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1.  ABSTRACT 

 

Sperry's entry into the Department of Defense’s (DoD) Very High Speed Integrated Circuit 

(VHSIC) program enhanced our understanding of at least two issues important in Sperry's 

business planning.  The issues include 1) the dangers of complacency with respect to 

technology advancements and 2) our strengths with respect to the development of cost and 

technically competitive electronic products.  The former was dramatically illustrated when 

Sperry's proposal for the development of a VHSIC military standard computer brass board was 

rejected for brassboards encompassing entire subsystem capabilities including the computer.  

On the positive side, Sperry's proposal for a Computer Aided Design (CAD) system was 

selected and a subcontract awarded.  During the contract, our proposal objectives have become 

a model for subsequent work by both the government and other members of industry.  

 

The understanding derived from the VHSIC program can be summarized simply. Sperry's 

future DoD system business will inevitably require us. to design (or adopt existing designs) and 

package totally integrated digital hardware components on a chip, e.g., wafer scale integration.  

In the opinion of DoD and other members of industry, this will require a hierarchical CAD 

system and design methodology.  This paper will define the concept of hierarchical design.  The 

concept of hierarchical design shall be illustrated as it impacts system designers, hardware logic 

designers, software designers, and CAD support system personnel.  Combined with requirement 

specification and correlation, the concept provides a framework for enforcing a system-through-

hardware design methodology.  

 

2.  TECHNOLOGY EVOLUTION IMPACTS CAD  

 

The DoD initiated the Very High Speed Integrated Circuits program in 1979 to meet presently 

defined and future military system needs.  The objective was to provide increased ability, on the 

part of the U.S. electronics industry, to respond fully and quickly to the DoD's continuing and 

rapidly expanding requirements for complex, high-speed signal processing functions in its 

electronic subsystems and systems.  

 

As part of the VHSIC Phase 1 proposal solicitation [1], DoD requested a "hierarchical chip 

design methodology for use with computer aided design (CAD) facilities.”  The CAD tools 

were to "support the entire design process including functional definition. Design, 

implementation, functional verification (and) physical verification.”  The CAD tools were to be 

"integrated with a unitized data base into which data items need be entered only once and are 

then available to all tools and aids within the CAD system."  

 

Since the initiation of the VHSIC program, the concept of hierarchical design has received a 

considerable amount of emphasis from both industry and the DoD.  For example, 
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Mr. John Hanne, vice president and CAD project manager for the Microelectronics Computer 

Technology Corporation (MCC), Austin, Texas, recently toured the country describing a model 

for their CAD system R&D.  The model contains a hierarchical description language and data 

base which, when combined, are capable of supporting hardware and firmware descriptions for 

CAD tools [2].  In the Commerce Business Daily [3], the DoD announced the first phase of the 

Integrated Design Automation System (IDAS-I) program.  "The purpose of IDAS-l is to support 

VHSIC Phase 2 brassboard designs (and) will address all levels of electronic system design 

from system level through chip level."  

 

Discussions between the authors and several members of industry (e.g., RCA, Hughes, 

Westinghouse, TRW, TI, etc.) indicate all have some level of activity underway to better 

understand the concept of hierarchical design and its impact on new and existing CAD tools.  It 

is this subject which shall be discussed and illustrated in the remainder of this paper.  Concepts 

and illustration ideas have been collected from previously published work in the public domain.  

 

3.  HIERARCIHCAL DESIGN ILLUSTRATED  

 

At this point the concept of 

hierarchical design is just that - 

a concept, an abstraction.  It has 

meaning only in the confines of 

an individual's experience.  The 

vast majority of designers 

(including system or circuit; 

software or hardware) neither 

appreciates its potential nor 

denies its benefits.  

 

To illustrate, consider a recent 

presentation given at Sperry 

Defense System Division 

(DSD) on the utility of the 

hardware description language 

U L Y S S E S  [ 4 ] .   T h e 

presentation was given by a 

logic designer who recognized 

the requirement and potential 

for a language capable of 

describing hardware design and 

subsequently verifying that the 

d e s c r i b e d  f u n c t i o n a l i t y 

(behavior) was correct.  

 

The presentation covered the 

utilization of ULYSSES in the 

design of a 24-bit adder for the 

 

1 B.ADDN/TBMPL  

2 macro addn: :-'ADDN’ 

3 

4 templ ADDN  =  <<pars(sig a b) 

5 

6 int n = size(1,a)  

7 

8 repl [0…n-1]  a   b sig cy out 

9 

10 def out cy = add1bit(a b cy[1… •• n-l]&qnd 

11 

12 out cy[0] >> 

13 

14 */ 

15 */ 

16 */  This template defines an N-bit adder 

17 */ 

18 */  the following template is called directly from this template 

19 */  ADDIBIT  

20 */ 

 

Figure 1. N-Bit Adder Defined Using One-Bit Adders 

 

 

1 B .ADD1BIT/TEMP  

2 macro add1bit: : 'ADDIBIT’ 

3 temp1 ADD1BIT = << pars(sig a b cin)  

4 

5 (a xor b xor cin) , {(a and b or (a and cin) or (b and cin) >> 

6 

7 */ 

8 */ This template describes a l-bit adder function  

9 */ 

10 */ 

 

Figure 2. One-Bit Adder Defined Using "Hierarchical"  

Capabilities of ULYSSES 
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Sperry Micro 1100 processor.  The designer chose to describe the adder generically as an n-bit 

adder (Figure 1) which subsequently achieves the proper functionality by utilizing a one-bit 

adder description (line 10, Figure 1).  The one-bit adder description is shown in Figure 2.  The 

data types (signals) and basic logical operators (XOR, AND, etc.) available in the language are 

illustrated in lines 3 and 5 (Figure 2) respectively.  

 

To the designer, the language was hierarchical because in describing the n-bit adder it was 

possible to invoke the one-bit adder by name without describing the detailed logical.  The 

capabilities of the one-bit adder are made: available using the TEMPLate (or library) 

capabilities of the language (lines 1 and 3 of Figure 2).  Similarly, the n-bit adder could be 

invoked by other designers without knowledge of its implementation logic since it had also 

been described using the TEMPLate capabilities (lines 1 and 4 of Figure 1).  

 

The problem with interpreting the term hierarchical in this way can be made visible by 

observing what occurs when the language is translated (compiled) into a form by which it can 

be used for simulation.  In this example, several machine instructions were needed to simulate 

the one-bit adder.  These instructions are necessarily replicated or iteratively invoked to 

complete a 24-bit add.  During the presentation, a question was asked about the amount of time 

required to simulate a single test vector with 12-bit operands. The answer: more than one 

second of Univac 1100 CPU time.  Multiply this by the complexity of tomorrow's chips and the 

number of test vectors necessary· to exhaustively test a design and the magnitude of the 

problem becomes apparent.  

 

The solution to the problem requires that the design language be capable of expressing the 

functionality for CAD tools (e.g., a simulator) in more generic or abstract terms.  For example, 

Figure 3 shows the logic schematic for a two-bit adder shown with carry truncation to simplify 

the illustration.  Expressed in ULYSSES (with current operators and data types), the 

functionality must be expressed as four logical operations.  When simulating the hardware 

functionality, the passing of signals between the logical operators also utilizes machine 

instructions.  Alternatively, Figure 4 shows precisely the same functionality, i.e., add the 

information on Rl to the information of R2, placing the results on R3.  The hierarchical 

capabilities of the language represented here differ significantly from those available in 

ULYSSES.  The functionality expressed by the more abstract form can generally be emulated 

with as few as two or three machine instructions during simulation, thus taking only 

microseconds to complete".  Further, this addition is possible not only for the two-bit adder but 

also for the earlier discussed 24-bit adder that took more than a second to simulate.  

 

 

In fairness to both the designer and the ULYSSES language developers, it must be noted that 

extensions to the ULYSSES data types and basic operators are planned.  However, they were 

not then and, to the best of our knowledge, are not now in place.  Several people at the 

presentation took this definition of hierarchical as an ultimate definition.  To extend the 

hierarchical capabilities of the language and associated language processor to their fullest 

potential, hence quality as hierarchical is expected to take several man-years of labor.  
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4.  HIERARCHICAL DESIGN AUTOMATION - HARDWARE  

 

The functional equivalence represented by Figures 3 and 4 illustrate several requirements 

imposed on hierarchical design languages and associated design automation tools.  Three 

requirements and their impact on design automation tools are discussed.  First, Figures 3 and 4 

illustrate, respectively, two distinct capabilities needed in a hierarchical language: 1) a means to 

express functionality (behavior) for each node (or partition) in a design; and 2) a means to 

describe the interconnection (structure) of nodes.  (If the language allows reference only to 

functions that are predefined, i.e., uses models that are built into the CAD tools, the language is 

primarily a structural language.  The language generally supplies only interconnect information 

usually referred to as "net lists."  A large percentage of existing CAD systems use structural 

languages thus cannot be classified as hierarchical.  The majority of CAD systems in use by 

Sperry fit this description.)  

 

Second, a hierarchical language must support user-defined data types.  For example, in Figure 5 

(Figure 3 redrawn), the associated language need only process "signals" which propagate 

between gate-level operations or primitives.  While the signals may take on several 

"states" (e.g., high, low, undefined, high impedance, etc.), the "data type" is predefined by the 

language to reduce the complexity of the language compiler.  The need for user-defined types 

was illustrated in both Figure 3 and 4.  Here, ports into or out of the adder component are 

"variables" that must be defined to hold a range of integer values from 0 to 3.  A truly 

hierarchical language must support a wide variety of types including enumeration (e.g., for 

signal states) as well as bit, integer, 

reals, floating points, etc.  

 

Third, a hierarchical language 

together with CAD tools must 

support the substitution of detailed 

designs or structures (see Figure 3) 

for less detailed but functionally 

equivalent designs (see Figure 4).  

This requires the use of data 

conversion (also referred to as 

coercion) functions,  when 

performing the substitution.  The 

concept of coercion functions is 

represented in Figure 3 by the 

"dotted boxes."  The functions are 

needed, for example, when 

substituting the hierarchical 

representation of Figure 4 with the 

more detailed representation of 

Figure 5.  In a designer friendly 

CAD system, the coercion 

functions are implicitly inserted by 
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the tools, however, their existence (build-in and/or user-defined) must be supported by the 

language.  

 

The requirements just discussed help establish a framework around which hierarchical design 

tools can be developed.  For example, a simulation generation system can now be developed 

which uses structural descriptions to collect both high-level and/or primitive-level behavioral 

descriptions and form an efficient simulator [5].  To illustrate, consider the simulator shown in 

Figure 6.  The simulator consists of 1) a collection of hardware behavioral (models); 2) routines 

for interpreting commands acceptable to the simulator (user interface); 3) routines for 

connecting models or instances of models (instantiation driver); and 4) routines which extract 

data from the models during simulation (monitors).  The latter provides the framework for built-

in simulator command implementation and will support user –defined routines (e.g., routines 

capable of printing timing diagrams, recording test probe results, etc.).  

 

The ability of the collected software to exchange data and operate concurrently to simulate 

hardware designs is provided by the control kernel.  The control kernel also activates "coercion 

functions" as needed to convert data between different levels of design.  The identification of 

models or monitors, the number of times each model or monitor is used in a design, and how 

the model or monitor "instances" are interconnected is established by the instantiation driver 

from the structural description.  

 

The importance of structural and behavioral descriptions on CAD tools can be seen from the 

design illustrated in Figure 7, i.e., a hierarchical design for a Digital Adaptive Voting Ensemble 

(DAVE).  Using an interactive tool (later shown as a hierarchy processor) to select a desired 

design from a hierarchical design data 

base, it is possible to replace high-level 

behavioral descriptions (functional, 

block, register transfer level, etc.) with 

a structure or structures of lower level 

(more primitive) behaviors.  This 

enables designers to utilize earlier, 

m o r e  ab s t r ac t ,  d e s i gn s ,  an d 

simultaneously concentrate on specific 

areas of interest (i.e., implementation 

detail) while using CAD tools which 

operate efficiently.  

 

The hierarchical use of structure and behavior for simulation is useful in an analogous manner 

for automated hierarchical layout.  During layout, a behavior can be viewed as a 

"composite cell" having physical size attributes.  The values of higher level composite cells 

(PLAs, ROMs, ALUs, etc.) are determined by the structure (interconnect and routing) 

requirements of lower level composite cells (polygons, transistors, gates, etc.).  

 

In general, languages which have not separated behavioral descriptions from struetura1 

descriptions have stymied the development of CAD tools which support hierarchical design.  

Clearly, the separation of structure and behavior within a hierarchical hardware description 
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language provides a consistent 

framework for resolving complex 

technical problems in tool development, 

i.e., data type; conversion, access to 

physical attributes of composite cells, 

establishing artwork boundaries, and 

suppor t ing logic  pa r t i t i on ing .  

S e p a r a t i o n  a l s o  s i m p l i f i e s 

communication between designers, 

particularly across levels of design 

detail.  

 

5. HIERARCHICAL DESIGN 

AUTOMATION - SYSTEM 

 

At this point in our paper we have 

illustrated the concept of hierarchical 

design as applied to hardware or chip 

design.  The use of hierarchical design 

was accelerated by the DoD VHSIC 

program as hardware technology 

advanced to the point where entire 

digital subsystems could be placed on a 

single chip.  In general, it has forced 
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industry to look beyond traditional tools used for hardware design to capabilities previously 

referred to as system design tools.  

 

Sperry DSD has developed and is continuing to refine a CAD system model (Figure 8) which 

addresses system-through-chip design.  Shaded portions of the system model have been 

designed and are under development or have already been completed.  

 

The language used for expressing design was named the Hierarchical System Language (HSL) 

[6].  Ada* syntax and semantics were chosen as a base for the language in order that the most 

powerful means for expressing machine readable functionality would be available for design 

expression and associated verification  To this base were added capabilities by which timing, 

concurrency, structure, physical descriptions, etc. could easily be described .by the hardware 

designer.  

 

The language is processed (compiled) and stored in a Hierarchical System. Data Base (HSDB) 

in a form readily accessible by design automation tools.  The simulation generation system 

discussed earlier together with a runtime simulator completes a core CAD model system around 

which specific tools required for all levels of design can be integrated.  The remainder of this 

paper shall describe and illustrate how this core tool set is required by and can be used for 

system through chip design.  

 

The design process can be thought of as a series of steps that for the most part are universally 

recognized and accepted.  For example, the following steps are equally well understood by 

system designers and chip designers.  

 

1. Requirement Definition - Identification of specific objectives and capabilities 

necessary to solve a problem.  

 

2. Design Hypothesis - Conceptualization of candidate approaches/functions needed to 

attain required objectives.  

 

3. Design /Validation - Verification that interrelationships, behavior, and characteristics 

of conceptual design meet the required objectives.  

 

4. Design Synthesis - Selection or modification of individual functions or parameters 

such that the physical implementation is the best possible in terms of required needs.  

 

5. Design Implementation - Development of the final design using physical elements 

defined by the synthesis process.  

 

Figures 9a and 9b illustrate two of several possible levels in hierarchical design - subsystem and 

microcell design.  The subsystem design begins with requirements (not shown) translated into 

activities (tasks or functions) that must be performed (left half of Figure 9a).  The designer is 

immediately faced with the issue of performance, i.e., which activities must be performed in 

Note:  *Ada is a registered trademark of the Department of Defense  
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parallel or, equivalently, which activities will result in performance bottlenecks.  

 

At this stage of design, an experienced designer resorts to analytical methods of design 

verification.  Using empirical data collected from previous projects, an analysis of data flow 

and functional partitioning is performed.  Notice, however, that the system designer, like the 

hardware designer, is interested in both behavior and structure of nodes.  Whether a system 

designer must proceed with detailed functional implementation design (and associated cost) or 

can map to existing physical entities is dependent upon a number of less tangible factors 

including the results of analysis, and the criticality of requirements.  Nevertheless, the authors 

of this paper believe that the ability to describe and simulate functional designs, analytical 

designs or a mixture within a single CAD system is important.  The potential for doing so, using 

the core tool set, is presented in the final section of this paper.  

 

At some point the designer must map a satisfactory logical representation of a design to a 

physically realizable entity or col1ection of entities (shown in the right side of Figure 9a as a set 

of processing elements).  If all physical entities exist (i.e., have been designed, implemented, 

and are available for integration/test), a comparison of satisfactory test results against 

requirements completes the designer's work.  If one or more physical entities do not exist, the 

designer returns to the logical level of design for that entity or set of entities.  It should be 

noted, however, that premature mapping using prototype development, integration, and test is 

costly.  
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The process of mapping the logical (i.e., functional) to the physical must always be performed 

even if delayed until the lowest level of design, herein represented by the microcell design in 

Figure 9b.  Logical to physical mapping can 

occur at any design level.  In the pre-VHSIC 

era for example, logic level designs were 

mapped onto commercially available MSI/LSI 

chips.  However, like premature mapping, 

prolonged delay in mapping logical to physical 

(i.e., failure to use bottom-up designs) can also 

be costly.  As a result, hierarchical CAD tools 

are needed to verify the mapping feasibility at 

any level.  This requires that behavioral models 

of both logical and previously developed (i.e., 

physical) designs be retained in the data base.  

 

Examples of the range of logical design levels 

between 9a and 9b were shown in Figure 7.  In 

a hierarchical design system, each logical 

design brings requirements closer to a 

realizable physical implementation.  Each level 

can be automatically compared to the previous 

level and the design corrected before the more 

costly physical mapping and integration 

occurs.  

 

6. ANALYTICAL VERSUS FUNCTIONAL 

DESIGN VERIFICATION  

 

In the previous section it was observed that design often involves analytical rather than 

functional modeling.  For example, at the circuit level an analysis of capacitance, current loads, 

or thermal characteristics is required.  At the system level, an analysis of queue lengths and 

associated timing delays is performed, often using values statistically derived from empirical 

data.  

 

A hierarchical CAD system must support both analytical and functional design verification.  A 

major contributor is the use of separate structures and behaviors combined with the 

standardization of internal data base representations.  To demonstrate the potential of this 

contribution, refer again to the data flow graph shown on the left side of Figure 9a.  The 

illustration represents a structure of concurrently executing nodes or behaviors.  

 

Typically a system designer would analyze this structure to determine which of the concurrent 

node behaviors must run in parallel and which can be executed sequentially while meeting 

performance requirements.  Often, a designer uses a Petri-net model to formalize the concept of 

data traversal through the structure [7].  The model provides the designer with the means of 

assessing the arrival rates of data (referred to as tokens) at nodes, the impact on computational 

rates of the nodes, the backup of tokens at each node (queue size) and the potential of tokens 
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never traversing through the structure (a form of deadlock).  

 

Notice that it is not necessary to actually represent the functionality of the node, but rather 

useful data can be derived using only statistical representations of time and knowledge of the 

availability of space for data queues.  The authors believe that this analytical simulation can be 

performed using the core CAD model simulation generation system and hierarchical system 

language.  To illustrate, consider the model description (MODULE Description and MODULE 

BODY) in Figure l0a and l0b.  This description can be instantiated to represent each node in, 

for example, the structure of Figure 9a.  While the model was written for only two inputs to 

simplify the illustration, it could easily be expanded for “n” terminals (ports) and added 

analytical capability.  The model requests attributes from the data base implicitly or can be 

written to request attributes explicitly from the designer (lines 9 and 10, Figure l0b) using the 

PARAMETER capabilities (lines 5, 6, and 7, Figure l0a) of the language.  

 1.  MODULE box (inl, in2, output) IS  

2.  TERMINAL inl, in2: IN arc_type;  

3.  TERMINAL output: OUTPUT arc_type;  

4.  

5.  --PARAMETER DECLARATIONS, E.G.  

6.     -- MAXIMUM QUEUE SIZE (maxsize)  

7.      -- TIMING DISTRIBUTION (distr_id) FROM EMPIRICAL DATA  

8.  

9.   PARAMETER delayed:   real;  = 1.0; 

10.  FOR output 'delay’ USE delayed;  

11.  END MODULE box;  

 

Figure l0a. Analytical Model Declaration 

 

1. MODULE BODY box (inl, in2, output) IS  

2. BEHAVIOR abc IS  

3.   

4. -- LOCAL DECLARATIONS, E.G. queue, last_delay 

5.  

6. BEGIN  

7. -- TERMINAL LINKAGE IMPLICITY PERFORMED BY SIMULATOR FROM 

STRUCTURE 

8. -- PARAMETERS POPULATED FROM DATABASE OR REQUESTS TO DESIGNERS, 

E.G.  

9. -- MAXIMUM QUEUE SIZE (maxsize)  

10. -- TIMING DISTRIBUTION DERIVED FROM EMPIRICAL DATA (distr_id)  

11.  

12. LOOP  

13. IF SIM_TIME < = last_delay AND tokens_present (in1, i02) THEN  

14. consume_tokens (in1, in2); 

15. produce_token (output); 

16. last delay + time_distr (distr_id); 

17. ELSE 

18. increment queue (in1, in2); _ _ FOR TOKENS PRESENT  

19. IF queue (in1) OR queue (in2) > = maxsize THEN 

20. inform_designer (maxsize);  

21. ENDIF;  

22. ENDIF; 

23. END LOOP;  

24. END MODULE; 
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The model is implicitly activated as each token arrives.  If all necessary tokens are present and 

processing time available (line 13, Figure l0b) the token will be processed (consumed –

 line 14).  Subsequently, an output token or tokens will be generated (line 15) and the time used 

in processing computed (line 16).  If tokens cannot be processed; they are queued (line 18).  

Queue sizes (or queue overflow) are passed (line 20) to the designer.  

 

The submission of a structure (see: Figure 9a) and the analytically oriented behavior (Figure 10) 

to a hierarchically oriented simulation generation system enables an efficient runtime simulator 

to be constructed.  Using this technique, the definition of functional models for selected nodes 

would also enable an efficient runtime simulator containing a mixture of analytical and 

functional models to be generated. Theoretically the simulator could use analytical behaviors 

for pre-assigned physical components (i.e., physical components that are known to meet 

performance criteria) and functional behaviors for that part of a system design where 

technology infusion is required.  The authors contend that these concepts of hierarchical design 

and associated tools arc needed to advance design automation and synthesis.  
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