894

AOALYSIS
RESEARCH
DEVELOPMENT EnGInEERInG

ST. PAUL, MINNESOTA

SUMMARY OF CHARACTERISTICS
MAGNETIC DRUM BINARY COMPUTER

Proposed for national Bureau of standards

USs. Department of Commerce
contract CST-10133

30 November 1948

Pub. MO. 23

ENGINEERING RESEARCH ASSOCIATES. INC. 1902 West Minnehaha Avenue, St. Paul 4, Minnesota

This report has been prepared for the National Bureau of Standards, U.S. Department of Commerce, as one phase of the work performed under Contract CST-10133. Its purpose is to summarize the oharacteristics of a digital computer employing magnetic drum data storage. This somewhat condensed sumary is intended to serve as the ongineering basis for negotiations leading to a posible contraot for the construction of a computing machine, in accordance with agreements reached at a conference in St. Paul on 5 November 1948. The properties of the machine are defined in sufficient detail to be useful to anyone wishing to program sample problems for the purpose of evaluating the speed and general utility of the machine.

In compliance with the terms of the contract, the desaribed characteristios are based on teohniques which are either in active development or have been subjeoted to detailed oritical analysis.

Preliminary reports outlining three variations on the design of a magnetic drum computer were submitted on 13 August, 30 September, and 19 October 1948. These are listed as References (a), (b), and (c) in Appendix A. The present maohine is different from those previously described.

TABLE OF CONTENTS

CEAPTER 1 - FUNCTIONAL DESCRIPTIOM OP COMPUTER
Seotion Page
1.1 Introduction
1.1.1 The Computer 1
1.1.2 Parallel transmission and static retention of data 1
1.1.3 Five sections of the computer. 3
1.2 Storage Section
1.2.1 Organization of the drum 3
1.2.2 Physical characteristics 4
1.2.3 Functional description 4
1.3 Arithmetic Section
1.3.1 Components 6
1.3.2 Number representation. 6
1.3.3 Acoumulator 6
1.3.4 Q-Register 7
1.3.5 X-Registor 8
1.3.6 Shift Counter 8
1.4 Program Control Seotion
1.401 Computer instructions. 8
1.4 .2 Components 9
1.4 .3 and Point Counter 10
1.5 Input Seotion
1.5.1 Input medium 10
1.5.2 Tape reader. 10
1.5.3 Input control, oharacteristios of. 11
1.5.4 Input control, mechanism of. 11
1.5.5 Tape preparation unit. 14
1.6 Output Section 15
CHAPTER 2 - COMPUTING CHARACTERITTICS
2.1 Introduction 16

TABLE OF CORTEMTS - Continued

Soction Page
2.2 Definitions of the Comnands
2.2.1 Homenolature 16
2.2.2 Principal additive commands. 16
2.2.3 Kiscellaneous Accumatator commands 17
2.2.4 Q-Register comnands. 18
2.2.5 Arithmetic sequence commands 18
2.2.6 Test commands. 19
2.2.7 Print and stop commands. 20
2.3 Comments on the Commands
2.3.1 Numbers transmitted to Accumulator 20
2.3.2 Principal additive commands. 21
2.3.3 Miscellaneous Accumulator commands 21
2.3.4 Q-Register commands. 21
2.3.5 Arithmetic sequence commands 21
2.3.6 Test commands. 22
2.3.7 Print and stop commands 23
2.4 Operating Time Considerations
2.4.1 Programing for maximum effective computer speed 23
2.4 .2 Storage lockout delays 24
2.403 Clock pulse rate 2
2.4.4 Parallel internal operations 25
CHAPTER 3 - MISCELLANEOUS GENERRAL CONSIDERATIOIS
3.1 Manual Controls. 26
3.2 Choaking and Servicing 26
3.3 Number of Tubes 27

LIST OF FIGURES

Figure Page

1. Digital Transmission Paths 28
2. Tape Control Coding 29
3. Block Diagram of Input Operations. 30
4 Maltiply Algorithm (portion of Mapy and NPpy).31
4. Divide Algorithm (portion of DPPy) 32
LIST OF TABLES
Table Page
I. Tentative Physical Characteristics of Storage Drum 33
II. 耳umbers Subtracted into Acoumilator in the Basic Arith- metic Operations 34
III. Commands and Operating Times 35
APPENDICES
Appendix Page
A. List of References 36

CHAPTER 1

FUNCTIONAL DESCRIPTION OF THE COMPUTER

1.1 Introduction.

1.1.1 The computer. The dovice whose properties are the subject of this report is a general purpose eleotranic binary computer with magnetio drum internal data storage. It is a selective sequence machine which employs a "two-address" system of logic for following a program of instruotions.
1.1.2 Parallel transmission and static rotention of data. Figure is a blook diagram showing the paths over which digital data are transmitted betweon the principal units of the computer. (This is not a complete block diagram of the computer.) In the transmission of digital signals, the presence of a pulse in a channel represents a 1 and the absence of a pulse a 0 . The digits of a multidigit number are transmitted simultaneously over a maltichannel bus. All digital information "in process" within the computer (excluding that whioh is in magnetio storage) is held on registers made up of toggle-oirouits, or static flip-flops.

A toggle-circuit is a vaoum tube cirouit whioh has two stable otates. It is therefore capable of retaining, or remembering, a single binary digite In Figure 1, each toggle-cirouit registor is indicated schematically as a reotengle with two input terminals, labelled 0 and 1 , and two output terminals, similarly labolled. The symbol which represents a 30 -digit register may be thought of as a composite of 30 individual toggle-oirouits, each one of which may be represented by a similar kind of symbol. If the 0 input torminal of a toggle is pulsed, the o output tarminal becomos positive. If the 1 input terminal is pulsed, the 1 output terminal becomes positive.

```
EMGINEERINGGRESEARCH
SSOCIATES
INC.
```

The transmission of data between registers is accomplished by means of gating circuits. A gate is a vacuum tube cirouit having two input terminals and a single output terminal. A pulse impressed on the first input terminal produces an output pulse only if the second input terminal is positive. The signal voltage on this second input generally originates at the output terminal of a toggiecireuit.

In order to transmit the number contained in one toggle-cirouit register to a second register, the destination register must first be cleared to $0^{\prime \prime}$. A bank of gates whose secondary inputs are tied to the 1 outputs of the first register are then actuated by pulsing their primary inputs. The outputs of these gates go to the 1 inputs of the second register. Pulses are transmitted only over those channels in which the corresponding originating toggle-circuit contains a l. The result is to duplicate the contents of the first register in the second.

It will be apparent that the same result may be obtained by first clearing the second register to $l^{\prime} s$, then gating the 0 output of the first register to the 0 input of the second. The complement of the number in the first register may be inserted in a seoond register either by first clearing to $0^{\prime} s$ and then transmitting the 0 output to the 1 input, or else by olearing to 1 's and transmitting the 1 output to the 0 input. (The complement of a number is described in Seotion 1.3.)

In Figure 1, a multichannel bus is indicated by a bold line. A bank of 30 gates is represented by a rectangle labelled " 30 G ", etc. The control pulse lines which actuate these gates are not shown. Whether a given register is cleared to O's or to l's $^{\prime}$ is indicated by the position of the control line marked "CL".

It should be omphasized that the aot of transmitting a number from one register to another does not remove the number from the source, but merely duplicates

It at the destination.
1.1.3 Five seotions of the computer. For desoriptive purposes, the computer may be divided into five sections: Storage, Arithmetic, Program Control, Input, Output. The fumotions of the five sections of the computer will be described in the following sections.

1.2 Storage Sootion.

1.2.1 Organization of the drume The computer has a storage capacity of 4096 (or 2^{12}) 30 -digit binary numberse Binary digits are stored as magnetic marks on the surface of a continuously rotating cylindrical drum The marks are arranged in parallel peripheral tracks, with a single magnetic head for reading and writing assigned to each track. The digits of a 30-digit number are entered simaltaneously into their respective "cells" on 30 tracks. Each track contains 2048 (or 2ll) sells, so that 30 tracks store 2048 30-digit numbers. There are two such groups of tracks on the drume

Each 30-digit number occupies a "box". The location of each box on the drum is speoified by a l2-digit binary number called the "address". The leftmost binary digit specifies one of the two groups of tracks. The other 11 digits specify one of 2048 angular positions of the drume One group of tracks oontains the 2048 boxes whose addresses (expressed in octal, or radix 8, notation) lie between 0000 and 3777, inclusive; the seoond group, those lying between 4000 and 7777. inclusive. The two boxes at a given angular position have addresses which differ by the ootal number 4000.

In addition to the 60 storage tracks, there are 11 tracks for locating pure poses and two tracks for timing and control of the storage operations. The 11track group contains 2048 permanently recorded lladigit binary numbers, corres-
ponding to the 2048 angular positions of the drum These numbers appear in conseoutive order.
1.2.2 Physical charaoteristios. The physical characteristios of the magnotic storage drum are listed in Table I. Background material relative to the magnetic storage techniques employed is contained in References (d) and (o). Non-return-to-zero signals, described in these references, are used in the looator tracks. Return-to-zero signals are omployed in the storage tracks.
1.2.3 Functional description. The functions of the eleotrical parts of the storage section ares (1) locating, (2) writing, and (3) reading.

The problem of locating is to f ind the box on the magnetic drum corresponding to the address which has been set up in the Storage Address Register (SAR, Figure 1). The leftmost stage of $S A R$ selects the proper track groupe An 11-fold ooincidence circuit compares the settings of the other 11 stages with the outputs of the amplifier oircuits which read the 11 locator tracks. When the drum reaches the angular position corresponding to the address contained in $S A R$, the coincidence oircuit generates a pulse. This pulse causes the 30 digits of a number simaltaneously to be writton into, or read from, the selected one of the two groups of tracks, at the correct angular position.

The writing system records on the drum digital information whioh has been set up in the Storage Insertion Register and the Storage Blocking Register (SIR and SBR, Figure 1). The number to be written into storage is received and held by SIR. In some operations of the computer, the writing of certain specified digits of the number in SIR must be suppressed. This digit-blocking information is contained in SBR.

Sixty writing cirouits drive the 60 magnetio heads associated with the storage ENGINEERING RESEARCHASSSOCIATES, INC.
tracks. Each writing cirouit contains two miniature thyratrons, each of whioh can disoharge a simple network through a winding on the magnetio head. One thyratron is fired to write a 2 , the other to write a 0 . The thyratrons are triggered by the locator coinoidence pulse gated thr ough the proper group-seleoting gate. One of the tubes (for suppressed digits, both tubes) is prevented from firing by application of a negative bias to its shield grid. This type of writing cirouit is desoribed in Roferenoes (d) and (o).

The Storage Reading Amplifiers (Figure 1) amplify the signals read from the selected group of storage tracks and cause the number read from a selected box to be transmitted to a specified destination in the computer. There are 30 reading amplifiers, each having dual input stages. One sot of inputs is assooiated with each of the two track groups. Which set is blocked and whioh is operable is dem termined by the leftmost digit in SAR.

These Storage Reading Amplifiers have three sets of output gatese The number being read may be directed to the X-Register, to the Program Control Registers (CTS, PAR, BAR, in Figure 1), or to the Print/Punch Register. The destination is selected by impressing the pulse from the locator coincidence circuit on the apo propriate set of output gates. In the case of reading data into the Print/Punch Register, a loakout is provided against filling the register until such time as the information previously put into it has been consumed by the typewriter unit.

The address search preceding each writing or reading operation is initiated by a signal from the Program Control Seotion of the computer. Upon completion of the writing or reading operation, an ond-signal notifies Program Control and clears $S A R, S I R$, and $S B R$.

1.3 Arithmotio Seotion.

1.3.1 Components. The prinoipal units of the Arithmetic Section of the computer are the X-Register (X), the Q-Register (Q), and the Acoumulatar (A). All arithmotic operations are performed on numbers contained in these units. The sime pler arithmetic operations are directed by the Program Control. Sequential routines (shift, maltiply, divide) which are part of the more complex arithmetio processes are directed by the Arithmetic Sequence Control, of whioh the Arithmetic Shift Counter (ASK) is a componeat unit. The avenues of oommaication between these and other units of the computer are shown schematically in Figure 1.
1.3.2 Number representation. Binary numbers are used throughout the computer. Negative numbers are expressed as complements on ($2^{30}-1$) in the boxes of storage, in X, and in Q. These units are all of 30 -digit width. In A, which is 60 digits wide, negative numbers are expressed as complements on ($2^{60}-1$). This is the familiar "one s-complement" representation. It is a proporty of this representation that the extreme left digit of a positive number is O_{8} that of a negative number, 1 .

Tho binary point is located at the right in all registers. That is, all nump bers are treated as integers by the machine. Non-integer numbers may be handled by programing soale factors.

To sumarize, registers other than A may contain any positive or negative integer whose absolute value does not exceed ($2^{29}-1$). The Accumulator (A) may contain any integer whose, absolute value does not exoeed ($2^{59}-1$).
1.3.3 Aocumalator. The Acoumulator is the central theater of numerical oporations in the computer. In this unit, the sum, difference, produot, or remainder are formed, and numbers are manipulated in various ways.

The Accumulator is basically subtractive, with end-around borrow. That is, every number transmitted to A is automatioally subtraoted into (i.e., subtraoted from) the number there, the new number in A boing the resulting difference. The subtraotion is performed modulo $\left(2^{60}-1\right)$. A number may be added into A by transmitting its oomplement to A.

There are two ways of representing zero in the one's-complement number systems (000...0) and (111...1). An additive acoumalator can generate only the kind of zero (111...1) which has the mohine properties of a negative number. A subtractive accumilator can generate only the kind of zero (000...0) whioh has the machine properties of a positive number. Apart fromthis exclusion of the negative zero, the question of whether the a ocumamalator is subtraotive or additive is an internal property of the machine, and need be of no concern to the programmer.

The number in A may be shifted to the left by any number of places from 1 to 59, in response to a single comand. This shift is "circular"; i.e., a digit shifting out of the left end of A is not lost, but shifts into the right end. Bach single shift is mathematically equivalent to multiplication by 2, modulo $\left(2^{60}-1\right)$

The Acoumalator Input Gates shown in Figure 1 perform the conversion of 30 digit numbers from X or Q to the appropriate kind of $60-\mathrm{digit}$ number to be subtracted into the Accumilator. The kinds of numbers which are subtracted into A in the various arithmetic operations are tabulated in Table II, and will be disoussed in Soction 2.3.
1.3.4 Q-Register. The Q-Register participates in several arithmetic and logical operations. These will be described in Chapter 2. In particular, the
quotient is formed in Q in division, and the multiplier held there during multiplioation. This register may also be used for rapidiy acoessible storage of a single number, 8 ince it communicates bilaterally with A.

By moans of a single command, the number in Q may be shifted circularly to the left from 1 to 29 places.
1.3.5 X-Register. The principal function of X is to receive numbers transmitted from storage to the Arithmetic Section. This register has no adding or shifting property. It is possible to subtract into A the number in X or its complement. Addend, subtrahend, multiplioand, or divisor are held in X during the corresponding arithmetic operations.
1.3.6 Shift Counter. The Arithmetic Shift Counter (ASK in Figure 1) counts the number of places shifted in the several operations involving shifts of Q or A. It is a subtractive counter which may be preset to the number of places it is desired to shift. Each single-shift control pulse subtracts 1 from the counter. The arrival of ASK at zero cuts off the train of control pulses and stops the shifting sequence.

The Arithmetic Shift Counter oounts modulo 60, in that it resets to 59 after O. This property is used in the scale factor shift, to be described in Chapter 2. The output gates to S IR are included solely for the soale factor shift.

1.4 Program Control Seotion.

1.401 Computer instructions. The fuction of the Program Control Seotion of the computer is to direot the execution of a program of instructions, contained in storage, for the working of a mathematical problem

Each instruction is expressed as an aggregate of 30 binary digits and may be stored and transmitted in precisely the same manner as a numerical quantity. The
right-hand 12 digits of an instruction represent y, the execution address. This is the address of the box in storage to which reference mast be made in order to carry out the instruction. The noxt 12 digits to the left represent p, the program address. This is the address of the box containing the next instruotion in the program. The left-hand 6 digits express the commend code. This code speoifies which command, of the 39 understood by the machine, is to be exeouted.

Some of the commands do not require a reference to storage for executions for these there is no associated execution address, and the right-hand 12 digits are therefore irrelevant. In a fow cases, these l2 digits contain specialized information e.g., the number of places that Q or A is to be shifted. The commands will be discussed in Chapter 2.
1.4.2 Components. Program Control obtains each instruction in the program from storage and translates it into control pulses direoted to various parts of the computer in correct sequence for its execution. An instruction transmitted from Storage to Program Control is split into three parts. The execution address is reoeived in the Execution Address Registor (EAR in Figure 1), the program address in the Program Address Register (PAR), and the oommand code in the Compand Translat or Swit oh (CTS).

The Command Translator Switoh is a to ggle-cirouit ontrolled diode matrix, of the type described in Reforence (f). A given 6-digit oode set up in CTS onergizes one of a number of output leads (39 used, 64 possible). This d-c level signal selects the set of basio operations appropriate to the speoified comand. These operations are sequenced by pulses from the pulse generation and distribution units and associated connecting matrices. (These units are shown in block form in Figure 3.)
1.4.3 End Point Counter. The End Point Counter (EPK in Figure 1) is a 12digit subtractive counter whose primary purpose is to count the number of times a ropetitive routine has beon traversed in a program. The counter is operated by two specisl commands which will be discussed in Chapter 2. This unit also participates in the machine input operations.

1.5 Input Section.

1.5.1 Input mediume The Input Section of the mohine transmits numerical data and the program of instructions from the input medium to the storage system. The input medium is 7-hole punched paper tape, with data confined to six levels, or tracks. The seventh level is reserved for codes to control the input operations.

Each 30-digit box in storage is loaded from five consecutive lines on the input tape. These five lines will be referred to as a "rame". The first line of a frame corresponds to the leftmost fifth of a box, the second line to the second fifth, etc.
1.5.2 Tape roader. The tape is scanned by a photoelectric reading device at a nominal speed of 75 feet per minute. This corresponds to 150 lines per seoond, or 30 frames per second. If it should be desired to load the entire drum, It would take about 2.3 minutes to 9111 all 4096 boxes.

The magnetie drum rotates continuously at its normal speed during the input operation. The tape feed need not be synchronised with the drum rotation. It is necessary only that the number of drum revolutions per second exceed the number of tape frames scanned per second.

The tape is driven by friction rollers, moving continuously rather than intermittently. The feed holes, normally used in sprocket-driven tape systems, are

scanned photoelectrically to provide pulses for timing the input control oircuitse
1.5.3 Input control, characteristics of. The information on the tape is of two kindss (1) data (numerical and program) to be written into storages and (2) codes for controlling the operation of the input section, but not to be written into storage.

The fifth or last line of each frame on the tape is accompanied by a seventhlevel hole. This synchronizing hole is one form of input control code. In addition, there are two basic commands for controlling the tape-to-drum loading operation. Each sequence of data frames is preceded by frame containing an initial address, plus a tape control code in the seventh level. Following the sequence of data frames there is a frame containing a check address, plus a different tape control code in the seventh level. The two tape control oomands are logioally equivalent to the following sṭatements:

INSERT ADDRESS: Write the contents of the next frame of tape into the box specified by this address, and oontinue to write the contents of succeeding frames of tape into boxes of consecutively ascending address.

CHECK ADDRESS: Stop the loading sequence and compare the address given in this frame with the address (contained in a counter) of the box which was about to be loaded. If they are alike, continue scanning tape for next sequence. If not, stop tape motion and flash alarme (This command stops the tape motion only if an error is detected.)

Each sequence of data is preceded by an INSERT ADDRESS code, and is followed by a CHECK ADDRESS code. Several sequences may be spliced together, or punohed on one tape, or pumched on different tapes. They may be loaded into the machine in any order.
1.5.4 Input control, meohanism of. The appearance of the tape control coding is shown in Figure 2. A bank of 11 phototubes scans the tape as it travels
past the reading position. These are identified by the shaded blooks in the diagram. Six of the phototubes read a single 6-digit line of data. One phototube views the feed holes. Pour phototubes read the seventh-level control code.

As each line of tape arrives at the horizontal bank of data phototubes, the four seventh-level tubes observe a binary code (e.g., 1101 at the instant shown) which identifies the procedure to be followed on that line. The five lines composing a frame are labelled $a, b, 0, d$, and e. The positioning of the control phototubes is such that when the data phototubes are viewing the line, the control phototubes are viewing the e^{\prime}, a, b, and e positions in the seventh level. The label ' refers to the θ position in the preoeding frame. The e^{\prime} and control phototubes are energized simultaneously only when an e line is opposite the data phototubes. That is, an line is identified by a control code of the form $1 \times X 1$. In particular. 1101 identifies the line of an INSERT ADDRESS frame, 1001 the e line of an ENTER DATA frame, and 1011 the line of a CHECK ADIRESS frame. Control codes not of the form $1 X X 1$ identify a, b, c, and d lines of any kind of frames these are all given identical treatment. Instructions for the final disposal of a frame of data are not revealed until the e line is read.

Figure 3 is a block diagram showing those parts of the computer which participate in input operations. The digital transmission paths used in input operations are shown also in Figure 1.

The Tape Translator`Switoh (TTS) is a considerably simplified version of the Command Translator Switoh (CTS). One of its five output leads is energized on reoelpt of the 4 -digit tape control code. The outputs operate into the computeris operation selecting matrix, in the same mamer as the outputs of CTS. All input operations internal to the computer take place at the same pulse rates as in
regular computing.
The Q-Register is used for assombling the five 6-digit Iines of a framo of tape, and for providing part of the "cushion" storage of data en route from tape to drum The rapid shifting property of Q is utilized in the assembly operation.

After the e line of a frame has beon received by Q, the number in Q is transmitted to one of two destinations, depending on the kind of frame being read, as identified by TTS. If the frame is of the ENTER DATA kind, the number in Q is transmitted to $S I R$ for writing into storage. If it is either an INSERT ADDRESS or a CHECK ADDRESS frame, the complement of the number is transmitted to EPK (right-hand 12 digits only, others being irrelevant).

The End Point Counter (EPK) is utilized to keep track of the address of the box to be loaded. For machine loading operations, this unit is provided with an "AFC" set of input terminals. A 12-digit number transmitted to BPK via these terminals is "added without oarry" to the number in EPK.

In Section 1.4.3. EPK was desoribed as a l2-digit subtractive counter. Far input operations, it is required to add 1 to the address in the counter for oach suocessive frame of data. The desired properties are realized by inserting the oomplement of the initial address in EPK, subtraoting 1 from this each time, and transmitting the complement of the number in EPK to SAR. (This is equivalent to relabolling EPK's input and output terminals).

The modus operandi of the input process will now be desoribed (with the lesser details omitted). As each line of tape passes before the phototubes, a shapp pulse is delivered by the Feed Pulse Amplifier. This pulse causes TTS and the right-hand six stages of Q to be filled from the appropriate tape amplifier outputs, and initiates a short, rapid sequence of internal machine operations, as

If the TTS setting is not of the form lXXI, the line is a, b, c, or d, and the principal operation is a G-place shift of Q.

If the TTS setting is 1101, the line is the e line of an INSERT ADDRESS frame, and Q is now full. First EPK is cleared to $0^{\prime} s$, then the complement output of Q is transmitted to the AWC input of EPK. The number in EPK is now the complement of . the initial address.

If the TTS setting is 1001, the line is the o line of an ENTER DATA frame, and Q is full. The complement output of EPK is transmitted to SAR. This sets up the initial address in its normal form The normal output of Q is transmitted to SIR. The Initiate Write control line to storage is pulsed. The Advance EPK line, which subtraots 1 , is pulsed. This sets up the destination address for the next frame.

If the TTS setting is 1011, the line is the e line of a CHECK ADDRESS frame, and Q is full. If the ohook is good, the numbers in Q and EPK are complements. The complement output of Q is transmitted to the AWC input of EPK, as before. This leaves 0 's in EPK. The Advance EPK line is pulsed. If this operation produces an end-borrow, the check is good.

So that orders of magnitude of the time intervals involved may be fully appreciated, it should be noted that the feed pulse repetition period is extremely long (6700 microseconds) relative to the internal clock pulse period (2.5 mioroseconds).
1.5.5 Tape preparation unit. The input tape is prepared by means of a speoial keyboard unit whioh actuates a standard 7-hole tape punch. The keyboard arrangement has not been atandardized at this writing. One suggested design has two arrays of 64 keys each. The keys in one group are marked with the octal numbera 00 through 77. Thirty-nine of the keys in the other group are labelled with the 39 command code symbols (OA, OP, TE, etc.). Each key in one group is tied electrically to one koy in the other group. Depressing a given key sets up the corresponding 6-digit binary number to be punched as a line of data. After the
number is set up, a Pumoh and Advance bar is struck. There are two such bars. One of these causes the seventh-level hole to be included; the other causes it to be omitted. If a special switch is set, a seventh-level hole will automatically be included opposite overy fifth, or e, line. Five lamps indicate which of the five lines of a frame is about to be punched.

1.6 Output Soction.

The Output Seotion of the computer contains means for transmitting information from storage to a punched paper tape and/or a printed page. Two commands, PRINT ONLY and PRINT AND PUNCH, are provided for governing the output operations. These will be described in Chapter 2.

Both of these commands cause the right-hand six binary digits in a secified box in storage to be transmitted to the Print/Punch Register (PPR in Figure l), as explained in Section 1.2.3. An electric typewriter then prints the oharacter to which this code corresponds, and (if so instructed) a perforator punches the six digits as a line of data on 6- or 7-hole tape. As soon as the mechanical operation is under way, PPR clears and is rooeptive to further data.

Once a print operation has been initiated, the computer is free to continue with its programe It is not neoessary for Program Control to stop and await completion of the printing operation. However, a second printing operation is automatically delayed until completion of the previous one.

CHAPTER 2

COMPUTING CHARACTERISTICS

2.1 Introduction.

The computer has a repertoire of 39 operation commands. These commands are defined in Section 2.2, without elaboration. Coments on the oommands are contained in Section 2.3. Factors influencing the speed of computing are treated in Section 2.4.

2.2 Dofinitions of the Commands.

2.2.1 Nomonclature. In the 39 definitions to follow, parentheses around an address symbol or a register symbol mean "the number contained in" the box or register so designated; e.g., (y) is the number in the box whose address is y, and (A) is the number in the Accumalator.

The numbers contained in A, Q, and X are expressed as aggregates of digits a ${ }_{i}$, q_{i}, and x_{i}, respectively, where the subscript " i " is the power of 2 associated with that digit. That is, a_{0} is the coefficient of 2^{0}, and is therefore the right-hand digit of (A) a_{i} is the ($i+1$)th digit from the right.

A coding designation is included for each command. (These codes are repeated in Table III, together with their memonic significance.) Each double oapital let-' ter should be regarded as a single symbol. On the tape-preparing leyboard there will be a key for each of the 39 symbols.

This set of commends will be called List E-L, to distinguish it from previously reported lists.
2.2.2* Principal additive commands. The following twelve statements define
the "ordinary", "absolute", and "split" types of additive commands

1. OApy - HOLD ADDz Add (y) to (A).
2. OPpy - CLEAR ADD: Clear A and insert (y).
3. OSpy - HOLD SUBTRACT: Subtract (y) from (A).
4. ONPY - CLEAR SUBTRACT: Clear A and insert the negative of (y).
5. AApy - ABSOLUTE HOLD ADD: Add to (A) the absolute value of (y).
6. APpy - ABSOLUTE CLEAR ADD; Clear A and insert the absolute value of (y).
7. ASpy - ABSOLUTE HOLD SUBTRACT: Subtract from (A) the absolute value of (y).
8. ANpy - ABSOLUTE CLEAR SUBTRACT: Clear A and insert the negative of the absolute value of (y).
9. SApy - SPLIT HOLD ADDz Add (y) to (A), oxcopt that 0^{\prime} e are to be added into the left-hand 30 places of \mathbf{A}.
10. SPpy - SPLIT CLEAR ADD: Clear A, insert (y) into the right-hand 30 places.
11. SSpy - SPLIT HOLD SUBTRACT: Subtract (y) from (A), except that 0 's are to be subtracted into the left-hand 30 places of A.
12. SNpy - SPLIT CLEAR SUBTRACT: Clear A, insert the negative of (y) into the right-hand 30 places, and insert l's into the left-hand 30 places.
2.2.3 Miscellanoous Acoumulator commands. The following seven statemonts define additional commands relating to transmission of data betweon A and storages
13. NPpy - CLEAR ADD PLUS ONE: Clear A and insert (y) +1 .
14. NMpy - CLEAR ADD MINUS ONE: Clear A and insert (y) - 1.
15. LAPy - HOLD LOGICAL MOLTIPLYs "Split add" (y) to (A) as in SApy, but suppress the transmission to A of those digits of (y) which are in

ENGINEERING RESEARCHMASSOCIATES, INC.

$$
\text { places corresponding to } O^{\prime} s \text { in }(Q) \text {. }
$$

16. LPPy - CLEAR LOGICAL MULTIPLYs Clear A and insert (y) into the righthand 30 places, but suppress the transmission to \mathbf{A} of those digits of (y) which are in places oorresponding to $0^{\prime} \mathrm{g}$ in (Q).
17. SDpy - SUBSTITUTE DIGITS: Replace each digit of (y) with the corresponding digit of (A), provided the corresponding digit of (Q) is a l_{3} the remaining digits of (y) are not to be disturbed.
18. SEpy - SUBSTITUTE EXECUT ION ADDRESS: Replace the right-hand 12 digits of (y) with the corresponding digits of (\mathbb{A}) the remaining 18 digits of (y) are not to be disturbed.
19. AYpy - STORE $A s$ Replace (y) with the right-hand 30 digits of (A).
2.2.4 Q-Register oommands. The following five commands are related to transmission of data into and out of Q:
20. YQpy - FILL Q : Clear Q and insert (y).
21. AQP- - TRANSMIT A to Q : Clear Q and insert the right-hand 30 digits of (A).
22. QAP- - HOLD ADD FROM Q: Add (Q) to (A).
23. QPP- - CLEAR ADD FROM Qs Clear A and insert (Q).
24. QYpy - STORE Q: Replace (y) with (Q).
2.2.5 Arithmetic sequence commands. The following six commands are related to arithmetic processes whioh involve the Arithmetic Sequence Controls
25. ALpk - SHIFT A LEFTs Shift (A) to the loft k times, roplacing extrome right digit with the one which was at extreme left each time (circular shift).
26. QLpk - SHIFT Q LEFT: Shift (Q) to the left k times, replacing extreme

right digit with the one which was at extreme left eaoh time (circular shift).
27. MApy - HOLD MULTIPLYs Add to (A) the product of (Q) and (y), without roundoff, leaving multiplier intact in Q.
28. LPPY - CLEAR MJLLIPLY: Clear A and insert the product of (Q) and (y), without roundoff, leaving multiplier intact in $Q_{\text {. }}$
29. DPpy - DIVIDE; Divide (A) by (y), putting the quotient in Q and leaving a non-negative remainder, R, in A. The quotient and remainder are defined bys

$$
M=Q D+R \quad(0 \leqslant R<|D|)
$$

where $\quad \mathrm{H}=$ dividend (numerator)
and $\quad D=$ divisor (denominator).
30. SFPy - SCALE FACTOR SHIFT: Shift (A) circularly to the left until a 59 and a_{58} become different; replace the right-hand 12 digits of (y) by a characteristic, k, defined byz

$$
\mathbf{k} \equiv(30-s) \bmod 60 \quad(0 \leqslant k \leqslant 59)
$$

where S is the number of places shifted. If (A) consists of all 0^{\prime}. or all 1's, reoord k as 31.
2.2.6 Test commands. The following five etatements define four test, or discrimination, commands (PEpt is simply a preparatory operation for TEpy):
31. PEPt - PRESET END POINT COUNTER\& Clear EPK, insert the number t (the total number of times a routine is to be traversed), and subtract 1 from (EPK).
32. TEPY - TEST END POIII: Subtract 1 from (EPK); if an ond-borrow (change of sign) results, take (y) as the next instructions if not, take (p)

```
ENGINEERINGGRESEARCH
as the next instruotion.
33. TFPY - TEST FULL ACCUMULATOR: If \(a_{59}\) and \(a_{58}\) (ooefficionts of \(2^{59}\) and \(2^{58}\) in (A)) are alike, take ( \(p\) ) as the next instruction; if different, take ( \(y\) ) as the noxt instruction.
34. THPy - TEST HALF OVERFLOW: If a 30 and a are alike, take ( \(p\) ) as the next instruction; if different, take ( \(y\) ) as the next instruction.
35. TSPY - TEST SIGN: If (A) is negative, take ( \(y\) ) as the next instruction; if (A) is positive or zero, take ( \(p\) ) as the next instruction.
2.2.7 Print and stop oommandso The following four oommands are related to output and stop operationss
36. POpy - PRIAT ONLY: Transmit to 6-digit Print/Punoh Registor the righthand 6 digits of ( \(y\) ), and oause electric typowriter to print the oharacter to which this code oorresponds.
37. PPpy - PRINT AND PUNCH: Same as POpy, but in addition cause perforator to punch the 6 digits as a line of data on 6 - or 7 -hole paper tape.
38. ISpe - INTERMEDIATE STOP: Stop clock pulse generator and Plash IMPERMEDIATE STOP signal.
39. PS-- - FIMAL STOP: Stop clock pulse generator and flash PINAL STOP signal.

\subsection*{2.3 Comments on the Commands.}
2.3.1 Numbers transmitted to Aooumulator. The numbers subtracted into \(A\) in the several basic internal arithmetic operations are recapitulated in Table II. The symbols are those defined in Section 2.2.1. The complement of a digit is represented by a primed symbol; i.e., \(x_{i}^{\prime}\) moans ( \(1-x_{i}\) )。
2.3.2 Principal additive commands. The four ordinary additive commande and the four absolute additive commands have obvious purpose. The four split additive commands are provided for manipulating "multiple precision" numbers, whore 30-digit portions of maltiple length numbers are stored in separate boxes.
2.3.3 Miscollanoous Accumulator commands. The commands CLEAR ADD PLOS ONE and CLEAR ADD MIMOS ONE reduce the number of storage references required to change a number ( \(0 . \mathrm{g} \cdot\), a computational index or a stored instruction) by one unit.

The LOGICAL MOLTIPLY and SUBSTITUTE DIGITS comands provide considerable flexibility. To illustrate one type of application, five 4 -digit numbors and one 10 digit number could be stored together in each box, and yot be manipulated as though they were stored in separate boxes. The seleotive operator in \(Q\) may be loft set up for a long serios of steps.
2.3.4 Q-Register commands. The commands TRAMSMIT A TO Q. HOID ADD FROM Q and CLEAR ADD FROM \(Q\) enable \(Q\) to be used for rapidly accossible storage of a 30digit number.
2.3.5 Arithmetio sequence oomands. A natural question relative to the two SHIFT LEFT commands iss What happens if \(k\), the number of places to be shifted, is made greater than 59 or 29 in ALpk or QLpk, respeotively? The answer can be deduced from the properties of ASK, as desoribed in Section 1.3.6. The actual number of places shifted is equal to the number represented by the right-hand aix digits of \(k\).

A flow diagram of the algorithm followed by the Arithmetic Sequence Control in exocuting the two MULTIPLY oommands is given in Figure 4o (The switoh-like symbols in this diagram indicate logical diohotomies, not actual switohes.) The steps imediately preceding and following the "basic mitiply algorithm" are
oorrections for a negative miltiplier. The step labelled "Part I" is required only for cumulative multiplication.

A flow diagram of the DIVIDE algoritha is given in Figure 5. The "basic divide algorithm", if performed alone, would result in a quotient and a remainder satisfying the following conditions: ( 1 ) quotiont odd (i.e., \(q_{29} \neq q_{0}\) ) and (2) absolute value of remainder less than or equal to that of divisor. The initial and final oorrective steps produce the positive remainder specified in the definition. In particular, a zero remainder is then represented as zero.

Prior to division, the dividend in A may be shifted to the left to provide the desired number of significant figures in the quotient. A limitation on this preliminary shift is that the quotient mast lie within the range of \(Q_{3}\) i.e., its absolute value mast not exceed ( \(2^{29}\) - 1). In particular, if the most aignificant digit of the divisor is \(x_{28}\), then the most significant digit of the dividend should lie no further to the left than \({ }_{55}\) (this is a sufficient, but not always neoessary, condition).

The command SCALE FACTOR SHIFT is a "substitution" oommand, which makes it possible to insert the characteristic, \(k\), into a stored ALpk or QLpk instruction. The definition of \(k\) is such that if the corresponding "mantissa" is read out of storage and then shifted by ALpk, it will have been restored to its ariginal position with respect to the binary point.
2.3.6 Test commands. The command PRESET END POINT COUNTER and TEST END POINT are provided for counting the number of times a repetitive sequence of instructions in the program has been traversed. It is initially filled with a number, \(t\), equal to the desired number of traversals, by means of the inetruction PSpt. The instruotion TEpy, following each traversal, diminishes the oount by
one and performs the test. The two comands are defined so that the test goes in the \(p\) direction \((t-1)\) times, and goes in the \(y\) direction the \(t\) - th time.

The command TEST FULL ACCUMULATOR tests whether the most significant digit of (A) is at \(58^{\circ}\) The command TEST HALF OVERFLOW may be used for dotermining whothor a single additire operation has produced an overflow into the left half of A.
2.3.7 Print and stop oommandse The cormands PRINT ONLY and PRIMT AND PUKCH are both provided in order that intermediate chook results and othor control information may be printed by tho typewriter without molesting "amooth oopy" being socumilated on the punchod tape.

Two STOP commands are provided so that the operator may determine whether the machine has stopped to permit inspection of a printed intermediate result, or whether the problem is completely finished. In addition to these programmed stope, there are several alarm stope which are actuated by faultedetector oiroulta.

\subsection*{2.4 Operating rime Considerationse}
2.4 Programing for maximum offective computer speode. In order to make the most effective use of the twomaddress system of commands, the programmer must have lonowledge of the minimun allowable time intervals between various kinds of reference to storage. This information is given in Table III for the 39 oompater commands.

Let \(p^{\prime}\) be defined as the address of the box containing the present instruction; \(y\), the execution address which is part of the present instructions and \(p\), the program address in the present instruction (i.e., the address of the box containing the next instruction). Then the meaning of the tabulated quantities, \(C\), is that \(y\) should lie at least \(C_{p^{\prime}} y\) cells beyond \(p^{\prime} ; p\) should lie at least \(C_{y p}\) cells beyond \(y\) i and (for commands with no exeoution address) \(p\) should lie at least \(C_{p \prime} p\)
EMGINEERING RESEARCH ASSOCIATES, INC.
eell beyond \(p^{\prime}\). These numbers are given in decimal notation and are rounded to multiples of 8. Expressed in octal notation, these mitiples are 10, 20, 30, oto. The minimum intervals defined by the \(C^{\prime}\) e apply only to the angular portion of each address (seo Section 1.2.1). Suppose that p' is 6123 (in ootal) and that the instruction is Mpy. Then \(y\), the addrese of the box containing the maltiplieand, should be no smaller than 6123 plus 10 (octal), or 6133. But box number 2133. which is situated at the same angular position in the other track group, passes the magnetic heads simultaneously with 6133, and therefore has equal status for timing purposes.

Should a shorter interval be programed than that specified in the table, the only effoot is a loss of operating time. The interval is automatieally lengthened by the duration of a mplete drum revolution, or 16 milliseoonds.

As a further refinement, the programer may assume that the dead time from 3777 to 0000, and from 7777 to 4000 , is equivalent to 40 cell-periods.
2.4.2 Storage lookout delays. One of the factors taken into aecount in making up Table III is the oircuit recovery time which mat elapse between the several kinds of magnetic drum storage reference. Automatio loakout delays are built into the storage system controls for this purpose. These delays prevent a writing Operation from following a prefious witing operation by less than about \(2000 \mathrm{md}-\) oroseoonds, a reading from following a previous writing by less than about 250 mi oroseconds, and either operation from following a reading by less than about 60 microsecond 6 .
2.4.3 Clock pulse rate. The Clock Pulse Geperator, which times the main Proo gram Control and the Arithmetic Sequence Control, operates at a rate of 400,000 pulses per second. This rate determines (and is equal to) the shifting rate of \(Q\)
and \(A\), in places per second.
The basic addition cyole in the Aocumulator is 3 olook pulse periods, or 7.5 mioroseconds. That is, 7.5 miorosoconds after transmission of a number to \(A_{s} a\) second operation in A, such asmififting, may be ordered. This interval allows suffioient time for propagation of a 60-place borrow (oxtreme oase) in A.

The timing of the wIIIPPI and DIVIDS processes, as directed by the Arithmetic Sequence Control, is based on these shifting and adding rates.
2.404 Parallel internal operations. The internal operations ordered by the Program Control ocour both in sequence and in parallel. Bxecution of the instruotion Mpy will sorve to illustrate. First, Part I of the miltiply algorithm (figure 4) is initiated, simitaneously with initiation of the searoh in storage for the multiplicand. Upon completion of those operations, Part II of the algorithm is initisted, simultaneously with initiation of the search in storage for the next instruotion in the program

CBAPTER 3

\section*{MSCELLANEOUS GENERAL COMSIDERATIOMS}

\subsection*{3.1 Mmual Controls.}

A number of manual controls are required for starting and for servicing the computer. An initial starting control sets the Progran Control registers to read the first instruction from a cortain box, \(s\) ay 0000 , whioh is always used to hold the first instruction in the programe The starting control also performs much routine tasks as olearing toggle-cirouit regiaters to their proper initial state.

Controls are also provided for running the Clock Palse Generator at a redueed rate, and for single-stepping. The distribution of olock pulses may be intorrupted and resumed manually.

\subsection*{3.2 Checking and Sorvioing.}

Elaborate means for checking the operation of the compater are not providede The design of the machine permits the frequent running of brief oheak problems during the course of a long computation. The non-wolatile nature of the data in etorage enables the retention of cheok problems in storage for extended periodse There are, however, oertain speoialized ohecks, such as the address check in the machine loading operation (Section 1.5d).

To facilitate servicing, neon lamps are provided for indioating the state of \(a l l\) toggle-circuits in the computer. It is thorefore possible to singleopulse the machine and observe the aotion, for ocmuple, of the arithotio unitse
\(A 11\) eleotronic mits are divided into replaceable plug-in ohassis of conven1ent size.

\subsection*{3.3 Inmber of Fubes.}

The number of tube envelopes in the ontire computer is estimated at 2500.


COMMAND TRANSL SWITCH (CTS-6 DIGS.) \(\begin{array}{cc}\text { CTS-6 DIGS.) } \\ 0 & 1\end{array}\) 4


UNITS MARKED (\$) ARE USED exclusively for input

STORAGE INSERTION REG. (SIR - 30 DIGS.)
THMETIC
THMETIC
T COUNTER
T COUNTER
- 6 DIGS.)
- 6 DIGS.)
30
6
6



Figure 2. TAPS CONTROL CODI \(\operatorname{HG}\)




UNITS MARKED (奴) ARE USED
exclusively for input



MAPY USES PARTS I AND II.
MPPY USES PART II ONLY.
INITIAL CONTENTS:
X: MULTIPLICAND
Q: MULTIPLIER
A: INITIAL NUMBER (ZERO FOR MPPY)
FINAL CONTENTS:
X: MULTIPLIGAND
Q: MULTIPLIER
a: initial number plus product

Figure 4o molriply ALGOBITHM (partion of MApy and MPpy)


Figure 5. DIVIDR ALCORITHI (partion of DPpy)

\section*{table I}
fentative physical characteristics of storags druy
Humber of storage traaks ..... 60
Number of locating or address tracks ..... 11
Wumber of control or timing tracks ..... 2
Digits per inch of traok ..... 80
Traake per axial inch of drum ..... 8
Diameter of drum, inches ..... 8.5
Length of drum inches ..... 10
Period of revolution, nominal, milliseconds ..... 16
Surface speed, inches per second ..... 1600
Seanning rate, digits per second ..... 128,000
Wumber of magnetic heads ..... 73

\section*{TABLE II}

NUMBERS SUBTRACTED INTO ACCUMULATOR IN THE BASIC ARITHIETIC OPERATIOMS
\begin{tabular}{|c|c|c|}
\hline Oporation & Aooumulator Digits
\[
a_{59^{a}} 58^{\cdots{ }^{a} 30^{2} 29^{a} 28^{\cdots a_{1}}{ }^{a} 0}
\] & Where Used \\
\hline Add I. to A & \(x_{29}^{\prime} x_{29}^{\prime} \cdots \cdots x_{29}^{\prime} x^{\prime} x^{x_{1}^{\prime}}{ }_{28} \cdots \cdots x_{1}^{\prime} x_{0}^{\prime}\) & \begin{tabular}{ll} 
QApy & MApy \\
OPpy & MPpy \\
MPpy & DPpy \\
MMpy &
\end{tabular} \\
\hline Subtract X to A & \(x_{29} x_{29} \cdots \cdots x_{29} x_{29} x_{28} \cdots \cdots x_{1} x_{0}\) & \[
\begin{array}{ll}
\text { OSpy } & \text { MApy } \\
\text { OApy } & \text { MPpy } \\
\text { DPpy } &
\end{array}
\] \\
\hline Absolute Add X to A
\[
\begin{aligned}
& \text { If } x_{29}=0 \\
& \text { If } x_{29}=1
\end{aligned}
\] & \[
\begin{array}{lllll}
1 & 1 & \ldots 1 & 1 & x_{2}^{1} 8 \cdots x_{1} x_{0}^{\prime} \\
1 & 1 & \ldots 1 & 1 & x_{28} \cdots x_{1} x_{0}
\end{array}
\] & AApy APpy DPpy \\
\hline Absolute Subtract \(X\) to A
\[
\begin{aligned}
& \text { If } x_{29}=0 \\
& \text { If } x_{29}=1
\end{aligned}
\] & \[
\begin{array}{lllll}
0 & 0 & \ldots 0 & 0 & x_{28} \cdots x_{1} x_{0} \\
0 & 0 & \cdots 0 & 0 & x_{28}^{\prime} \cdots x_{1}^{\prime} x_{0}^{\prime}
\end{array}
\] & ASpy ANPy DPpy \\
\hline Split Add X to A &  & \[
\begin{aligned}
& \text { SApy } \\
& \text { SPpy }
\end{aligned}
\] \\
\hline Split Subtract X to A & \(0000 x_{29} x_{28} \cdots^{\cdots x_{1} x_{0}}\) & \[
\begin{aligned}
& \text { SSpy } \\
& \text { sxpy }
\end{aligned}
\] \\
\hline Add Q to A & \(q_{29}^{\prime} q_{29}^{\prime} \cdots \cdots q_{29}^{\prime} q^{\prime} q^{\prime} q^{\prime} 88^{*} \cdot q_{1}^{\prime} q_{0}^{\prime}\) & \[
\begin{aligned}
& \text { QAp- } \\
& \text { QPp- }
\end{aligned}
\] \\
\hline
\end{tabular}


TABLE III. COMLANDS AND OPERATING TIAES (LIS
\begin{tabular}{|c|c|c|c|}
\hline & TITLE
(DEFINITIONS IN SEC. 2.2) & CODE & MNEWONIC SIGNIFICANCE \\
\hline \[
\begin{aligned}
& 10 \\
& 2 \cdot \\
& 30 \\
& 4 \bullet
\end{aligned}
\] & \begin{tabular}{l}
HOLD ADD \\
CLEAR ADD \\
HOLD SUBTRACT \\
CLEAK SUBTRACT
\end{tabular} & Qapy OPpy OSpy ONPy & Ordinary Add Ordinary Positive Ordinary Subtraot Ordinary Negative \\
\hline \[
\begin{aligned}
& 5 \\
& 6 \\
& 7 \\
& 8
\end{aligned}
\] & \begin{tabular}{l}
ABSOLUTE HULD ADD \\
ABSOLIT: CLEAR ADI \\
ABSOLUTE HOLD SUBTRACT \\
A3SOLUTE CLEAR SUBTRACT
\end{tabular} & AAPy APpy ASpy ANpy & Absolute Add Absolute Positive Absolute Subtract Absolute Negative \\
\hline \begin{tabular}{l}
9 \\
10. \\
11. \\
12.
\end{tabular} & \begin{tabular}{l}
SPLIT HOLD ADD \\
SPLIT CLEAR ADD \\
SPLIT EOLD UUBTKACT \\
SPLIT ULENK SUBTKACT
\end{tabular} & SApy SPpy SS py SNPy & \begin{tabular}{l}
Split Add \\
Split Positive \\
Split Subtract \\
Split Negative
\end{tabular} \\
\hline \[
\begin{aligned}
& 13 . \\
& 14 \cdot \\
& 15 . \\
& 16 . \\
& 17 . \\
& 18 . \\
& 19 .
\end{aligned}
\] & \begin{tabular}{l}
CLEAR aDD PLUS JNG \\
CLEiak aDD hinUs JNE \\
HOLD LOGICAL ULTIPLY \\
CLEAR LOGICAL UULTIPLY \\
SUBSTITUTE DIGITS \\
SUBGTITUTE EXECUTIUN \(\Rightarrow D D R E S S\) \\
STORE A
\end{tabular} & \begin{tabular}{l}
NPpy \\
Nilpy \\
LAPy \\
LPpy \\
SDpy \\
SEpy \\
AYpy
\end{tabular} & \begin{tabular}{l}
Notch Plus \\
Notoh Minus \\
Logicel Add \\
Logical Positive \\
A to memory
\end{tabular} \\
\hline \[
\begin{aligned}
& 20 . \\
& 21 . \\
& 22 . \\
& 23 \circ \\
& 24 .
\end{aligned}
\] & \begin{tabular}{l}
FILL Q \\
TRANSMIT A TO U HOLD ADD FROM Q CLEAR ADD FROM \(Q\) STOKE Q
\end{tabular} & \begin{tabular}{l}
YQpy \\
AQP- \\
QAP- \\
QPp- \\
QYpy
\end{tabular} & \begin{tabular}{l}
memory to \(Q\) \\
A to \(Q\) \\
Q to A, Add \\
\(Q\) to A, Positive \\
\(Q\) to memor \(Y\)
\end{tabular} \\
\hline \[
\begin{aligned}
& 25{ }^{\circ} \\
& 26{ }^{\circ} \\
& 27{ }^{\bullet} \\
& 29{ }^{\bullet}
\end{aligned}
\] & \[
\begin{aligned}
& \text { SHIFT A LEFT } \\
& \text { SHIFT Q LEFT } \\
& \text { HOLD NULTIPLY } \\
& \text { GLBAK NULIPLY } \\
& \text { DIVIDE } \\
& \text { GCALE PACTOK SHIFT }
\end{aligned}
\] & \begin{tabular}{l}
ALpk \\
QLpk \\
MApy \\
MPpy \\
DPPy \\
SFPY
\end{tabular} & Multiply Add Hultiply Positive Divide, Positive rem. \\
\hline \[
\begin{aligned}
& 31 . \\
& 32 . \\
& 33 \circ \\
& 34{ }^{\circ} \\
& 35 \circ
\end{aligned}
\] & \begin{tabular}{l}
PRESET END POINT COUNTER MEST END DOINT \\
test full accululator \\
TEST HALF OVERFLON \\
TLST SIGN
\end{tabular} & \begin{tabular}{l}
PEpt \\
TEpy \\
TFpy \\
THpy \\
TSpy
\end{tabular} & \\
\hline \[
\begin{aligned}
& 36{ }^{\circ} \\
& 37 \\
& 38 \bullet \\
& 30^{\bullet}
\end{aligned}
\] & \begin{tabular}{l}
PAENT UNLY \\
PKIET AND DUNCH \\
INTERGEDATE STOP \\
FINAL STOP
\end{tabular} & \begin{tabular}{l}
POpy \\
PPpy \\
ISp- \\
FS--
\end{tabular} & ! \\
\hline
\end{tabular}

Le III. COMCNANS aND OPERATING TIIES (LIST E-L)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CODE} & \multirow[t]{2}{*}{MNEMONIC SIGNIFICANCE} & \multicolumn{3}{|l|}{GINIMNM ALLOMABLE TI恠 INTERVALS, IN CELL PERIODS (SEE NOTE 1)} & \multirow[t]{2}{*}{APPLICA3LE
NOTES} \\
\hline & & \(C_{p \prime}{ }^{\prime}\) & \(\mathrm{C}_{\mathrm{yp}}\) & \({ }^{6}{ }^{\prime}{ }^{\prime}\) & \\
\hline Qapy & Ordinary Add & 8 & 8 & - & \\
\hline OPpy & Ordinary Positive & 8 & 8 & - & \\
\hline OSpy & Ordinary Subtract & 8 & 8 & - & \\
\hline ONpy & Ordinary Negative & 8 & 8 & - & \\
\hline AApy & Absolute Add & 8 & 8 & - & \\
\hline APpy & Absolute Positive & 8 & 8 & - & \\
\hline ASpy & Absolute Subtract & 8 & 8 & - & \\
\hline ANpy & Absolute Negative & 8 & 8 & - & \\
\hline SApy & Split Add & 8 & 8 & \(\overline{7}\) & \\
\hline SPpy & Split Positive & 8 & 8 & 2 & \\
\hline SSpy & Split Subtract & 8 & 8 & - & \\
\hline SNpy & Split Negative & 8 & 8 & - & \\
\hline NPpy & Notch Plus & 8 & 8 & - & \\
\hline Nipy & Notch Minus & 8 & 8 & - & \\
\hline LApy & Logicel Add & 8 & 8 & - & \\
\hline LPpy & Logical Positive & 8 & 8 & - & \\
\hline SDpy & & 8 & 32 & - & 2 \\
\hline SEpy & & 8 & 32 & - & 2 \\
\hline AYpy & A to memory & 8 & 32 & - & 2 \\
\hline YQpy & memor \(Y\) to \(Q\) & 8 & 8 & - & \\
\hline AQp- & A to Q & - & - & 8 & \\
\hline QAP- & Q to A, Add & - & - & 8 & \\
\hline QPp- & Q to A, Positive & \(\cdots\) & - & 8 & \\
\hline QYpy & \(Q\) to memory & 8 & 32 & - & 2 \\
\hline ALpk & & - & - & 8,16,24 & 3 \\
\hline QLpk & & - & - & 8,16 & 3 \\
\hline Mapy & Multiply Add & 8 & 48 & - & \\
\hline MPpy & Lultiply Positive & 8 & 40 & - & \\
\hline DPpy & Divide, Positive rem. & 8 & 56 & - & \\
\hline SFpy & & 24 & 32 & - & 2 \\
\hline PEpt & & - & - & 8 & \\
\hline TEpy & & - & - & 8 & \\
\hline TFpy & & - & - & 8 & \\
\hline тHpy & & - & - & 8 & \\
\hline TSpy & & - & - & 8 & \\
\hline POpy & \multirow{4}{*}{t} & 8 & 8 & - & 4 \\
\hline PPpy & & 8 & 8 & - & 4 \\
\hline Isp- & & - & - & - & \\
\hline FS-- & & - & - & - & \\
\hline
\end{tabular}

Note

Note

Note
irote
\(\left.E-H_{4}\right)\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Minimum allomable time INTERVALS, IN CELL PERIODS (SEE NOTE 1)} & \multirow[t]{2}{*}{APPLICABLE
NOTES} \\
\hline \({ }^{\text {cp'y }}\) & \(C_{\text {yp }}\) & \({ }^{\text {c }}{ }^{\prime} \mathrm{p}\) & \\
\hline 8
8
8
8 & \[
\begin{aligned}
& 8 \\
& 8 \\
& 8 \\
& 8
\end{aligned}
\] &  & \\
\hline 8
8
8
8 & \[
\begin{aligned}
& 8 \\
& 8 \\
& 8 \\
& 8
\end{aligned}
\] &  & \\
\hline 8
8
8
8 & \[
\begin{aligned}
& 8 \\
& 8 \\
& 8 \\
& 8
\end{aligned}
\] & \[
\bar{i}
\] & \\
\hline \[
\begin{array}{r}
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8
\end{array}
\] & \[
\begin{array}{r}
8 \\
8 \\
8 \\
8 \\
32 \\
32 \\
32
\end{array}
\] &  & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2
\end{aligned}
\] \\
\hline 8
-
-
8 & \[
\begin{array}{r}
8 \\
- \\
\hline \\
32
\end{array}
\] & -
8
8
8
- & 2 \\
\hline \begin{tabular}{r}
\(\square\) \\
\hline 8 \\
8 \\
8 \\
24
\end{tabular} & \[
\begin{aligned}
& - \\
& 48 \\
& 40 \\
& 56 \\
& 32
\end{aligned}
\] & \[
\begin{gathered}
8,16,24 \\
8,16 \\
- \\
- \\
=
\end{gathered}
\] & \begin{tabular}{l}
\[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] \\
2
\end{tabular} \\
\hline - & \begin{tabular}{l}
- \\
\hline- \\
-
\end{tabular} & \[
\begin{aligned}
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8
\end{aligned}
\] & \\
\hline 8 & 8
8
- & E- & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Note 1:}

One cell-period is approximately 8 microseconds.

\section*{Note 2:}

The minimam allowable time interval between two storale writing operations is 256 cell-periods. Should a shorter interval be programed, the interval will automatically be lengthered by the duration of a complete drum revolution, or 16 milliseconds. For a single storage writing operation, only the time intervals tabulated here need be provided.

Note 3:
For shifts of 1 to 20 places, \(C_{p} p\) is 8; for 21 to 40 places, 16; for 14 to 60 places, 24 .

Note \(4:\)
The minimum allowable time interval between two print/punch operations is of the order of 125 milliseconds. Should a shorter interval be progrumed. it will automatically be lene thened to this value. For a single print/punch operation, only the time intervals tabulated here need oe providedo

\section*{APPERDIX A}

\section*{LIST OF REFEREENCES}
a. Letter, A. A. Cohon of KRA to S. N. Alexander of NBS (13 August 1948).
b. Letter, A. A. Cohen of BRA to H. D. Huskey of NBS ( 30 Septomber 1948) .
c. Letter, A. A. Cohen of ERA to H. D. Huskey of IBS (19 Ootober 1948).
d. Report, "Seleotive Alteration of Digital Data in a Magnetic Drum Computer Momory", Office of Haval Research oontract Hoar-240, Baginearing Research Associates, Inc. (1 December 1947).
e. I.R.E. Hational Convention paper, A. A. Cohen and W. R. Keye, same titio as Reforence (d), (25 Maroh 1948). Abstracted in Proc. I.R.E. 36, 379 (1948). Printed transoripts of this papor are available from ERA on request.
f. I.R.E. National Convention paper, H. Rochestor and D. R. Brown, "Reotifier Networks for Maltiposition Switching " (25 March 1948). Abstractod in Proo. I.R.E. 36, 379 (1948).```

