONIC CODE: SCL

OPE RAT 10 N: (A) 0 (U) A + 1

DES C RIP T ION: Form the logical product of the
specified A-register and the j-determined por­
tion of the contents of U. Store the result in
the next higher A-register.

EXAMPLES:

1.
w here (A)j

and (U)j

THE N (A + l}f

and j = a

o a a a a a 0 a 2 2 2 2

2.
where (A)j

and (U)j

THEN(A+l)j a a a 0 a a 001 a 1 a

and j= 5

3.
w here (A)j

and (U)j

THEN (A + l)j a a 0 a a a 000 1 a 1

and j = 7

NOT E S: When corresponding bit positions in U and
A contain binary 1 's, a binary 1 is placed in the
identical position in A + 1. Under all other
circumstances, a binary 0 is placed in A + 1.

The rules governing logical binary multiplica­
tion are as follows:

A

U

a
1

o
o
o 1

o
o
o

This type of logical binary multiplication is
also referred to as "logical AND"; for example,
if a bit is contained in corresponding positions
of both the A and the U register, a bit will be
included in the corresponding position of the
product.

This instruction is normally used when the pro­
grammer wishes to extract or erase certain bits
from the value contained in the specified A­
register. Each binary 1 in U will transfer the
value in the corresponding bit position in A to
A + 1. A 0 in U causes a 0 to be inserted in the
corres ponding bit position in A + 1.

Initial· U and A values remain unchanged.

EX E CUT 10 N TIM ES: Alternate Bank 4.0
Same Bank 8.0

SELECTIVE SUBSTITUTE

OPE RAT ION COD E : 43

MNEMONIC CODE: SSU

OPERATION: (U) 0(M) + (A) 0 (M)!""'A + 1

7-3

DES e RIP T ION: Form the logical product of the j­

determined portion of U and the contents of the
Mask register. Form the logical product of the
contents of the specified A-register and the
complement of the contents of the Mask register.
Add the logical products and store the result
in the next higher A-register.

EXAMPLES:

7-4

1.
where (U)i =

3 3 3 3 5 5 5 5 3 333

+
o 0 003 333 0 0 0 0

THE N (A + 1)f =

3 3 3 333 3 3 3 3 3 3

2.

+
000 0 7 6 4 5 7 2 2 2

THE N (A + l)f =

7 4 4 2 764 5 7 222

3.
where {U)i =

7 7 777 7 7 7 5 6 6 6

+
j033344000000

THEN (A + 1)f =

033 344 775 666

where (A)i =

2 2 223 333 444 4

where (A)i =

o 000 7 645 7 2 2 21

where (A)i =

o 3 334 4 1 1 1 1 1 1

NOT E S: Before the execution of this instruction,
the desired mask is loaded into the mask regis­
ter (address 102) via the Load Ra instruction.

In effect, this instruction forms a new word in
A + 1 on the basis of fields or bits selected
from the words contained in U and A. Each
binaty 1 in the mask will cause the value in
the corresponding bit position in U to be set
(or stored) in the same position in A + 1.
Binary O's in the mask will cause the values
in corresponding positions in A to be set in
identical positions in A + 1.

Initial U and A values remain unchanged.

EX E e UTI 0 N TIM E S: Alternate Banks 4.7
Same Bank 8.7

SEL ECTIVE EVEN PARITY TEST

OPE RAT ION e ODE: 44

M N EM 0 N Ie eo 0 E: SEP

OPE RAT ION: If (A) 0 (U) is even parity,
skip NI

DES e RIP T ION: If the logical product of the con­
tents of the specified A-register and the j­
determined portion of the contents of U is even
parity, skip the next instruction. If it is odd
parity, continue with the next instruction.·

EXAMPLES:

1.

and j = 0

Then Parity of Logical Product

000000304440 is odd (total of 5 bits)

2.

and j = 4

Then Parity of Logical Product

0000776000001 is even (Total of 8 bits) SKIP NI
~

Extend sign

NOT E S: In this instruction, A + 1 is not utilized.

EXECUTION TIMES: NO SKIP

Alternate Banks 10.0
Same Bank 14.0

SEL ECTIVE ODD PARITY TEST

OPE RAT ION COD E : 45

M N EM 0 N ICC ODE: SOP

SKIP

6.0
10.0

OPERATION: If (A)0(U) is odd parity,
skip NI

DES C RIP T ION: If the logical product of the con­
tents of the specified A-register and the j­

determined portion of the contents of U is odd
parity, skip the next instruction. If it is even
parity, continue with the next instruction.

EXAMPLES:

1.
where (A)i =

7 7 7 7 7 7 5 5 4 4 4 4

and j = 0

Then Parity of Logical Product

17 7 7 766440 0001 is even (total of 18 bits)

2.
where (A)i =

555 5 4 4 4 4 5 555

and j = 7

Then Parity of Logical Product

10 0 0 0 0 0 0 0 0 1 1 11 is odD (tota I of 3 bits) SKIP NI

NOT E S: In this instruction,A + 1 is not utilized.

EXECUTION TIMES: NO SKIP SKIP

Alternate Banks 10.0 6.0
Same Bank 14.0 10.0

7-5

Seven instructions in the UNIVAC 1107 repertoire
provide for shift operations. In these instructions,
the a designator always specifies an arithmetic
register. The j designator in shift instructions
serves as a minor operation code. The seven right­
mos t bits in the u designator provide the shift
count. A shift count that exceeds 72 places will
not produce a reasonable result.

Instruction execution time is independent 6f the
number of shifts performed. In the execution of
the first six shift instructions, there is only one
reference to memory. Consequently, the distinc­
tion between alternate core banks and the same
core bank is irrelevant.

Except for circular shifts, the least signifi.cant
bits shifted out of the specified arithmetic regis­
ter (or the next higher arithmetic register) are
permanently lost.

SINGLE RIGHT CIRCULAR SHIFT

OPE RAT ION COD E : 73

MINOR OPERATION CODE: j==O

MNEMONIC CODE: SCSH

8. SHIFT INSTRUCTIONS

OPERATION: (A) shifted circularly U places
to the right.

EXAMPLES:

l.
w here (A)j ==

o 0 000 0 0 2 5 5 5 5

TH EN (A)f == d 5 0 0 0 0 0 0 0 2 5 5 51
... -----3 places----I

2.
where (A)j ==

o 0 0 0 0 0 0 044 4 4

THE N (A)f ==

r.j222000000002
1

&..-----1010 places--....

and U ==

000 0 0 3

and U ==

o 0 0 0 1 2

NOT E S: Bits shifted out of the least significant
position in A reappear in the most significant
position and continue moving to the right until
the shift is completed.

EXECUTION TIME: 4.0

8-1

1-

DOUBLE RIGHT CIRCULAR SHIFT

OPE RAT ION COO E : 73

MINOR OPERATION CODE: j=1

M N EM 0 N IC COO E: DCSH

OPERATION:

EXAMPLES:

(A, A + 1) shifted circularly U
places to the right.

where: (A)i (A+l)i U

I 0 0 0 O' 0 0 0 2 5 4 5 4 f 13 2 3 2 0 0 0 0 0 0 0 O~O 0 0 0 3 0

THEN
24

10

000000000000 000254543232
(A)f (A + l)f

2.
where: (A)i (A + l)i U

10 0 tl 0 0 0 0 2 5 4 5 41 13 2 3 2 0 0 0 0 0 0 0 0 h 0 0 0 0 7 4

THEN 60
10

000254543232 000000000000

(An (A + 1)f

NOT E S: Bits shifted out of the least significant
position in A enter the most significant posi­
tion in A + 1, while bits shifted out of A + 1
reappear in the most significant position in A.

EXECUTION TIME: 4.0

SINGL E RIGHT LOGICAL SHI FT

OPERATION CODE: 73

MINOR OPERATION COO E: j = 2

M N E M 0 N IC COO E : SLSH

OPERATION:

EXAMPLES:

L
where (A)i =

(A) shifted right U places. U
number of 0 's filled into the
left.

10 0 0 0 0 0 0 1 5 6 7 3\ and U = 0 0 0 0 0 6

--6places~

8-2

THEN (Aff =

o 0 0 0 0 0 000 1 5 6

2.
where (A)i =

I 0 0 0 0 0 0 0 2 2 4 2 41 and U = 0 0 0 0 0 5
--5places~

TH EN (A)f =

o 0 0 0 0 0 0 0 045 0

EXECUTION TIME: 4.0

DOUBLE RIGHT LOGICAL SHIFT

OPE RAT ION COO E : 73

MINOR OPERATION CODE: j=3

M N EM 0 N ICC ODE: DLSH

OPERATION: (A,A + 1) shifted U places to
the right. U number of O's filled in to the left.

EXAMPLES:

1.
where: (A)i (A+l)i U

I 00 0 0000 1 234 51 16 7 0 0000000001 0 0 0 0 3 6

--------- 3010 places~

THEN

I 0000000000001 1000 001 2 345 6 71

(Aff (A+ 1"
2.
where: (A)i (A+1)i U

100000001234511670000000000/000102
--------6610 ---.....j~~

THEN

10000000000001 10000000000001
(A)f (A + 1)f

EXECUTION TIME: 4.0

SINGLE RIGHT ARITHMETIC SHIFT

OPERATION CODE: 73

MINOR OPERATION CODE: i = 4

M N EM 0 N ICC 0 DE: SASH

OPE RAT 10 N : (A) shifted right U places. U
number of sign bits filled in to the left.

EXAMPLES:

1.
where (A)j =

I 0 0 0 0 0 0 5 4 4 4 0 0 I and U =" 0 0 0 0 0 6

---6 places--.~

THEN (Ah =

000 0 0 0 005 444

2.
where (A)j =

17 7 7 4 3 2 1 0 0 0 0 0 I and U = 0 0 0 0 1 7

-15]0 P laces~

TH EN (A)f =

17777777743211

EXECUTION TIME: 4.0

DOUBLE RIGHT ARITHMETIC SHIFT

OPERATION CODE: 73

MINOR OPERATION CODE: j=5

M N EM 0 N IC COD E: DASH

OPERATION: (A,A + 1) shifted U places to
the right. U number of sign bits filled into the left.

EXAMPLES:

1.
where: (A) i (A + l)j U

1000000121212111200000000001 000036

3010 places •
100 0 0 000 0 000 0110 0 0 0 1 2 1 2 1 2 1 21

(A)f (A + 1)t

2.
where: (A) j (A + 1) i U

!734522224444110000000000051 000074

60]0 places •

THEN

1777777777777117777777773 45 1

(A)f (A+l)f

EXECUTION TIME: 4.0

SCALE FACTOR SHIFT

OPERATION CODE: 73

MINOR OPERATION CODE: j=6

MNEMONIC CODE: SFSH

OPE RAT 10 N : (U)~A and shifted left cir-
cularly until A 35 f= A 34 • Scaled quantity~A
and shift count~A + 1.

DES C RIP T ION: The contents of U are transferred
to the specified A-register and shifted left
circularly until bit position 35 is unequal to
bit position 34. The scale-factored number is
then stored in A and the number of shifts in
A + 1.

EXAMPLES:

l.
where (U)=

o 0 000 3 3 3 4 444

a nd (A + l)f =

o 0 0 0 0 0 000 0 1 7

2.

a nd (A + l}f =

[231175300000 000 000 0 0 001 5

1310 places

3.
where (U) =

7 7 7 7 7 1 3 3 3 3 3 3

a nd (A + l)f =

o 0 0 0 0 0 0 0 0 0 1 6

14]0 places

8-3

NOT E S: This instruction will shift the contents
of the specified arithmetic register a maximum
of 35 places.

8-4

The number of shifts is stored in the rightmost
bit positions of the next higher arithmetic regis­
ter.

When bit positions 35 and 34 are initially un­
equal, the number is already scaled. In this
case, A + 1 will contain O's.

If U contains all 1 's or all O's, (A) f will equal
(U Ji and (A+ 1) will equal 35.

Normally this instruction is used in operations
involving fractional values when floating-point
arithmetic is not employed.

EXECUTION TIMES: Alternate Banks 6.0
Same Bank 10.0

9. BRANCHING INSTRUCTIONS - SKIP

Forty-one instructions in the UNIVAC 1107 reper­
toire are classified as Branching instructions.
These instructions are executed when the program
reaches a point at which the selection of the next
instruction depends upon certain conditions. In effect,
branching instructions determine a particular pro­
gram path on the basis of whether a specific con­
dition is present. Depending upon the result of
the test (or tests) inherent in the branching instruc­
tion, the program will either execute the next
sequential instruction, or skip or jump to another
instruction.

Twenty-three branching instructions specify skip
operations.* The skip is performed in the follow­
ing manner: If the branching instruction is number
21 in sequence and the test reveals the next se­
quential instruction is not to be executed, P (which
contains the address of the next sequential in­
struction) is incremented by 1. The program then
executes (or skips to) NI + 1 or instruction 23.

In all cases, the program will skip only one in­
struction. Skip instructions are subdivided on the
basis of whether or not they entail a test, a search,
or a masked search.

TEST

Eleven skip instructions call for testing (or de­
termining) the relationship between one value and
another value, or between one value and two other
values. Depending upon the outcome of the test,
the program will skip or take the next sequential
instruction.

In these instructions, the h, h, and i designators
provide for index register modification, incremen­
tation of the modifier, and indirect addressing.
The j designator determines data transfers between
core memory (Z1 or Z2) and the arithmetic section.
The a designator in this instruction specifies
either an arithmetic register or an index register.

• Chapter lOis devoted to branchin~ instructions that stipu­
late a jump.

9-1

TEST MODIFIER

9-2

OPERATION CODE: 47

M N E M 0 N IC COD E: TMO

OPERATION: If (Bah7-oo < (U), take NI.
If (Bah7-oo ~(U), skip NI. In either case,

(Bah7-oo+(Ba)35-18 • Ba17 - oo .

DES C RIP T ION: If the modifier portion (Q) of the
contents of the index register specified by the
a designator is less than the j-determined por­
tion of the contents of V, take the next instruc­
tion. If it is greater than or equal to the j-deter­
mined portion of V, skip the next instruction.
In either case, add the increment portion (8)
to the modifier portion (Q) and place the res uIt
in the modifier portion.

EXAMPLES:

1.

where U =

THEN SKIP NI AND
(8) + (Q) = (Ba)f =

2.
where U =

TH EN SKIP N I AND
(~) + (Q) = (Ba)f =

3.
where (U) =

o 4 3 211 4(2 516 7 4 1

THEN TAKE NI AND
(8) + (Q) = (B a) f =

and j= 0

000 0 0 5 001 241

and j= 4

~

o 0 001 2 0 0 4 567

and (Ba)j=

7 7 7 7 7 2 10 0 0 3 4 4 I and j= 6

> !~l (Q) I

7 777 7 2 0 003 3 7

NOT E S: In this instruction, the a designator speci­
fies one of sixteen index registers (addresses
o through 17).

Subtraction is used to determine the magnitude
of the appropriate fields. In this res pect, a
positive remainder signifies greater than,
(example 1); a remainder of 0 signifies equal to
(example 2); while a ne gati ve remainder signi­
fies less than (example 3).

Only the rightmost 18 bit positions in V and Ba
are involved in the subtraction. Consequently,
when j equals, 0, only the lower half of V is
pertinent to the operation.

EXECUTION T1MES:
Alternate Banks
Same Bank

TEST ZERO

OPE RAT 10 NCO DE: 50

NO SKIP
4.7
8.7

M N EM 0 N IC COD E: TZR

OPE RAT 10 N: If (U) = 0, skip NI

SKIP
8.7

12.7

DES C RIP T ION: If the j-determined portion of V
is equal to 0, skip the next instruction. If it is
not equal to 0, take the next instruction.

NOT E S: The a designator is not used in this in­
struction.

EXECUTION TIMES:

A lternate Banks
Same Bank

TEST NOT ZERO

OPE RAT 10 NCO DE: 51

M N EM 0 N IC COD E: TNZ

NO SKIP

4.0
8.0

SKIP

8.0
12.0

OPE RAT 10 N: If (U) = 0, skip NI

DES C RIP T ION: If the j-determined portion of U is
not equal to 0, skip the next instruction. If it
is equal to 0, take the next instruction.

NOT E S: The a designator is not used in this in­
struction.

EXECUTION TIMES:

Alternate Banks

Same Bank

NO SKIP

4.0
8.0

SKI P

8.0
12.0

TEST EQUAL

OPE RAT ION COD E : 52

M N E M 0 N ICC 0 DE: TEQ

OPE RAT ION: If (U) =I- (A), skip NI

DES C RIP T ION: If the j-determined portion of the
contents of U is equal to the contents of the
specified A-register, skip the next instruction.
If it is not equal, execute the next instruction.

EXECUTION TIMES:
Alternate Banks
Same Bank

T EST NOT EQUAL

OPE RAT ION COD E : 53

MNEMONIC CODE: TNE

NO SKIP

4.0
8.0

SKIP

8.0
12.0

OPERATION: If (U) f- (A), skip NI

DES C RIP T ION: If the j-determined portion of the
contents of U is not equal to the contents of
the specified A-register, skip the next instruc­
tion. If it is equal, execute the next instruction.

EXECUTION TIMES:
Alternate Banks
Same Bank

NO SKIP SKIP
4.0 8.0
8.0 12.0

TEST LESS THAN OR EQUAL

OPE RAT ION COD E : 54

M N E M 0 N IC COD E: TLE

OPE RAT ION: If (U) ~ (A), skip NI

DES C RIP T ION: If the j-determined portion of the
contents of U is less than or equal to the con­
tents of the specified A-register, skip the next
instruction. If it is greater than the contents of
A, execute the next instruction.

EXECUTION TIMES:
Alternate Banks
Same Bank

TEST GREATER THAN

OPE RAT ION COD E : 55

MNEMONIC CODE: TGR

NO SKIP
4.0
8.0

SK IP
8.0

12.0

OPERATION: If (U) > (A), skip NI

DES C RIP T ION: If the j-determined portion of the
contents of U is greater than the contents of
the specified A-register, skip the next instruc­
tion. If it is less than or equal to the contents
of A, execute the next instruction.

EXECUTION TIMES:
Alternate Banks
Same Bank

TEST WITHIN LIMITS

OPE RAT ION COD E : 56

M N EM 0 N IC COD E: TWL

NO SKIP
4.0
8.0

SKI P
8.0

12.0

OPERATION: If (A) < (U) ::; (A + 1), skip
NI

DES C RIP T ION: If the j-determined portion of the
contents of U is greater than the contents of
the specified A-register but less than or equal
to the contents of the next higher A-register,
skip the next instruction. If U is less than or
equal to A or greater than A + 1, execute the
next instruction.

EXAMPLES:

1.
where (A)j = and (A + 1) j =

1000000004136 I 000000023741

L:::<,
and (U) = I 0 0 0 0 0 0 0 0 6 5 5 5 I and j = 0

[<------

THEN SKIP NI

2.
where (A)j and (A + l)j =

!OOOOOOL:~012333

and (U)~ 455660~ andj~3

THEN TAKE NI

9-3

3.
where {A)i= and (A+l)j=

1000000046457 I 000000003311

L<
and(U)- oooo~ andj-3

>

THEN TAKE NI

NOT E S: The next instruction is skipped when the
contents of the specified arithmetic register
(A) are less than the contents of the next higher
arithmetic register (A + 1) and the value of the
contents of U lies between the values (A) and
(A + 1). The arithmetic registers, then serve
as parameters. The contents of A provide the
lower limit, while the contents of A + 1, pro­
vide the high limit.

EXECUTION TIMES:
Alternate Banks
Same Bank

TEST OUTSIDE LIMITS

OPERATION CODE: 57

MNEMONIC CODE: TOL

NO SKIP
4.7
8.7

SKIP
8.7

12.7

OPE RAT 10 N: If (U) ::;'(A) or (U) > (A + 1),
skip NI

DES C RIP T ION: If the j-determi ned portion of the
contents of U is less than or equal to the con­
tents of the specified A-register or greater than
the contents of the next higher A-register, skip
the next instruction. If it is greater than the
contents of A and less than or equal to the
contents of A + 1, execute the next instruction.

EXAMPLES:

1.
where (A)j= and(A+1)i=

100 0 0 0 0 0 0 4 4 4 4 I 0 0 000 0 022 2 2 2

I >~
and (U) = I 0 0 0 0 0 0 0 0 0 5 5 5 I and j = 0

L<_~
THEN SKIP NI

9-4

2.
where (A)i = and (A + 1)i =

100 0 0 0 0 0 0 4 4 4 4 1 0 0 0 0 0 0 0 2 2 2 2 2
I >

and (U)- 000 0 ~ and j-3

THEN SKIP NI

3.
where (A)i = and (A + 1)i =

[0 0 0 0 0 0 004 4 441 0 0 000 0 022 222

L~",
and (U) - ~:7 777 and j-7

THEN TAKE NI

NOT E S: To execute this instruction, the contents
of the specified arithmetic register must be less
than the contents of the next higher arithmetic
register.

EXECUTION TIMES:
Alternate Banks
Same Bank

TEST POSITIVE

OPE RAT ION COD E : 60

M N E M 0 N ICC 0 DE: TPO

NO SKIP

4.7
8.7

SKIP

8.7
12.7

OPE RAT 10 N : If (U).2: 0, skip NI

DES C RIP T ION: If the j-determined portion of U
is greater than or equal to 0, skip the next
instruction. If it is less than 0, execute the
next instruction.

NOT E S: In this instruction, the a designator is
not used.

EXECUTION TIMES:

Alternate Banks
Same Bank

NO SKIP

4.0
8.0

SKIP

8.0
12.0

TEST NEGATIVE

OPERATION CODE: 61

M N E M 0 N ICC 0 DE: TN G

OPERATION: If (U) < 0, skip NI

DES C RIP T ION: If the j-determined portion of the
contents of U is less than 0, skip the next in­
struction. If it is greater than or equal to 0,
take the next instruction.

NOT E S: The a designator is not used in this in-
struction.

EXECUTION TIMES: NOS KIP SK IP

Alternate Banks 4.0 8.0
Same Bank 8.0 12.0

SEARCH

Six UNIVAC 1107 instructions are classified as
Search instructions. These instructions are execu­
ted in the repeat mode; that is, a particular search
instruction will be executed for a specified num­
ber of times or until the object of the search is
obtained, at which point the search will be termina­
ted.

Prior to executing a search instruction, a repeat
count word (Figure 3-4) is loaded into the ap­
propriate R-register (address 101) via the Load Ra
instruction. The k portion of this word contains
the number of times the search instruction is to
be executed.

When the main program reaches the point at which
the search instruction is to be executed, the con­
tents of P (the address of the next sequential
instruction) are transferred automatically to ad­
dress 103 (the T-register). Next, the k portion of
the repeat count word is tested against O. If it is
not equal the two leftmost bit positions are dropped
and the remaining 16-bit k is transferred to P. Now the
actual search operation begins.

Termination Of Repeat Mode

When k is initially equal to 0, the contents of peR
(the search instruction currently being executed)
are cleared to O. The address of the next sequen­
tial instruction is then transferred from the T-regis­
ter to P and the reference to memory is initiated.
Accordingly, an initial k value of 0 prevents
the execution of the search instruction.

When k is initially unequal to 0, the search oper­
ation is initiated in the repeat mode. Each time
the search instruction is executed, P is reduced
by 1 and tested against O. If P is unequal to 0,
the search instruction is re-executed. When P
equals 0, its contents are transferred back to ad­
dress 101 and the contents of the T-register (the
address of the next sequential instruction) are re­
turned to P. After referencing the P address to
memory, the appropriate instruction is read into
peR, providing for the resumption of the sequen­
tial mode.

The repeat operation is terminated automatically
when the object of the search is realized before P
reaches O. Here again, the contents of P are re­
turned to the repeat count register (address 101).
In this case, however, P contains the number of
times remaining for the search instruction to be
executed. The returning of P to address 101 pro­
vides the programmer with an opportunity for pin­
pointing the exact location at which the object
of the search was attained. The contents of the
T-register (the address of the next sequential
instruction) are incremented by 1 - provision is
thus made for the skip - and returned to P for
referencing to memory.

Interrupts

An interrupt occuring during the execution of an
instruction in the repeat mode, before the object
of the search is realized, automatically causes
the contents of P (the number of times remaining
for the ins truction to be executed) to be trans­
ferred back to address 101 (the repeat count regis­
ter). The address of the next sequential instruc­
tion is transferred from the T-register to P and
decremented by 1. After decrementation P con­
tains the address of the current instruction (the
search instruction). The interrupt then causes
program control to jump to a fixed address for
entrance into an appropriate subroutine. The
first instruction in the subroutine (a Return Jump)
will transfer the contents of P to a temporary
storage location where it remains for the duration
of the subroutine. The last instruction in the sub­
routine will stipulate a jump to the location at
which P is stored. When the instruction stored at
P has re-entered peR, the contents of the repeat
count register (the number of times remaining for
the instruction to be executed) are transferred
back to P. Provision is thus made for res uming
the repeat mode at the point of interruption.

9-5

If the interrupt occurs after the object of the search
has been attained but before the repeat operation
has terminated, the contents of P are transferred
back to the repeat count register. The contents
of the T-register are incremented by 1 - thereby
providing for the skip - and returned to P. As ex­
plained in the preceding paragraph, program con­
trol is then transferred to the appropriate subrou­
tine. Repeat operations (f designators 62 - 67, and_
71) require 16 microseconds, the combined setup and
terminate time.

Designators

The a designator in a search instruction always
specifies an arithmetic register. The b, h, and i
designators provide for index register modifica­
tion, incrementing the modifier, and indirect ad­
dressing, During the execution of the search in­
structions (62 - 67), the i designator controls
data transfers between core memory (Zl or Z2)
and the arithmetic section. The i, b, h, and i
designators are effective each time the search
instruction is executed. It is by means of the b

designator that the operand address is increment­
ed (or decremented) each time the instruction is
executed.

With the exception that they are executed in the
repeat mode, all six search instructions (oper­
ation codes 62 through 67) are performed in the
same manner as test instructions 52 through 57
respectively.

SEARCH EQUAL

OPE RAT ION COD E : 62

MNEMONIC CODE: SEQ

OPE RAT 10 N: If (U)i = (A), skip NI.
Repeat k times.

DES C RIP T ION: If the i-determined portion of the
contents of U is equal to the contents of the
specified A-register, skip the next instruction.
If it is not equal, re-execute the instruction
until equality is sttained or k reaches O. When
k reaches 0, execute the next sequential in­
struction.

EXECUTION TIMES:

Alternate Banks
Same Bank

NOS KIP
4.0
4.0

SKIP
4.0
4.0

SEARCH NOT EQUAL

OPE RAT ION COD E : 63

M N E M 0 N ICC 0 DE: SNE

OPE RAT ION: If (U)i -f:. (A), skip NI.
Repeat k times.

DES C RIP T ION: If the i-determined portion of the
contents of U is unequal to the contents of the
specified A-register, skip the next instruction.
If it is equal, re-execute the instruction until
inequality is attained or k reaches O. When
k reaches 0, execute the next sequential in­
struction.

EXECUTION TIMES:

A lternate Banks
Same Bank

NO SKIP

4.0
4.0

SEARCH LESS THAN OR EQUAL

OPE RAT ION COD E : 64

M N EM 0 N IC COD E: SLE

SKIP

4.0
4.0

OPERATION: If (U)i~ (A), skip NI.
Repeat k times.

DES C RIP T ION: If the i-determined portion of the
contents of U is less than or equal to the con­
tents of the specified A-register, skip the next
instruction. If it is greater than A, re-execute
the instruction until U is less than or equal to
A or k reaches O. When k reaches 0, execute the
next sequential instrucHon.

EXECUTION TIMES:

Alternate Banks
Same Bank

NO SKIP

4.0
4.0

SEARCH GREATER THAN

OPE RAT ION COD E : 65

M N E M 0 N ICC 0 DE: SG R

SKIP

4.0
4.0

OPE RAT ION: If (U)i > (A), skip NI.
Repeat k times.

DES C RIP T ION: If the i-determined portion of the
contents of U is greater than the contents of the
specified A-register, skip the next instruction.
If it is less than or equal to A, re-execute the

instruction until it is greater than A or k reaches
O. When k reaches 0, execute the next sequen­
tial instruction.

EXECUTION TIMES:

Alternate Banks
Same Bank

SEARCH WITHIN LIMITS

OPE RAT ION COD E : 66

M N EM 0 N ICC 0 DE: SWL

NO SKIP

4.0
4.0

SK IP

4.0
4.0

o P ER AT 10 N: If (A) < (U)i :s.(A + 1), skip
NI. Repeat k times.

DES C RIP T ION: If the j-determined portion of the
contents of U is greater than the contents of the
spe cified Aeregister but less than or equal to the
contents of the next higher A-register, skip the
next instruction. If U is less than or equal to A
or greater than A + 1, re-execute the instruction
until the object of the search is attained or k
reaches O. When k reaches 0, execute the next
sequential instruction.

EXECUTION TIMES:

Alternate Banks
Same Bank

NO SKIP

4.7
4.7

SK I P

4.7
4.7

NOT E S: The contents of the spe'cified arithmetic
register should be less than the contents of the
next higher arithmetic register.

SEARCH OUTSIDE LIMITS

OPERATION CODE: 67

MNEMONIC CODE:

OPERATION:

SOL

If (U)i :s. (A) or (U)i > (A+1),
skip NI. Repeat k times.

DES C RIP T ION: If the j-determined portion of the
contents of U is less than or equal to the con­
tents of the specified A-register or greater than
the contents of the next higher A-register, skip
the next instruction. Otherwise, re-execute the
instruction until the object of the search is at­
tained or k reaches O. When k reaches 0, exe­
cute the next sequential instruction.

NOT E S: The contents of the specified arithmetic
register should be less than the contents of the
next higher arithmetic register.

EXECUTION TIMES
Alternate Banks
Same Bank

MASKED SEARCH

NOS KIP
4.7
4.7

SKIP
4.7
4.7

Six skip instructions provide for masked search
operations. Prior to execution, the mask register
(address 102) is loaded with an appropriate bit
configuration. Upon execution, the logical product
of the mask register and the U address is tested
against the logical product of the mask register
and the A-register.

The masked search is similar to the search in
that both operate in the repeat mode. With respect
to designators, the masked search and the search
are identical with the single exception that j in a
rna sked search serves as a minor function code
rather than as an operand determinant.

MASKED SEARCH EQUAL

OPERATION CODE: 71

MINOR OPERATION CODE: j = 0

M N EM 0 N ICC 0 DE: MSEQ

OPERATION: If (U)i 0 (M)= (A)0(M), skip
NI. Repeat k times.

DDSCRIPTION: If the logical product of U and
the mask register is equal to the logical pro­
duct of the specified A-register and the mask
register, skip the next instruction. If it is not
equal, re-execute the instruction until equality
is attained or k reaches O. When k reaches 0,
execute the next sequential instruction.

EXECUTION TIMES:
Alternate Banks
Same Bank

NO SKIP
4.0
4.0

MASKED SEARCH NOT EQUAL

OPERATION CODE: 71

MINOR OPERATION CODE: j=1

MNEMONIC CODE: MSNE

SKIP
4.0
4.0

9-7

9-8

OPERATION: If (U)i 0 (M) -:1= (A) 0(M), skip
NI. Repeat k times.

o ESC R IPT 10 N: If the logical product of U and the
mask register is unequal to the logical product
of the specified A-register and the mask regis­
ter, skip the next instruction. Otherwise, re­
execute the instruction until inequality is at­
tained or k reaches O. When k reaches 0 execute
the next instruction in sequence.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks
Same Bank

4.0
4.0

4.0
4.0

MASKED SEARCH LESS THAN OR EQUAL

OPE RAT ION COD E : 71

MINOR OPERATION CODE: j = 2

MNEMONIC CODE: MSLE

OPE R AT 10 N: If (U)i0(M) :s. (A)0(M), skip
NI. Repeat k times.

DES C RIP T ION: If the logical product of U and the
mask register is less than or equal to the logi­
cal product of the specified A-register and the
mask register, skip the next instruction. If it is
greater, re-execute the instruction until the
object of the masked search is attained or k
reaches O. When k reaches 0, execute the next
sequential instruction.

EXECUTION TIMES:
Alternate Banks
Same Bank

NO SKIP

4.0
4.0

MASKED SEARCH GREATER THAN

OPERATION CODE: 71

MINOR OPERATION CODE: j=3

MNEMONIC CODE: MSGR

SK IP

4.0
4.0

OPERATION: If (U)i 0(M) > (A)G (M), skip
NI. Repeat k times.

DES C RIP T ION: If the logical product of U and the
mask register is greater than the logical product
of the specified A-register and the mask register,
skip the next instruction. Otherwise, re-execute
the instruction until the object of the masked

search is attained or k reaches O. When k reach-'
es 0, execute the next sequential instruction.

EXECUTION TIMES:

Alternate Banks
Same Bank

NO SKIP

4.0
400

MASKED SEARCH WITHIN LIMITS

OPE RAT ION COD E : 71

MINOR OPERATION CODE: j=4

MENMONIC CODE: MSWL

SKIP

4.0
4.0

OPERATION: If (A)0(M)< (U)i0(M)~(A+1)
0(M), skip NI. Repeat k times.

DES C RIP T ION: If the logical product of U and the
mask register is greater than the logical product
of the specified A-register and the mask regis­
ter but less than or equal to the logical pro­
duct of the next higher A-register and the mask
register, skip the next instruction. Otherwise,
re-execute the instruction until the object of
the masked search is attained or k reaches O.
When k reaches 0, execute the next sequential
ins tructi on.

NOT E S: The logical product of the specified A­
register and the mask register should be less
than the logical product of the next higher A­
register and the mask register.

EXECUTION TIMES:

Alternate Banks
Same Bank

NO SKIP

4.7
4.7

MASK ED SEARCH OUTSIDE LIMITS

OPERATION CODE: 71

MINOR OPERATION COD E: j = 5

MNEMONIC CODE: MSOL

SKIP

4.7
4.7

OPERATION: If (Uh 0 (M) ::;. (A) 0 (M) or
(Uh0 (M) > (A + 1) 0~M), skip
NI. Repeat k times.

o ESC R IPT 10 N: If the logical product of U and the
mask register is less than or equal to the logi­
cal product of the specified A-register and the
mask register; or if the logical product of U and

the mask register is greater than the logical
product of the next higher A-register and the
mask register, skip the next instruction. Other­
wise, re-execute the instruction until the ob­
ject of the search is attained or k reaches O.
When k reaches 0, execute the next sequential
instruction.

NOT ES: See notes for Masked Search Within Limits.

EXECUTION TIMES:

Alternate Banks
Same Bank

NOS KIP

4.7
4.7

SKIP

4.7
4.7

9-9

10. BRANCHING INSTRUCTIONS-JUMP

Eighteen branching instructions specify jump
operations. The jump is performed in the follow­
ing manner: when conditions are such that the next
sequential instruction is not to be executed, the
program will jump to the instruction stored at the
address contained in U. To execute the jump, the
U address is transferred to P. The contents of U
are then transferred to peR for execution. Cer­
tain instructions automatically entail the jump
operation.

Unless otherwise stated, the h, h, and i designa­
tors provide for index register modification, in­
crementation of the modifier, and indirect address­
ing. The j designator normally serves as a minor
operation code, while the a designator normally
specifies an arithmetic register.

The u designator in jump instructions specifies
the address of an instruction rather than the ad­
dress of an operand. When U specifies an address
that may be found in either film or core memory
(0 - 177 octal) and a jump is called for, the next
instruction will be taken from the specified ad­
dress in core memory (Z1).

INDEX JUMP

OPE RAT ION COD E : 70

M N EM 0 ~ iCC 0 DE: IXJP

OPERATION: If (CM)ja > 0, jump to U. If
(CM)ja ~ 0, take NI. In either
case, (CM)ja - 1 ~ CMjao

DES C R I PT ION: If the contents of the specified
control-memory location are greater than 0,
jump to the instruction stored at the U address.
Otherwise, execute the next instruction. In
either case, subtract 1· from the contents of
the control-memory location and return the re­
sult to the specified control-memory location.

EXAMPLES:

1.
where (CMja)j
THEN JUMP TO U

AND (CMja)f

2.
where (CMja)j

THEN TAKE NI

AND (C M ja)f

0000 0000 0055

0000 0000 0054

0000 0000 0000

7777 7777 7776

NOT E S: In this instruction, the j and a designa­
tors are combined to provide the address of
anyone of the 128 locations in control-memory.

EXECUTION TIMES:

Alternate Banks
Same Bank

NO JUMP

8.0
8.0

J U M P

4.0
4.0

10-1

RETURN JUMP

OPERATION CODE: 72

MINOR OPERATION CODE: j==l

MNEMONIC CODE: RTJP

OPERATION: (P)~U17-00 jump toU+l .
DES C RIP T ION: The contents of P are written into

the lower-half of the word stored at V. The
main program then jumps to the instruction
stored at V + 1.

NOT E S: In this instruction, the a designator is not
used.

P contains the address of the next instruction.

The upper-half of the contents of V remains
unchanged.

Because P contains 16 bit positions and the
instruction employs a half-word (18 bits) write,
bit positions 16 and 17 in V are forced to O.
Consequently, the hand i designators in the
instruction stored at Vf inhibit incrementation
of the modifier and indirect addressing.

The execution of this instruction always entails
a jump operation.

In effect, the Return Jump combines, in a single
instruction, the address of a subroutine exit
and the transfer of control to the subroutine
itself.

If V contains a film-memory address, a full
word write of the contents of P preceded by
O's is made into the specified film-memory ad­
dress and control is transferred to the next
following address (V + 1) in core-memory.

EX E CUT ION TIM E S: Alternate Banks 8.0
Same Bank 8.0

POSITIVE BIT CONTROL JUMP

OPERATION CODE: 72

MINOR OPERATION CODE: j==2

MNEMONIC CODE:

OPERATION:

PBJP

If (Ah5 == 0, jump to U. Always
shift (A) left 1 circularly.

D ESC R IPT 10 N: If bit position 35 of the word con­
tained in the specified A-register is equal to o.

10-2

jump to V. If it is not equal, take the next in­
struction. In either case, the contents of A
are shifted circularly one place to the left.

EXAMPLES:

1.
where (A)j

THEN JUMP TO U

AND (A)f

2.
w here (A)j

THEN TAKE NI
AND (A)f

0000 0002 4444

0000 0005 1110

7777 7733 2222

7777 7666 4445

NOT E S: The main program will jump to the in­
struction stored in the V address when the
quantity contained in A is positive. When A
contains a negative quantity, the program will
execute the next sequential instruction.

EXECUTION TIMES:

Alternate Banks
Same Bank

NO JUMP

4.0
4.0

NEGATIVE BIT CONTROL JUMP

OPE RAT ION COD E : 72

MINOR OPERATION CODE: j = 3

MNEMONIC CODE: NBJP

JUMP

8.0
8.0

OPERATION: If (Ah5 == 1, jump to U. Always
shift (A) left 1 circularly.

DES C RIP T ION: If bit pos ition 35 of the word con­
tained in the specified A-register is equal to 1,
jump to V. If it is not equal, take the next in­
struction. In either case, the contents of A are
shifted circularly one place to the left.

EXAMPLES:

1.
where (A)j
THEN JUMP TO U

AND (A)f

7777 7755 3333

7777 7732 6667

2.
where (A)i
THEN TAKE NI
AND (A)f

0000 2222 4444

000044451110

NOT E S: When the value contained in A is nega­
tive, the program will jump to the instruction
stored at the U address. The next sequential
instruction is executed when A contains a
positive value.

EXECUTION TIMES:
Alternate Yanks
Same Bank

ZERO JUMP

OPERATION CODE:

NO JUMP JUMP
4.0 8.0
4.0 8.0

74

MINOR OPERATION COD E: j = 0

MNEMONIC CODE: ZRJP

OPERATION: If (A) = 0, jump to U

DES C RIP T ION: If the contents of the specified
A-register are equal to 0, jump to the instruc­
tion stored at the U address. If not equal, take
the next sequential instruction.

EXECUTION TIMES:
Alternate Banks
Same Bank

NON-ZERO JUMP

OPERATION CODE:

NO JUMP JUMP
4.0 8.0
4.0 8.0

74

MINOR OPERATION CODE: j = 1

MNEMONIC CODE: NZJP

OPERATION: If (A) F 0, jump to U

DES C RIP T ION: If the contents of the specified
A-register are unequal to 0, jump to the in­
struction stored at the U address. Otherwise,
take the next sequential ins truction.

EXECUTION TIMES:
Alternate Banks
Same Bank

NO JUMP JUMP
4.0 8.0
4.0 8.0

POSITIVE JUMP

OPERATION CODE: 74

MINOR OPERATION CODE: j=2

MNEMONIC CODE: POJP

OPERATION: If (A) ~ 0, jump to U

DES C RIP T ION: If the contents of the specified
A-register are greater than or equal to 0, jump
to the instruction stored at the U address.
Otherwise take the next sequential instruction.

EXECUTION TIMES

Alternate Banks
Same Bank

NEGATIVE JUMP

OPERATION CODE:

NO JUMP JUMP

74

4.0
4.0

8.0
8.0

MINOR OPERATION CODE: j=3

MNEMONIC CODE: NGJP

OPERATION: If (A) < 0, jump to U

DESCRIPTION: If the contents of the specified
A-register are less than 0, jump to the instruc­
tion stored at the U address. Otherwise, take
the next sequential instruction.

EXECUTION TIMES: NO JUMP JUMP
Alternate Banks
Same Bank

4.0
4.0

CONSOLE SELECTIVE JUMP

OPERATION CODE: 74

MINOR OPERATION COD E: j = 4

M N E M 0 N IC COD E: CSJP

8.0
8.0

OPE RAT ION: If the 4-bit contents of the a designa­
tor are equal to the key setting on the console
(1 to 15), jump to U. Otherwise, take the next
sequential instruction.

NOT E S: In this instruction, the contents of the a
designator do not refer to an arithmetic regis­
ter.

When the 4-bit contents of th~ a designator
equal 0, an unconditional jump is made to the
instruction stored at U.

10-3

EXECUTION TIMES:

SE L ECTIVE STOP JUMP

OPERATION CODE:

NO JUMP
4.0

74

J U M P
4.0

MINOR OPERATION CODE: j=5

MNEMONIC CODE: SSJP

OPE RAT ION: If any of the 4 bits of the a designa­
tor correspond to a stop-key setting on the
console (1 of 4), the Computer comes to an
orderly stop. On restart, jump to the instruc­
tion stored at U. If the stop condition is not
met, jump to the ins truction stored at U.

Bit positions of the a designator and the cor­
responding stop keys are as follows:

WHEN: ao = 1 and stop key 1 is set.

al = 1 and stop key 2 is set.

a2 = 1 and stop key 3 is set.

a3 = 1 and stop key 4 is set.

NOT E S :The a designator in this instruction does
nof refer to an arithmetic registero

When the a designator is equal to 0, an uncon­
ditional stop is made.

EXECUTION TIMES: NO JUMP JUMP
4.0 4.0

EVEN JUMP

OPERATION CODE: 74

MINOR OPERATION CODE: j = 10

MNEMONIC CODE: EVJP

OPERATION: If (A)o = 0, jump to U

DES C RIP T ION: If bit position 0 (the rightmost bit)
of the word contained in the specified A-regis­
ter is equal to 0, jump to the instruction stored
at the U address. If it is not equal, take the
next sequential instruction.

EXECUTION TIMES:

10-4

Alternate Banks
Same Bank

NO JUMP

4.0
4.0

J U M P

8.0
8.0

ODD JUMP

OPERATION CODE: 74

MINOR OPERATION COD E: j = 11

MNEMONIC CODE: ODJP

OPERATION: If (A)O = 1, jump to U

DES C RIP T ION: If bit position 0 (the rightmost bit)
of the word contained in the specified A-regis­
ter is equal to 1, jump to the instruction stored
at the U address. If it is not equal, take the
next sequential instruction.

EXECUTION TIMES:

Alternate Banks
Same Bank

MODIFIER JUMP

OPERATION CODE:

NO JUMP

4.0
4.0

74

J U M P

8.0
8.0

MINOR OPERATION CODE: j=12

MNEMONIC CODE: MOJP

OPERATION: If (Ba)17_00 > 0, jump toU.
If (Ba)17-00 ~ 0, take NI. In either case,

(Bah7-oo + (B a h5-18 Ba17 - oo •

DES C RIP T 10 N: If the modifier portion (Q) of the
contents of index register specified by the a
designator is greater than 0, jump to the instruc­
tion stored at the U address. If it is less than
or equal to 0, take the next sequential instruc­
tion. In either case, add the increment portion
(~) to the modifier portion (Q) and store the
result in the modifier portion.

EXAMPLES:

1. where (Ba)i = 0000 0400 3333
THEN JUMP TO U

AND (Ba}t = 0000 0400 3337

2. where (Ba)i
THEN TAKE NI

AND (B a)t

0000 0577 7741

0000 0577 7746

NOT E S: In this instruction, the a designator speci­
fies one of sixteen index registers (addresses
o through 17).

The increment is added to the modifier after
the test has been performed .•

EXECUTION TIMES:

Alternate Banks
Same Bank

NO JUMP JUMP

4.0 8.0
4.0 8.0

LOAD MODIFIER AND JUMP

OPERATION CODE: 74

MIN 0 R 0 PER A T ION COD E: j = 13

MNEMONIC CODE:

OPERATION:

LMJP

(P) ~ Ba 17- 00 and
jump to U.

DES C RIP T ION: The contents of P (the address of
the next instruction) are stored in the modifier
portion (Q) of the contents of the specified
index register. The main program then jumps
to the instruction stored at U.

NOT E S: In this instruction, the a designator speci­
fies one of sixteen index registers (addresses
o through 17).

Because this instruction utilizes a half-word
write, the increment portion (~) of the word
contained in the specified index register is
undisturbed.

This instruction automatically specifies a
jump to the U address.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 4.0

OVERFLOW JUMP

OPERATION CODE: 74

MIN 0 R 0 PER A T ION COD E: j = 14

MNEMONIC CODE: OVJP

OPE RAT ION: Jump to U if overflow condition is
set; otherwise take the next sequential in­
structiono

NOT E S: This instruction does not utilize the a
designator.

Overflow conditions may be set by instructions
containing operation codes 14 through 21, 24,
and 25. (See page 2-6 for explanation of condi­
tions causing overflow.)

EXECUTION TIMES:
Alternate Banks
Same Bank

NO·OVERFLOW JUMP

OPERATION CODE:

NO JUMP JUMP

4.0 4.0
4.0 4.0

74

MINOR OPERATION CODE: j=15

MNEMONIC CODE: NOJP

OPE RAT ION: Jump to U if overflow condition is
not set; otherwise take the next sequential
ins truction.

NOT E S: See Overflow Jump.

EXECUTION TIMES:

Alternate Banks
Same Bank

CARRY JUMP

NO JUMP

4.0
4.0

OPERATION CODE: 74

MIN 0 R 0 PER A T ION COD E: j = 16

MNEMONIC CODE: CYJP

J U M P

4.0
4.0

OPE RAT ION: Jump to U if carry condition is set;
otherwise take the next sequential instruction.

NOT E S: See Overflow Jump notes.

(See page 2-6 for an explanation of conditions
which set the carry designators.)

EXECUTION TIMES:

Alternate Banks
Same Bank

NO·CARRY JUMP

OPERATION CODE:

NO JUMP

4.0
4.0

74

MINOR OPERATION CODE: j = 17

MNEMONIC CODE: NCJP

JUMP

4.0
4.0

OPE RAT ION: Jump to U if carry condition is not
set; otherwise take the next sequential instruc­
tion.

NOT E S: See Overflow Jump notes.

EXECUTION TIMES:

Alternate Banks
Same Bank

NO JUMP JUMP

4.0 4.0
4.0 4.0

10-5

11. BLOCK TRANSFER INSTRUCTION

The Block Transfer instruction is used to trans­
fer a specified number of words from one internal
memory area (w) to another (v). Prior to execu­
tion, the appropriate repeat count word is loaded
into the repeat count register (address 101) via
the Load Ra instruction. The k portion of this
specifies the number of words to be transmitted.

u Designator

The u designator in this instruction specifies
the base address modified by an index register.

b Designator

The b designator controls the index register modi­
fication of both the Wand the V addresses. When
b contains all O's, indexing of the Wand V ad­
dresses does not occur. In this case, the a designa­
is ignored.

When b is unequal to 0, the modifier portion of the
index register specified by b is applied to the U
address. The resulting address is the location in
memory from which data will move (w).

a Designator

In this instruction, the a designator specifies one
of sixteen index registers. When b is unequal to
0, the modifier portion of the index register speci­
fied by a is applied to the U address. This time,
modification produces the address in memory to
which data will move (v)o

h Designator

The h designator in this instruction controls the
incrementing of the modifier portions of both the
index register specified by b and the index regis­
ter specified by a.

j De si.gnator

The j designator in this instruction serves as an
operand determinant. In this instruction, j speci­
fies the bit positions from which data will move,
as well as the bit positions to which data will
move. When j equals 16 or 17 (octal), the write at
the V address is inhibited. However, index regis­
ters are incremented.

11-1

Table 2 shows the j values and corresponding
data transmissions when the block transfer is
made from core memory to core memory. In this
type of transfer, the non-selected portions of the
words contained in the V addresses remain un­
changed.

When the block transfer is made from core memory
to film memory, 36 bits will always be contained
in the film-memory location.

i Designator

In this instruction, the i designator is used to
specify indirect addressing. Cascading of indirect
addresses may be employed. However, a data
transfer will not be made until i equals O.

When indirect addressing is specified (i equals 1),
the address contained in the u designator, modi­
fied by the index register specified by the b

designator, provides the address from which the
lower-order 22-bits will be read. When i equals
0, the actual data transfer is begun, using the u,
h, and b designators most recently read into peR.

0 W35 - 00 ~V35 - 00

W17 - 00 ~V17 - 00

2 W35 -18 ~V35 -18

3 W17 - 00 ~V17 - 00

4 W35-18 ~V35-18

5 W11- 00 ~Vll- 00

6 W23 - 12 ~V23-12

7 W35 - 24 ~V35 - 24

Repeat Count

The repeat count is handled in the same manner as
that described in the explanation of Search in­
structions. In executing a Block Transfer, the re­
peat mode will terminate only when k reaches 0
or an interrupt occurs. An interrupt will terminate
the Block Move in a manner that will allow it to
resume at the actual point of interruption (P de­
cremented by 1 before transmission to temporary
working storage). When k initially equals 0, the
Block Transfer is inhibited and the next sequential
instruction initiated. In this case the address of
the next instruction w ill be taken from the lower
half of film-memory location 103.

Sequence Of Events

Once the actual data transfer has be gun, the se­
quence of events is as follows:

1. Add Bb lower to u.

2. Read the word (W) stored at the address
formed in step 1.

3. Add B b upper to Bb lower and store the
result in Bb lower.

10 W05 - 00 ~V05 - 00

11 Wll- 06 ~Vll- 06

12 W17 -12---", V17 -12

13 W23-18~V23-18

14 W29 - 24 ~V29 - 24

15 W35 - 30 ~V35 - 30

16 No Transfer

17 No Transfer

Table 2. Partial Word Designator in Block Transfer

11-2

4. Add Ba lower to u.

S. Write the word read in step 2 into memory
at the address formed in step 4.

6. Add Ba upper to Ba lower and store the
result in Ba lower.

7. Decrement the repeat count and test agains t
O. If unequal to 0, return to step 1.

Significantly, throughout the execution of the
Block Transfer, the address contained in the u
designator remains unchanged. Changes in Bb
lower and B a lower provide the different addresses
to and from which data moves.

BLOCK TRANSF ER

OPE RAT ION COD E : 22

MNEMONIC CODE: BTR

OPERATION: (W)~ (V). Repeat k times.

DES C RIP T ION: Transfer the j-determined portion
of the contents of VI to the j-determined portion
of V. Execute the instruction the number of
times stipulated in the k portion of the repeat
count register.

NOT E S: See preceding paragraphs.

EXECUTION TIMES: 8.0. For practical purposes,
there is no distinction between alternate banks
and the same bank.

Because this instruction utilizes the repeat
mode, an additional 12.0 microseconds are re­
quired for setup and termination of the repeat
count.

11-3

Three instructions in the UNIVAC 1107 repertoire
are classified ·as special purpose instructions.
In these instructions, the j designator serves as a
minor operation code. The a designator is not
utilized. The h, h, and i designators may be used
to provide for index-register modification, in­
crementation of the modifier, and indirect address­
ing.

EXECUTE REMOTE INSTRUCTION

OPERATION CODE: 72

MINOR OPERATION CODE: j = 10

MNEMONIC CODE: EXRI

OPE RAT ION: Execute the instruction stored at U

NOT E S: Upon execution of the current instruction
(operation code 72), P is not incremented.

Operations specified by the current instruction's
h, h, and i designators are carried out before
the remote instruction is read into peR.

Remote instructions may be cascaded in the
same manner as indirect addressing.

P is incremented upon execution of the final
remote ins truction.

EX E CUT ION TIM E : 4.0, exclusive of the time re­
quired to execute the remote instruction.

12. SPECIAL INSTRUCTIONS

LOAD MEMORY LOCKOUT REGISTER

OPERATION CODE: 72

MINOR OP_ERATION CODE: j=11

MNEMONIC CODE: LMLR

OPERATION: U 15 _ o---.MLR

DES C ~ I P T ION: Allow programmed writes to occur
in certain areas of core memory while prevent­
ing its occurrence in other areas of core memory.

NOTES: The Memory Lockout instruction allows,
in either or both core banks, the selective lock­
ing-in of groups of consecutive memory loca­
tions in increments of 2048 beginning at address
00000 or at any address which is a multiple of 2048.

The e-xecution of the instruction causes the U
portion of the instruction word, as modified by
an index register (if called for), to be trans­
ferred to the Memory Lockout register. The two
high-order bit positions of this 18-bit register
are ignored.

The remaining 16 bits are divided into two
groups of 8 bits each: group 1, bit positions
8-15, controls the selection of the addresses
in core bank 1 which will be locked-in; group 2,

12-1

bit positions 0-7, controls the se lection of the
addresses in core bank 2 which will be locked­
in.

To lock-in an area in either bank it is neces­
sary to indicate both a lower and an upper ad­
dress which will be the start and end of the
locked-in area.

CORE 1 CORE 2

xx UPPER LOWER UPPER LOWER

17 16 15 12 11 8 7 4 3 o

Consequently, each 8-bit group is subdivided
into a lower section and an upper section. Each
section contains 4 bit positions. The 4 bit
positions of the lower sections are used to in­
dicate the starting address for locked-in core
and the 4 bit positions of the upper sections
are used to indicate the ending address for
locked-in core as seen in the following table.

SECTION VALUE CORE BANK 1

BINARY - DECIMAL LOWER UPPER

0000 0 00000 02047
0001 1 02048 04095
0010 2 04096 06143
0011 3 06144 08191
0100 4 08192 10239
0101 5 10240 12287
0110 6 12288 14335
0111 7 14336 16383
1000 8 16384 18431
1001 9 18432 20479
1010 10 20480 22527
1011 11 22528 24575
1100 12 24676 26623
11 01 13 26624 28671
1110 14 28672 30719
1111 15 30720 32767

12-2

ILLUSTRATIVE EXAMPLES:

CORE 1 CORE 2

I
I

1. M L R xx 0011 0000 1101 1001

17 16 15 12 11 8 7 4 3 o

COR E BAN K 1: Since the lower value is equal
to 0, the starting address of the locked-in core
area is 00000. The upper value of 3 specifies
an ending address of 081911 or the locked-in
area. All other core addresses are locked-out
against programming writes (as opposed to I/O
writes which are never locked-out).

COR E BAN K 2: The lower value of 9 indicates
a starting address of 51200 and the upper value
of 13 gives an ending address of 61439 for the
locked-in area. Again, all other core addresses
in this bank are protected against programmed
writes.

SECTION VALUE CORE BANK 2

BINARY - DEC IMA L LOWER UPPER

0000 0 32768 34815
0001 1 34816 36863
0010 2 36864 38911
0011 3 38912 40959
0100 4 40960 43007
0101 5 43008 45055
0110 6 45056 47103
0111 7 47104 49151
1000 8 49152 51199
1001 9 51200 53247
1010 10 53248 55295
1011 11 55296 57343
1100 12 57344 59391
11 01 13 59392 61439
1110 14 61440 63487
1111 15 63488 65535

CORE 1 CORE 2
I i

I ! I

2. M LR xx I 0000 I 0000 0000 0000

17 16 15 12 11 8 7 4 3

When the Memory Lockout register contains the
above configuration, memory locations 00000-
02047 of core bank 1 are locked-in and memory
locations 32768-34815 of core bank 2 are locked­
in. A11 other memory locations are locked-out
against programmed writes.

CORE 1 CORE 2

3. MLR xx 1001 1000 0100 0000

17 16 15 12 11 8 7 4 3

When the Memory Lockout register contains the
above configuration memory locations 16384-
20479 of core bank 1 are locked-in and memory
locations 32768-43007 of core bank 2 are locked-
in.

CORE 1 CORE 2

4. MLR xx 0000 1111 1111 0000

I
17 16 15 12 11 8 7 4 3

o

o

o

Whenever the lower limit, for either core bank,
has a value which is greater than its correspond­
ing upper limit value the whole core bank is
locked-out. Therefore, in this example all the
locations of core bank 1 are locked-out. In order
to lock-in all the locations of a core bank, the
lower limit should be set equal to 0 and the
upper limit should be set equal to 15. In this
example a11 the locations in core bank 2 are
locked-in.

The execution of a Memory Lockout instruc­
tion removes any previously set lockout.

NO OPERATION

OPERATION CODE: 74

MINOR OPERATION CODE: j=6

MNEMONIC CODE: NOOP

OPE RAT ION: Do nothing; continue with the next
sequential instructiono

EXECUTION TIME: 4.0

12-3

13. FLOATING-POINT INSTRUCTIONS

Eight instructions in the UNIVAC 1107 Thin-Film
Memory Computer repertoire provide for floating­
point arithmetic. These ·instructions, used primari­
ly in scientific computation, alert special circuitry
built into the system. Ensuing floating-point arith­
metic is then performed as a hardware function.

Data that will enter into floating-point calcula­
tions must adhere to the format of the floating­
point word (see Figure 3-3). This format combines
the mantissa, the characteristic, and the sign in a
single word. The characteristic is biased by 128
(200 octal).

In floating-point instructions, the a designator
always specifies an arithmetic register. Index
register modification, incrementation of the modi­
fier, and indirect addressing may be used in con­
junction with every floating-point instruction. The
j designator serves as a minor operation code.

Add, subtract, and multiply floating-point instruc­
tions always result in a 2-word answer, with the
most significant word normalized. The least signi-.
ficant word is un~normalized. The quotient result­
ing from the divide instruction is always normal­
ized while the remainder is retained in its original
state.

Data that will enter into floating-point calculations
need not be normalized. Division with un-normal­
ized numbers may not produce logical results.

FLOATING ADD

OPE RAT ION COD E: 76

MINOR OPERATION CODE: j=O

MNEMONIC CODE: FLAD

OPERATION: (A) + (U)~A, A + 1

DES C RIP T ION: Form the packed, normalized,
floating-point sum of the numbers contained in
A and U. Store the sum in A and A + 1.

EXAMPLE 1:

where (A)j
and (U)

THEN (A)f
AND (A+ 1)

CHAR. MANTISSA

264 423456722
250 663543211
264 423545276
231 321100000

NOT ES: The mantissa of U, with the sign of the
characteristic extended to the left, is sent to a
working register in the arithmetic section.
An adjacent register is filled with sign bits:

000663543211 000000000000

The absolute value of the characteristic of U
is subtracted from the absolute value of the
characteristic of A. Because the result is posi-

13-1

tive (+14), the mantissa of V is shifted right
circularly by the difference (14 equals 12 places
or 4 octal digit positions):

000000066354 321100000000

The mantissa of A, with the sign of the charac­
teristic extended to the left, is added to the
most significant word:

000000066354
000423456722
000423545276

The least significant word is packed with the
larger characteristic (264) minus the number of
bit positions in the mantissa (always 33 octal),
and stored in A + 1:

231 321100000 ---..A + 1

The most significant word is normalized and
packed with the larger characteristic minus the
number of positions shifted in normalizing. The
result in stored in A. In the example, normaliz­
ing is not necessary (a binary 1 is already in
bit position 26):

264 423545276~A

EXAMPLE 2: CHAR.

253
527
252
577

MANTISSA

403217654
023775245
613437001
377777777

where (A)j
and (U)

THEN (A}f
AND (A + 1)f

NOT E S: See preceding notes.

13-2

Because the absolute value of the character­
istic of V was arrived at via complementation,
the characteristic of the least significant word
in the result must be complemented before it
is packed.

When there is a negative difference between
characteristics, the mantissa of A, rather than
V, is shifted right circularly. The mantissa of
V is then added to the most significant word.

When the difference between characteristics is
0, mantissas are not shifted prior to addition.

A characteristic less than 0 in the least signi­
ficant word will cause an interrupt to location
305. A characteristic greater than 377 in the
most significant word will cause an interrupt to
location 306. In either case, the original con­
tents of A and A + 1 are undisturbed.

EXECUTION TIMES: Alternate Banks 14.0
Same Bank 18.0

FLOATING SUBTRACT

OPERATION CODE: 76

MINOR OPERATION CODE: j = 1

MNEMONIC CODE: FLSB

OPERATION: (A) - (U)~A, A+ 1

DES C RIP T 10 N : Subtract the floating-point number
in V from the floating-point number in A. Store
the result in A and A + 1.

EXAMPLE: C HA R. MANTISSA

where (A)j 275 660000011
and (U)j 250 420000002

THEN (A h 275 657777747
AND (A + 1)f 242 000000200

NOT E S: The rna n tissa of V, with the sign of the
characteristic extended to the left, is sent to a
working register in the arithmetic section. An
adjacent register is filled with sign bits:

000 420000002 000 000000000

The absolute value of the characteristic of V
is subtracted from the absolute value of the
characteristic of A. Because the result is posi­
tive (+25), the mantissa of V is shifted right
circularly by the difference:

000 000000042 000 000000200

The most significant half of the mantissa of V
is subtracted from the mantissa of A:

000 660000011
000 000000042
000 657777747

The most significant half is normalized and
packed with the larger characteristic minus the
number of positions shifted in normalizing.

The result is stored in A (in the example, the
result is already normalized):

275 657777747~A

The least significant word is packed with the
larger characteristic minus the number of bit
positions in the mantissa. The result is stored
in A + 1.

242 000000200~A + 1

If the original characteristic of U had been
larger than that of A, the mantissa of U would
have been complemented prior to the shifting.

The interrupt conditions for Floating Subtract
are the same as those for the Floating Add.

EX E CUT 10 N TIM E S: Alternate Banks 14.0
Same Bank 18.0

FLOATING MUL TIPL Y

OPERATION CODE: 76

MINOR OPERATION CODE: j=2

MNEMONIC CODE: FLMP

OPERATION: (A) • (U)~A, A + 1

DES C RIP T 10 N : Multiply the floating-point number
contained in A by the floating~point number con­
tained in U. Store the packed floating-point
product in A and A + 1.

EXAMPLE: CHAR.

where (A)i 174
and (U)i 220

THEN(A)f 213
AND(A + 1}f= 160

MANTISSA

600000007
500000006
740000021
600000124

NOTES: The absolute values of the mantissas of
A and U, with zeros replacing their character­
istics, are multiplied:

000000360000

000600000007
000500000006
010700000052

To conform to the floating-point format, the
double-length product is shifted circularly 27
places to the left:

000360000010 700000052000

Counting right from the binary point (which lies
to the immediate left of bit position 26 in the
most significant word), it is noted that multi­
plication produced a 53-bit result. Consequent­
ly, a left circular shift of one is performed (a
54-bit product is not shifted more than 1 place):

000740000021 600000124000

The bias is subtracted from the sum of the
characteristics. The difference, minus 1 (ac­
cruing from the left shift), is the characteristic
of the most significant word. After packing, this
word is stored in A:

174(Char.ofA) 414 214
220 (Char. of U) -200 (bias) ----=-l (Ieftshift)
414 214 213

213 740000021~A

The characteristic of the most significant word,
minus the number of bit positions in the man­
tissa (always 33 octal), is the characteristic of
the least significant word. After packing, this
word is stored in A + 1:

213(Char.ofA)
-33
160 160 600000124~A + 1

If the signs of the original floating-point values
had been different, the double-length product
would have been complemented.

Multiplication of 27-bit normalized mantissas
will always result in a product of 53 or 54 bits.

Multiplication of two un-normalized values may
produce an un-normalized result.

EXECUTION TIMES: Alternate Banks 13.3
Same Bank 17.3

FLOATING DIVIDE

OPE RAT ION COD E : 76

MINOR OPERATION CODE: j=3

13-3

MNEMONIC CODE: FLDV

OPERATION: (A) - (U)~A, A + 1

DESCRIPTION: Divide the floating-point number
contained in A by the floating-point number
contained in U. Store the packed, floating-point
quotient in A and the remainder in A + 1.

EXAMPLE: C HA R. MANTISSA

where (A)i 174 600000007
and (U) i 150 400000006

THEN (A)f 225 577777776
AND (A + l)f 171 000000030

NOTE S: Division is performed by hial subtractions
(dividend minus the divisor). If the absolute
value of the mantissa of U is greater than or
equal to the absolute value of the mantissa of
A, 27 subtractions and shifts are performed;
otherwise, 28 subtractions and shifts are per­
formed.

13-4

In the subtraction * O's replace the characteris­
tics of both A and U. After the first subtraction,
the remainder is shifted one place to the left
while a binary 1 is inserted in the rightmost
digit position in a working register:

000 000 000 110 000 000 000 000 000 000 000 111 A
000000000 100000000000000 000 000 000 110 U

010 001 remainder
100 010 left shift

Since the second subtraction will not take, a 0
is placed to the immediate right of the binary 1
previously inserted in the working register. The
previous remainder is again shifted one place
to the left:

000 000 000 100 000 000 000 000 000 000 000 01 a
000 000 000 100 000 000 000 000 000 000 000 110

(subtraction does not take)
1 000 100 left shift

After the 27th subtraction and shift, the working
register contains the quotient.

000 577777776

The remainder, after the final subtraction and
shift, is:

000 000000030

The characteristic of the quotient is determined
in the following manner: the characteristic of

the dividend (174) minus the characteristic of
the divisor (150) plus bias (200). If 28 sub­
tractions had been made, this characteristic
would be reduced by 1. After packing, the
quotient is stored in A.

The characteristic of the remainder is the
characteristic of the dividend minus 27 or 28,
depending upon the number of trial subtractions.
After packing, the remainder is stored in the
next higher arithmetic register (A + 1).

If the dividend was negative, the remainder is
complemented. If the signs of the original
dividend and divisor were different, the quo­
tient is complemented.

If the characteristic of the quotient exceeds
377, an overflow interrupt to location 306 oc­
curs. If the characteristic of the remainder is
less than 0, an underflow interrupt to location
305 occurs.

A divide overflow, that is, an interrupt to loca­
tion 307 ... occurs only when the divisor is plus
or minus O.

EXECUTION TIMES: Alternate Banks 26.7
Same Bank 30.7

FLOATING POINT UNP ACK

OPE RAT ION COD E : 76

MINOR OPERATION CODE: j=4

MNEMONIC CODE: FLUP

OPE RAT ION: Unpack the floating-point number
contained in U. Store the mantissa in A + 1 and
the biased characteristic in A.

EXAMPLE: CHAR. MANTISSA

where (U) 264 423456722
THEN (A + 1) 000 423456722

AND (A) 000 00000026.4

where (U) 527 613437002
THEN (A + 1) 777 613437002

AND (A) 000 000000250

NOT E S: The absolute value of the characteristic
of U is stored in bit positions 0 through 7 in A,
with O's filled in to the left.

* For clarity, the examples and trial subtractions are shown
in binary, rather than octal.

The mantissa of U is stored in A + 1, with sign
bits in the 9 most significant bit positions.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

FLOATING POINT NORMALIZE PACK

OPE RAT ION COD E : 76

MINOR OPERATION CODE: j=5

MNEMONIC CODE: FLNP

OPE RAT ION: Form the packed, normalized, float­
ing-point number from the mantissa stored in U
and the characteristic stored in the low-order
bit positions in A. Store the result in A + 1.

EXAMPLES: C H A R. MANTISSA

1. where (U) 000 423456722
and (A) 000 000000264

THEN (A + 1) = 264 423456722

2. where (U) 777 613437002
and (A) 000 000000250

THEN (A + 1) = 527 613437002

3. where (U) 777 045667432
and (A) 000 000000155

TH EN (A + 1) = 622 456674320

NOT E S: The upper 28 bit positions in A are ignored.

M N E M 0 N IC COD E: FLCM

OPERATION: Absolutevalue ICA)34_27I -
I CU)34-27I ~A + 1

DES C RIP T ION: Subtract the absolute value of the
characteristic of U from the absolute value of
the characteristic of A. Store the absolute
value of the difference in low-order positions
in A + 1.

EXAMPLES: C H A R. MANTISSA

1. where (A) 264 423456722
and (U) 250 6~3543211

THEN (A + 1) 000 000000014

2. where (A) 253 463217654
and (U) 527 023775245

THEN (A + 1) 000 000000003

3. where (A) 250 663543211
and (U) 264 423456722

TH EN (A + 1) 000 000000014

NOT ES: The absolute value of the difference is
stored in low-order positions in A + 1, with O's
filled in to the left.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

FLOATING CHARACTERISTIC DIFFERENCE

OPERATION CODE: 76

The characteristic in A is adj usted according MIN 0 R 0 PER A T ION COD E: j = 7
to the required normalization.

Before storing it in A + 1, the characteristic,
after normalization, is complemented when the
the sign of the mantissa in U is negative.

A characteristic overflow will cause an inter­
rupt to location 306. A characteristic underflow
will cause an interrupt to location 305. In either
case, A + 1 is undisturbed.

EXECUTION TIMES: Alternate Banks 7.3
Same Bank 11.3

FLOATING CHARACTERISTIC

DIFFER ENCE MAGNITUDE

OPE RAT ION COD E : 76

MINOR OPERATION CODE: j = 6

MNEMONIC CODE: FLCD

OPE RAT 10 N S: I CA)34-27I -\ CU)34_27 1 A + 1

DE SC R IPT 10 N: Subtract the absolute value of the
characteristic of U from the absolute value of
characteristic of A. Store the difference in low­
order positions in A + 1.

EXAMPLES:

1. where (A)
and (U)

THE N (A + 1)

C H A R 0

250
264
777

MA NTISSA

663543211
423456722
777777763

NOT E S: The difference is stored in low-order posi­
in A + 1, with sign bits filled into the left.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

13-5

The Control Console includes the operator's
control panel, a keyboard and type-printer, and a
control unit for the keyboard and type-printer.
Optionally, a paper-tape reader and a paper-tape
punch can be connected to the Computer through
the same control unit.

By means of this arrangement, data may enter the
system via the keyboard or the paper~tape reader.
Direct communication from the Computer is made
via the type-printer or the paper-tape punch. The
type-printer permits spot-checking of the program
currently being processedo

Two switches mounted on the control unit permit
manual selection of the keyboard (or the paper­
tape reader) and the typeprinter (or the paper-tape
punch). Selection of a given unit can also be made
through program control.

The input-output units associated with the Control
Console will be discussed in detail in the manual
covering peripheral equipment.

Operator' 5 Control Panel

This panel provides direct operator communication
with the Computer. The manual controls and indica­
tors allow the operator to perform the following
operations:

1. Stop program execution while allowing input­
output operations to continue.

2. Clear all registers except those in the
input-output section.

3. Master clear all registers including those
in the input-output section.

4. Set the desired starting (or restarting) ad­
dress into the P-register. Six octal-digit
indicators display the contents of the p­
re gis ter.

14. CONTROL CONSOLE

5. Start program execution. The program will
start with the execution of the instruction
located at the address contained in the P­
register.

6. Set any of fifteen selective jump switches.
An indicator is lit when the corresponding
jump is selected. A jump can be selected
while a program is running.

7. Set any of four selective stop switches.
When the selection is made, the upper half
of a corresponding indicator is lit. The
lower half of this indicator is lit when the
appropriat~ stop is made. A stop can be
selected while a program is running.

8. Select one of sixteen channels for the ini­
tial loading of a bootstrap routine.

9. Read (Load) the bootstrap routine.

Four fault or status indicators are als 0 included
on the operator's control paneL These indicators,
along with examples of the type of conditions
they reveal, are presented below.

Computer Status - excessive temperature; poor
voltage regulation.

Program Faults - illegal operation code; illegal
memory address (an address within a locked-out
memory area).

Peripheral Equipment Fault - loss of power in
a channel synchronizer; disconnected cable.

Initial Loading (Bootstrap Fault) - error oc­
curing during the loading of the bootstrap program.

14-1

AUTOMATIC PROGRAMMING

The Automatic Programming Library for the UNI­
V AC 1107 System will include the following pro­
grams:

• COBOL - A data-processing compiler. The
specifications for Basic COBOL were de­
fined in a Department of Defense publication
dated April, 1960. COBOL 1961, which in­
corporates significant improvements, serves
as the basis for this com piler.

• ALGOL - An algebraic language compiler.
The specifications for this compiling system

were developed jointly by the Association
of Computing Machinery (ACM) Committee
on Programming Languages and the GAMM*
Committee on Programming. The report was
published in the Communications of the
ACM, May and July, 1960.

• FORTRAN - A translator that will accept
problems written in FORTRAN II Language.
This routine will enable problems previously
coded in FORTRAN to be run on the UNIVAC
1107 Thin-Film Memory Computer without
revision.

• SIMULATOR - A routine that will interpreta­
tively execute the instruction repertoire of
the UNIVAC 1107 System on a UNIVAC 1103-A,
1103-AS, or 1105 Computer. By means of this
routine, programs written for the UNIVAC 1107
may be run and corrected, if necessary, be­
fore the Computer itself is available.

• BASIC UTILITY LIBRARY - A library of
routines coded expressly for the UNIVAC
1107 Thin-Film Memory Computer. The fol­
lowing programs will be included in the
utility library:

• ,ASSEMBLY SYST EM. An advanced
computer-oriented mnemonic code as­
sembly system will be provided. This
routine will accept instructions con­
taining symbolic operand addresses and
mnemonic function codes and designa­
tors. It will then translate these instruc­
tions into an absolute or relative form,
ready for loading into the Computer.
The assembler will also provide the
means for correcting source code, al-

• GeselIschalt fur An~ewandte MathematIk und Mechanik.

14...,.2

locating assembled programs, produc­
ing parallel output of source and as­
sem bled programs, and incorporating
library routines.

• EXECUTIVE SYSTEM. A routine that
will automatically accomplish the exe­
cution of runs in compliance with a
predetermined Computer schedule. In
this capacity, the executive routine
will extract the programs that are to be
executed, position them in their oper­
ating locations, and provide for the
time-sharing of several programs run­
ning in parallel. This routine will also
incorporate special checking features
for the problem run.

• SORT-MERGE PROGRAMo A set of rou­
tines to arrange random items in an
ordered sequence. Routines will also
be available for combining two or more
ordered sequences into a single file
(on the basis of information contained
in specified fields of each item).

• INPUT·OUTPUT ROUTINES. A set of
routines to perform the input and output
functions for standard peripheral equip­
ment.

• 0 EBUGGING AIDS. A set of routines
to aid the programmer in checking out a
particular program.

• FUNCTION EVALUATION ROUTIN ES.
A set of commonly used mathematical
routines. The initial set will include
sine, cosine, tangent, arc sine, arc
cosine, arc tangent, square root, natural
logarithm, and exponential. These rou­
tines will be compatible with fixed­
point and floating-point arithmetic •

• LIBRARIAN ROUTINE. A routine for
building and maintaining a library of
subroutines. It will be capable of in­
serting, deleting, or changing routines
in the library, as well as extracting
routines for use in a particular program.
With this routine, the library may be al­
tered at will to conform to individual
customer requirements.

f

01 0-17
02
03
04
05
06

10
11
12
13
14
15
16
17
20
21
22t

23
24
25
26
27
30
31
32

34

35

36

40

41

42

43

44

45

47

50

51

52

53

54

55

56

57

APPENDIX A. INSTRUCTION REPERTOIRE

NAME

Store Positive
Store Negative
Store Magnitude
Store Ra
Store Zero
Store Ba

Load. Positive
Load Negative
Load Positive Magnitude
Load Negative Magnitude
Add
Subtract
Add Magnitude
Subtract Magnitude
Add and Load
Subtract and Load
Block Transfer

Load Ra
Add to Ba
Subtract from Ba
Load Ba Modifier Only
Load Ba
Multiply Integer
Multiply Single (Integer)
Multiply Fractional

Divide (Integer)

Divide Single and Load (Fractional)

Divide (Fractional)

Selective Set

Selective Complement

Selective Clear

Selective Substitute

Selective Even Parity Test

Selective Odd Parity Test

Test Modifier

Test Zero

Test Not Zero

Test Equal

Test Not Equal

Test Less Than or Equal

Test Greater Than

Test Within Limits

Test Outside Limits

EXECUTION
TIME

DESCRIPTION IN J.L SEC. MNEMONIC

Alternate Same CODE
Core Core

(A) ~ U
- (A) ~ U
I(A)I ~ U
(Ra) ~ U
o ~ U (Clear U)
(Ba) ~ U

(U) ~ A
- (U) ~ A
I(U)I ~ A
-I(U)I~A

(A) + (U) ~ A
(A) - (U)~ A
(A) + I(U)I ~ A
(A) - I (U) I ~ A
(A) + (U) ~ A + 1
(A) - (U) ~ A + 1
(W)i ~ (V)i repeated k times. •
Initial V1 address is u + (Bb) 17--0, and subse­
quent addresses are formed by incrementa­
tion by (Bbhs--18. Similarly, V2 addresses are
u + (Ba)17--0 incremented by (Bahs--18.
(U) ~ Ra
(Ba) + (U) ~ Ba
(Ba) - (U) ~ Ba
(U) ~ Ba17--0
(U) ~ Ba
(A) • (U) ~ A, A + 1
(A) • (U) ~ A
(A) • (U) ~ A, A + 1

(A, A + 1) -;-- (U); Quotient ~ A
Remainder ~ A + 1

(A) -;-- (U); Quotient ~ A + 1
No Remainder

(A, A + 1) -;-- (U); Quotient~ A
Remainder ~ A + 1

(A) ~ A + 1. Then set (A + l)n for (U)n=1
Le., (A) E9 (U) ~ A + 1
(A) ~ A + 1. Then complement (A + l)n
for (U)n = 1
Le., (A) ~ (U) ~ A + 1
(A) ~ A + 1. Then clear (A + l)n for
(U)n _ 1
Le., (A) 0 (U) ~ A + 1
(A) ~ A + 1. Then (U)n ~ (A + 1)n for
(M)n = 1
Le., (A) 0 (M)'+ (U) 0 (M) ~ A + 1
If [(A) 0 (U)] is even parity, Skip NI

Banks B;lnk

4.0
4.0
4.0
4.0
4.0
4.0

4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
8.0

4.0
4.0
4.0
4.0
4.0

12.0
12.0
12.0

31.3

31.3

31.3

4.0

4.0

4.0

4.7

8.0
8.0
8.0
8.0
8.0
8.0

8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0

8.0
8.0
8.0
8.0
8.0

16.0
16.0
16.0

35.3

35.3

35.3

8.0

8.0

8.0

8.7

No Skip 6.0 10.0

If [(A) 0 (U)] is odd parity, Skip NI
Skip 10.0 14.0

No Skip 6.0 10.0
Skip 10.0 14.0

If (Ba)17-0 < (U), take NI; If (Ba)17~-0 > (U),
Skip. In either case, No Skip
(Bah7--0 + (Bahs--18 ~ Ba17--0 Skip

4.7
8.7
4.0
8.0
4.0
8.0
4.0
8.0
4.0
8.0
4.0
8.0
4.0
8.0
4.7
8.7
4.7
8.7

8.7
12.7

8.0
12.0
8.0

12.0
8.0

12.0
8.0

12.0
8.0

12.0
8.0

12.0
8.7

12.7
8.7

12.7

Skip NI if (U) = 0 No Skip

Skip NI if (U) =1= 0

Skip NI if (U) = (A)

Skip NI if (U) =1= (A)

Skip NI if (U) :s;: (A)

Skip NI if (U) > (A)

Skip Nt if (A) < (U) ~ (A + 1)
(Note: (A) < (A + 1»

Skip Nt if (U) ::;;; (A) or (U) > (A + 1)
(Note: (A) < (A + 1»

Skip
No Skip
Skip
No Skip
Skip
No Skip
Skip
No Skip
Skip
.No Skip
Skip
No Skip
Skip
No Skip
Skip

STP
STN
STM
STR
STZ
STS

LDP
LDN
LDM
lNM
ADD
SUB
ADM
SSM
ADL
SBL
BTR

LDR
ADB
SBB
LBM
LDB
MPI
MPS
MPF

DVI

DVL

DVF

SSE

SCP

SCL

SSU

SEP

SOP

TMO

TZR

TNZ

TEQ

TNE

TLE

TGR

TWL

TOL

t Repeat operations 62-67, 71 take 16 p. sec combined setup and termination time. The block transfer (22)
takes 12 p. sec combined setup and termination time: A-I

INSTRUCTION REPERTOIRE

EXECUTION
TIME

f j NAME DESCRIPTION IN J1. SEC. MNEMONIC

Alternate Same CODE
Core Core

Banks Bank

60 0-17 Test Positive Skip NI if (U) 2. 0 No Skip 4.0 8.0 TPO
Skip 8.0 12.0

61 Test Negative Skip NI if (U) < 0 No Skip 4.0 8.0 TNG
Skip 8.0 12.0

62t Search Equal Skip NI if (U)j = (A) No Skip 4.0 4.0 SEQ
Repeated k times Skip 4.0 4.0

63t Search Not Equal Skip NI if (U)j =1= (A) No Skip 4.0 4.0 SNE
Repeated k times Skip 4.0 4.0

64t Search Less Than or Equal Skip NI if (U)i < (A) No Skip 4.0 4.0 SLE
Repeated k tiriit!s Skip 4.0 4.0

65t Search Greater Than Skip NI if (U)i > (A) No Skip 4.0 4.0 SGR
Skip 4.0 4.0

66t Search Within Limits Skip NI if (A) < (U)I ~ (A + 1) No Skip 4.7 4.7 SWL
(Note: (A) < (A + 1» Skip 4.7 4.7

67t Search Outside Limits Skip NI if (U)j < (A) or (U)i > (A+l) No Skip 4.7 4.7 SOL
(Note: (A) <:(A + 1» Skip 4.7 4.7

70 Index Jump If (CM)ia > 0, Jump to U No Jump 8.0 8.0 IXJP
(CM)ia < 0, Take NI Jump 4.0 4.0

Then (CMJia - 1 ~ CMia
NOTE: j in this instruction serves with th~

a-designator to specify anyone of the 128
words of Control Memory.

7It *
00 Masked Search Equal Skip NI if (U)j 0 (M) = (A) 0 (M) No Skip 4.0 4.0 MSEQ

Repeated k times Skip 4.0 4.0
01 Masked Search Not Equal Skip NI if (U)j 0 (M) =1= (A) 0 (M) No Skip 4.0 4.0 MSNE

Repeated k times Skip 4.0 4.0
02 Masked Search Less Than Skip NI if (U)j 0 (M) < (A) 0 (M) No Skip 4.0 4.0 MSLE

or Equal Repeated k times Skip 4.0 4.0
03 Masked Search Greater Than Skip NI if (U)j 0 (M) > (A) 0 (M) No Skip 4.0 4.0 MSGR

Repeated k times Skip 4.0 4.0
04 Masked Search Within Limits Skip NI if (A) 0 (M) < (U)j 0 (M) MSWL

< (A + 1) 0 (M) No Skip 4.7 4.7
- (Note: (A) 0 (M) < Skip 4.7 4.7

(A + 1) 0 (M»
Repeated k times

05 Masked Search Outside Limits Skip Nt if (U)j 0 (M) < (A) or MSOL
(U) 0 (M)< (A + 1)- No Skip 4.7 4.7

(Note: (A) 0 (M) < Skip 4.7 4.7
, (A + 1) 0 (M»

Repeated k times

72 ~

00 Wait for Interrupt The computer program sequence stops 4.0 WAIT
(Le., P is not advanced). The wait condi-
tion is removed by an interrupt.

01 Return Jump (P) ~ UI7--0 and Jump to U + 1 8.0 8.0 RTJP
02 Positive Bit Control Jump If (Ahs = 0, Jump to U No Jump 4.0 4.0 PBJP

Shift (A) left one in either case Jump 8.0 8.0
03 Negative Bit Control Jump If (Ah5 = 1, Jump to U No Jump 4.0 4.0 NBJP

Shift (A) left one in either case Jump 8.0 8.0
04 Add Halves (A)17--0 + (U)17--0 ~ A17--0 4.0 8.0 ADDH

(Ah5--18 + (Uh5--18 ~ A35--18
05 Subtract Halves (A)17--0 - (U)I7--0 ~ A17--0 4.0 8.0 SUBH

(Ah5--18 - (Uh5--18 ~ A35--18
06 Add Thirds (Ah5--24 + (Uh5--24 ~ A35--24 4.0 8.0 ADDT

(A)23--12 + (Uh3--12 ~ A23--12
(A)11--0 + (U)11--0 ~ All--0

07 Subtract Thirds (Ah5--24 - (Uh5--24 ~ A35--24 4.0 8.0 SUBT
(A)23--12 - (U)23--12 ~ A23--12
(A)11--0 - (U)11--0 ~ All --0

10 Execute Remote Instruction Execute the I nstruction at U 4.0 - EXRI
+ Execution Time

11 Load Memory Lockout Register U5--0 ~ MLR 4.0
For Uo = 1 lockout 0-4095

Ul= 1 lockout 4096-8191
U2 = 1 lockout 8192-16383
U3= 1 lockout 16384-32767
U4= 1 lockout applies to 1st BANK
U5=C:: 1 lockout applies to 2nd BANK

73:1: -r

00 Single Right Circular Shift::: Shift (A) right U places circularly 4.0
01 Double Right Circular Shift Shift (A, A + 1) right U places circularly 4.0
02 Single RiglU Logical Shift Shift (A) right U places, end off; fill with 4.0

zeros (Max. Shift -- 36)
*J serves as part of the Function Code
t Repeat operations 62-67, 71 take 16 f1, sec combined setup and termination time. The block transfer (22)
takes 12 f1, sec combined setup and termination time.

- LMLR

SCSH
DCSH
SLSH

tlnstruction execution time is independent of the number of shifts performed (e.g. a shift of 72 takes 4 microseconds). There
are no memory references in the first six shift instructions, 73 00 - 73 as; consequently, the distinction between alternate core

A-2 banks and the same core bank is irrelevant.

INSTRUCTION REPERTOI RE

EXECUTION
TIME

j NAME DESCRIPTION IN J1. SEC. MNEMONIC

Alternate Same CODE
Core Core

Banks Bank

03 Double Right Logical Shift Shift (A, A + 1) right U places" end off; 4.0 DLSH
fill with zeros. (Max. Shift = 72)

04 Single Right Arithmetic Shift Shift (A) right U places, end off; fill with sign bits. 4.0 SASH
05 Double Right Arithmetic Shift Shift (A, A + 1) right U places, end off; 4.0 DASH

fill with sign bits. (Max. Shift = 72)
06 Scale Factor Shift (U) ~ A, shift A left circularly until A35 'i=- A34 6.0 10.0 SFSH

or until A has been shifted 36 times. Store
the scaled quantity in A and the number of
shifts that occurred in A + l.

74 0:0

00 Zero Jump Jump to U if (A) = 0 No Jump 4.0 4.0 ZRJP
Jump 8.0 8.0

01 Non-zero Jump Jump to U if (A) =1= 0 No Jump 4.0 4.0 NZJP
Jump 8.0 8.0

02 Positive Jump Jump to U if (A) 2: 0 No Jump 4.0 4.0 POJP
Jump 8.0 8.0

03 Negative Jump Jump to U if (A) < 0 No Jump 4.0 4.0 NGJP
Jump 8.0 8.0

04 Console Selective Jump Jump to U if A = key setting on console (1 of 15) 4.0 4.0 CSJP
05 Selective Stop Jump Stop if A = stop key setting on console (1 of 4), 4.0 4.0 SSJP

always jump to U
06 No Operation Do Nothing; continue with NI 4.0 4.0 NOOP

07 Enable All External Interrupts Jump to U and permit interrupts to occur 4.0 4.0 EIJP
and Jump

10 Even Jump Jump to U if (A)o = 0 No Jump 4.0 4.0 EVJP
Jump 8.0 8.0

11 Odd Jump Jump to U if (A)o = 1 No Jump 4.0 4.0 ODJP
Jump 8.0 8.0

12 Modifier Jump If (Ba)17.-o > 0, Jump to U No Jump 4.0 4.0 MOJP
If (Ba)17 .. o < 0, Take NI Jump 8.0 8.0
In either case (Ba)J7 .. 0 + (Bah5--J8 ~ BaJ7--o

13 Load Modifier and Jump (P) ~ (Bah7--0 and Jump to U 4.0 4.0 LMJP
14 Overflow Jump Jump to U if overflow condo is set 4.0 4.0 OVJP
15 No-Overflow Jump Jump to U if overflow condo is not set 4.0 4.0 NOJP
16 Carry Jump Jump to U if carry condo is set 4.0 4.0 CYJP
17 No-Carry Jump Jump to U if carry condo is not set 4.0 4.0 NCJP

75 0:0

00 Initiate Input Mode (U) ~ input control word a, and initiate 4.0 8.0 IIPM
input mode on channel a.

01 Initiate Monitored Input Mode (U) ~ input control word a, and initiate 4.0 8.0 IMIM
input mode on channel a with monitor.

02 Input Mode Jump Jump to U if channel a is in the input mode. 4.0 4.0 IMJP
03 :rerminate Input Mode Terminate input mode on channel a. 4.0 4.0 TIPM
04 Initiate Output Mode (U) ~ output control word a, and initiate 4.0 8.0 IOPM

output mode on channel a.
05 Initiate Monitored Output Mode (U) ~ output control word a, and initiate 4.0 8.0 IMOM

output mode on channel a with monitor.
06 Output Mode Jump Jump to U if channel a is in the output mode. 4.0 4.0 OMJP
07 Terminate Output Mode Terminate output mode on channel a. 4.0 4.0 TOPM
10 Initiate Function Mode (U) ~ output control word a, and initiate 4.0 8.0 IFNM

function mode on channel a.
11 Initiate Monitored Function Mode (U) ~ output control word a, and initiate 4.0 8.0 IMFM

function mode on channel a with monitor.
12 Function Mode Jump Jump to U if channel a is in the function mode. 4.0 4.0 FMJP
13 Force External Transfer Request external function or output word 4.0 4.0 FEXT

on channel a.
14 Enable All External Interrupts All external interrupts are permitted to occur. 4.0 4.0 EAEI
15 Disable All External Interrupts All external interrupts are prevented 4.0 4.0 DAEI

from occurring.
16 Enable Single External Interrupt An external interrupt on channel a 4.0 4.0 ESEI

is permitted to occur.
17 Disable Single External Interrupt An external interrupt on channel a 4.0 4.0 DSEI

is prevented from occurring.
76 *

00 Floating Add (A) + (U) ~ A, A + 1 14.0 18.0 FLAD
01 Floating Subtract (A) - (U) ~ A, A + 1 14.0 18.0 FLSB
02 Floating Multiply (A) . (U) ~ A, A + 1 13.3 17.3 FLMP
03 Floating Divide (A) --:- (U); Quotient ~ A 26.7 30.7 FLDV

Remainder ~ A + 1
04 Floating Point Unpack Unpack (U), store mantissa in A + 1 and store 4.0 8.0 FLUP

the bias~d characteristic in A
05 Floating Point Normalize Pack Normalize (A) pack with biased characteristic 7.3 11.3 FLNP

from (U) and store at A + 1
06 Floating Characteristic

Difference Magnitude Absolute value of 1(A)34.-27!-1 (Uh4--271 ~ A + 1 4_0 8.0 FLCM

07 Floating Characteristic
\CA)34--2'- Uh4--2 ~ A + 1 8.0 FLCD Difference 4.0 A-3

DIVIS!ON OF SPERRY RA,ND CORPORATION

UT2463

	001
	002
	003
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	07-01
	07-02
	07-03
	07-04
	07-05
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	10-01
	10-02
	10-03
	10-04
	10-05
	11-01
	11-02
	11-03
	12-01
	12-02
	12-03
	13-01
	13-02
	13-03
	13-04
	13-05
	14-01
	14-02
	A-01
	A-02
	A-03
	xBack

